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Abstract— Programming a quantum computer posts a challenge. 
It is not straight forward to transfer the current programming 
skill on a classical computer to a quantum computer.  This work 
presents an example of programming a quantum computer. The 
compact genetic algorithm is used as a target as it is powerful and 
popular method in evolutionary computation. A quantum bit 
(qubit) concept was introduced as a basis for storing information. 
The representation of quantum register has benefits over 
classical computing, i.e. the quantum operation allows 
manipulating qubits in the way that it is impossible in a classical 
computer. This paper demonstrates the enhancement in terms of 
solution quality and speed introduced by quantum computation. 
The simulation of quantum computing is carried out for solving a 
problem using the compact genetic algorithm. 

Keywords: Genetic algorithms, Compact Genetic Algorithms, 
Quantum Computers. 

I. INTRODUCTION 
Quantum computers achieve speedup over classical 

computers by taking the advantages of the interference between 
quantum amplitudes. This phenomenon is hard to simulate in 
classical computers. There have been many examples of 
quantum computation that outperform classical computing such 
as Grover’s search algorithm [1] and Shor’s fast factoring 
algorithm [2]. On the other hand, a genetic algorithm (GA) is 
basically a search algorithm. It belongs to a class of 
evolutionary computation. The key idea is based on the 
principle of biological evolution, such as natural selection, 
genetic inheritance and mutation. There have been the relevant 
attempts between quantum and genetic algorithms. For 
example, Quantum Genetic Optimization Algorithm [3] has 
introduced an optimization of classical genetic algorithm using 
the principles of quantum search which provided a significant 
speed-up on each genetic step. There are many variations of 
genetic algorithms. The compact genetic algorithm (cGA) [4] 
is one of them. In a classical computer, the compact genetic 
algorithm represents the population as a probability distribution 
over the set of solutions by using a vector. In a quantum 
computer, the population is represented as a probability 
distribution in a quantum register. This paper demonstrates an 
alternative way to program a quantum computer to perform 
compact genetic algorithms. The study uses QCL (Quantum 

Computation Language) [5]—[7] as an emulator of quantum 
computer. 

II. COMPACT GENETIC ALGORITHMS 
Genetic algorithms are adaptive search algorithms based on 

the idea of biological evolution such as natural selection, cross 
over and mutation. Compact genetic algorithm represents the 
population using a vector. The vector contains each bit with a 
real number from 0.0 to 1.0 representing the probability of that 
bit to be one. This reduces the storage of the population to just 
the storage of a vector. This property makes it very suitable to 
be implemented in a quantum computer by representing a 
vector using a quantum register. 

Here is a short description of the steps in cGA. The first 
step is to generate a population. An appropriate encoding of the 
candidate solution is dependent on the problem. The second 
step is to sample two candidates from the population and 
evaluates their fitness using the fitness function in order to 
provide the fitness value of each candidate. The third step is to 
determine the "winner" by comparing their fitness values. The 
winner’s chromosome will be used to update the probability 
vector so that the distribution will converge to a population that 
fits the solution requirement. This is an iterative process. The 
process will continue until the terminating condition is met. 

III. INTRODUCTION TO QUANTUM COMPUTATION. 

A. Definition of a quantum bit 
A quantum bit or a qubit is a unit of information describing 

a two-dimensional quantum system. A qubit is represented as 
2-by-1 matrix with a complex number, as  
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The two basis state can be superposed,  
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with the condition that, 
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   122 =+ βα            (4) 

The 2α is the probability that the measurement of  state 

will result in state 0 , and the 2β is the probability that the 

measurement of  state will result in state 1 . Keep in mind that 
the general qubit cannot be seen: whenever the qubit is 
measured or observed, it spontaneously become a bit. Next, a 
representation of a qubit is introduced 

B. The Bloch Sphere. 
The general state of one qubit system can be represented in 

the form, 
10 βαϕ +=               (5) 

Where α and β are complex numbers. It might seem 
there are four parameters. However, the equation holds the 
condition that, 
   122 =+ βα            (6) 

So, the equation can be reformed in terms of two 
parameters, 

1
2

sin0
2

cos θθϕ φie+=           (7) 

With natural ranges 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. 
As only two real numbers are required to represent a qubit, 

it can be mapped into a three-dimensional coordinate system. 
The mapping looks like a unit sphere known as Bloch Sphere. 
See Fig.1. 

 

 

Figure 1.  Bloch Sphere. 

C. Quantum Operation 
1) Measurement: The measure command measures the 

quantum register and returns the measured value. The measure 
operation is not reversible. 

2) Unitary Gates: 
a) Hadamard Gate: The Hadamard Gate is defined by 

the transformation matrix, 

        ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
11

11
2

1H                          (8) 

The usage is to map n qubits initialized with 0 to a 

superposition of all 2n orthogonal states in the 1,0 basis 
with equal weight. This means, if observed, the state will 
collapse to be a 0 or 1 with equal probability. 

b) Qubit Rotation: The rotation of a single qubit is 
defined by the transformation matrix, 
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This operator is implemented as 
Rot(real theta,qureg q); 

The theta parameter used in this paper has range from 
2
π  

 to 
2
π−  

c) Using Hadamard gate and Qubit Rotation:Hadamard 
gate is used for transforming into an even superposition state 
of quantum register. According to Bloch’s sphere, a qubit can 
be visualized as Fig.2-left. When a qubit rotation is applied, 
for example pi/4, the state will be Fig.2-right. This means the 
qubit is more likely to be 0, when measure, than 1. 
 

