
An Implementation of Compact Genetic Algorithm
on a Quantum Computer

Sorrachai Yingchareonthawornchai1 , Chatchawit Aporntewan2 , Prabhas Chongstitvatana1
1Department of Computer Engineering

2Department of Mathematics and Computer Science

Chulalongkorn University
Phayathai Rd., Pathumwan, Bangkok, Thailand, 10330

sorrachai.y@student.chula.ac.th, {chatchawit.a, prabhas.c}@chula.ac.th

Abstract— Programming a quantum computer posts a challenge.
It is not straight forward to transfer the current programming
skill on a classical computer to a quantum computer. This work
presents an example of programming a quantum computer. The
compact genetic algorithm is used as a target as it is powerful and
popular method in evolutionary computation. A quantum bit
(qubit) concept was introduced as a basis for storing information.
The representation of quantum register has benefits over
classical computing, i.e. the quantum operation allows
manipulating qubits in the way that it is impossible in a classical
computer. This paper demonstrates the enhancement in terms of
solution quality and speed introduced by quantum computation.
The simulation of quantum computing is carried out for solving a
problem using the compact genetic algorithm.

Keywords: Genetic algorithms, Compact Genetic Algorithms,
Quantum Computers.

I. INTRODUCTION
Quantum computers achieve speedup over classical

computers by taking the advantages of the interference between
quantum amplitudes. This phenomenon is hard to simulate in
classical computers. There have been many examples of
quantum computation that outperform classical computing such
as Grover’s search algorithm [1] and Shor’s fast factoring
algorithm [2]. On the other hand, a genetic algorithm (GA) is
basically a search algorithm. It belongs to a class of
evolutionary computation. The key idea is based on the
principle of biological evolution, such as natural selection,
genetic inheritance and mutation. There have been the relevant
attempts between quantum and genetic algorithms. For
example, Quantum Genetic Optimization Algorithm [3] has
introduced an optimization of classical genetic algorithm using
the principles of quantum search which provided a significant
speed-up on each genetic step. There are many variations of
genetic algorithms. The compact genetic algorithm (cGA) [4]
is one of them. In a classical computer, the compact genetic
algorithm represents the population as a probability distribution
over the set of solutions by using a vector. In a quantum
computer, the population is represented as a probability
distribution in a quantum register. This paper demonstrates an
alternative way to program a quantum computer to perform
compact genetic algorithms. The study uses QCL (Quantum

Computation Language) [5]—[7] as an emulator of quantum
computer.

II. COMPACT GENETIC ALGORITHMS
Genetic algorithms are adaptive search algorithms based on

the idea of biological evolution such as natural selection, cross
over and mutation. Compact genetic algorithm represents the
population using a vector. The vector contains each bit with a
real number from 0.0 to 1.0 representing the probability of that
bit to be one. This reduces the storage of the population to just
the storage of a vector. This property makes it very suitable to
be implemented in a quantum computer by representing a
vector using a quantum register.

Here is a short description of the steps in cGA. The first
step is to generate a population. An appropriate encoding of the
candidate solution is dependent on the problem. The second
step is to sample two candidates from the population and
evaluates their fitness using the fitness function in order to
provide the fitness value of each candidate. The third step is to
determine the "winner" by comparing their fitness values. The
winner’s chromosome will be used to update the probability
vector so that the distribution will converge to a population that
fits the solution requirement. This is an iterative process. The
process will continue until the terminating condition is met.

III. INTRODUCTION TO QUANTUM COMPUTATION.

A. Definition of a quantum bit
A quantum bit or a qubit is a unit of information describing

a two-dimensional quantum system. A qubit is represented as
2-by-1 matrix with a complex number, as

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
1

0 (1)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1
0

1 (2)

The two basis state can be superposed,

 10
1
0

0
1

βαβα
β
α

ϕ +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= (3)

with the condition that,

131

USER UTCC
Text Box
2012 Ninth International Joint Conference on Computer Science and Software Engineering (JCSSE)

USER UTCC
Text Box