Figure 2.  Applying Rot(pi/4,x) 

IV. THE MAPPING OF COMPACT GENETIC ALGORITHM – 
QUANTUM CONSTRUCTION 

The main contribution of this paper is the quantum 
construction of the compact genetic algorithm.  The algorithm 
is described below: 

Step 1) Initialize  qureg x with Hadamard transform and 
record the vector v. 

Step 2) Generate two individuals from qureg by 
measurement 

        resetregister(x); 
        H(x); 
        restore(x,v); 
        a := measure(x); 
        resetregister(x); 
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        H(x);         
        restore(x,v); 
        b := measure(x); 
Step 3) Let them compete 
        {win, lose} := eval(a,b); 
Step 4) Update qureg x with the “winner” 
       for i := 1 to n do 
        if win[i] != lose[i] then 
  if win[i] = 1  and v[i] != -1*NHALFPI then v[i] := v[i] –1; 
  if win[i] = 0  and v[i] != 1*NHALFPI then v[i] := v[i] +1; 
Step 5) check loop time 
       If time < LOOP_TIME then  

time := time+1;  
go to Step 2)  

       else go to Step  6) 
Step 6) generate the final result 
        resetregister(x); 
        H(x); 
        restore(x,v); 
        output := measure(x); 

 
operator restore(qureg x, vector v) 
for i := 0 to n-1 do 
  Rot( THETA * v[i], x[i]); 
 
parameter: 
const pi = 3.14159265 
const n = length 
const THETA = small angle ,e.g. pi/32 
 
The first step is to initialize a quantum register as a 

quantum variable x. Then, apply Hadamard gate in order to 
produce an even superposition state. Record vector v as a 
vector of integer for tracking the operation. It will be used in 
restore operator.  

In step 2, the measurement operation is used to generate an 
individual. The individual will be randomly produced 
according to probability distribution in a quantum variable. As 
a result, the quantum variable will be collapsed to a single 
state. However, the second individual must be produced. This 
can be done by resetting quantum register into the initial state, 
i.e. zero; applying Hadamard-gate, and calling restore 
procedure. The restore procedure iterates every bit to apply 
Rotation operation by using v[i]*THETA as a parameter. The 
THETA is a constant of small angle. The constant NHALFPI 
means an integer that v[i]*THETA equals to pi/2. The 
NHALFPI is used for bounding the condition to prevent the 
rotation “overflow.” 

In step 3, the eval function is called to compare the fitness 
values between individual a and individual b. The higher 
fitness individual will be denoted as a “winner.” 

In step 4, this is where the tracking operation is used to 
store integer. We iterate all bits. Notice that if a bit of winner is 
set, the value is decremented and vice versa. The reason is the 
output of the Rotation operation will go to 0 when the 

parameter is pi/2. Conversely, the output of the Rotation 
operation will go to 1 if the parameter is –pi/2. 

V. EXPERIMENTAL RESULT FOR THE MAPPING 
One-max problem is used to validate the quantum cGA.  

The one-max problem is a simple benchmark in GA.  Its 
purpose is to search for the binary string with all ones.  Only 
the fitness function, counting ones, is used to guide the search.  
Assume an individual A competes with individual B. 

Individual      chromosome      fitness 
        A               1011            3 
        B               1001            2 

The winner is A. The quantum variable is then updated 
toward the winner via qubit rotation. An experiment is set up 
with the following parameters: n = 5; LOOP_TIME = 150; 
THETA = pi/32. This is a 5-qubit quantum register. The 
execution is iterated 150 steps with the increment angle pi/32. 

The Fig.3 was captured at i = 0, 10, 20, 30, 50 and 150 
respectively. 

 
Figure 3.  Plotting quantum variable 
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Fig.3 shows the probability distribution of a 5-qubit 
register. The x axis represents the basis state starting from 0 to 
31 toward the right hand side. The y axis represents the 
probability of each state. Notice that at i = 0, it is starting from 
even superposition state of quantum variable. For each 
iteration, the Rotation operation will rotate the probability up to 
the winner of each stage. The direction will be toward to the 
one-max value, i.e. 31 which is 111112. 

VI. THE COMPACT GENETIC ALGORITHM – QUANTUM 
ALGORITHM CONSTRUCTION 

In order to achieve benefits over a classical computer, a 
quantum parallelism must be realized. The mapping of 
compact genetic algorithm into quantum computers has 
demonstrated that is at least computationally equivalent to 
classical computers.  This section introduces enhanced version 
of compact genetic algorithm using quantum computation. 
The algorithm is described below: 

Step 1) Initialize  qureg x with Hadamard transform, and 
a single qubit qureg y and record the vector v. 

Step 2) Generate the first individual from qureg by 
measurement 

        resetregister(x); 
        H(x); 
        restore(x,v); 
        a := measure(x); 
 Step 3) Generate the second individual with the 

condition that the fitness is greater than or equal to the first 
individiual 

        resetregister(x&y); 
        H(x);         
       restore(x,v); 
        Fit(x,y,a); 
        c := measure(y); 
      if c = 0 then go to Step 3) 
      if c = 1  then 
           b := measure(x); 

    go to Step 4) 
Step 4) Let them compete 
        {win, lose} := eval(a,b); 
Step 5) Update qureg x with the “winner” 
       for i := 1 to n do 
        if win[i] != lose[i] then 
  if win[i] = 1  and v[i] != -1*NHALFPI then v[i] := v[i] –1; 
  if win[i] = 0  and v[i] != 1*NHALFPI then v[i] := v[i] +1; 
Step 6) check loop time 
       If time < LOOP_TIME then  

time := time+1;  
go to Step 2)  

       else go to Step  7) 
Step 7) generate the final result 
        resetregister(x); 
        H(x); 
        restore(x,v); 
        output := measure(x); 

operator restore(qureg x, vector v) 
for i := 0 to n-1 do 
  Rot( THETA * v[i], x[i]); 
 
qufunct Fit(qureg x,qureg y,int a) 
for each state s in x do 
    if (fitness of s  >= fitness of a) then Not(y); 

 
parameter: 
const pi = 3.14159265 
const n = length 
const THETA = small angle ,e.g. pi/32 

 
The main concept of the algorithm is to generate the second 

individual based on the first individual. The fitness of the 
second individual is greater than or equal to the fitness of first 
individual. The tendency of second individual will be based on 
the greater than or equal one. Regardless of direction of the 
gradient, the evolution continues toward the solution.   

The first step is the same as previous algorithm including a 
1-qubit register y is initialized. 
     In step 3, this is perhaps the most interesting part. The 
quantum function [5] is introduced. A quantum function is a 
pseudo-classic operator with the characteristic: 
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In this step, Fit quantum function is merely: 
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By using this function, all population is divided into two 
groups: the greater or equal and the lower. The greater group 
is obtained by measuring the 1-qubit quantum register y. If the 
measure value is not one, repeat the process until the value 
one is obtained. Notice that a quantum function used here is 
performed on every possible state at once: achieving quantum 
parallelism. 

VII. EXPERIMENTAL RESULT FOR QUANTUM ALGORITHM 
CONSTRUCTION 

Trap functions are deceptive. It is hard to find the global 
optimum of these functions by using GAs. In this experiment, 
the two-peak trap function is used as a benchmark of 
effectiveness of the algorithm. An experiment is set up with 
the following parameters:  n = 6; LOOP_TIME = 150; 
THETA = pi/64. The trap function is as Fig.4 

 

Figure 4.  Two-peak trap.There is a false maximum at i = 0 with fitness of 31 
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The Fig.5 was captured at i = 5, 10, 20, 40, 80 and 120. 

 
Figure 5.  Plotting 6-qubit quantum variable 

The Fig.5 shows the probability distribution of a 6-qubit 
register. The x axis represents the basis state starting from 0 to 
31 toward the right hand side. The y axis represents the 
probability of each state.  Notice that there are two side of 
tendency which is false peak and real maximum. The tendency 
of second individual will be based on the greater than or equal 
the first one. Regardless of direction of the gradient, the 
evolution continues toward the solution. Here is the solution 
quality of this algorithm compared to the mapping version. 
The fitness function used in the table was two-peak trap as the 
Fig.4. The accuracy was calculated from the percentage of 
corrected outputs running 100 times. Notice that the proposed 
algorithm has slightly benefited over the mapping version. 
However, the solution quality can be improved by increasing 
the number of selection iteration of quantum function. 

 

TABLE I.  COMPARISON OF THE SOLUTION QUALITY 

qubits 
the Mapping of cGA Proposed Algorithm 

1 2 3 1 2 3 

4 87% 86% 87% 91% 91% 90% 

5 68% 71% 69% 76% 78% 80% 

6 57% 54% 52% 68% 64% 64% 

The proposed quantum algorithm exploits the power of 
quantum parallelism. Also, the algorithm shows that the 
second individual is guided by the first individual. It will 
speed up the coverage toward the solution. Therefore, the 
experiment has achieved an enhancement in terms of speed 
and quality. 

VIII. CONCLUSION 
There are two quantum program presented here. The first 

one is the mapping of compact genetic algorithm into quantum 
computers which is similar to the version running on a classical 
computer. The whole population is stored in a quantum 
register. The running time complexity of quantum cGA is the 
same as a classical one. In order to achieve benefits over a 
classical computer, a quantum parallelism must be realized. 
The work presented here has achieved this goal. The later 
quantum program is the enhancement version using quantum 
computation 

What this work has demonstrated is a kind of quantum 
computation which introduces the enhancement in terms of 
solution quality and speed. 
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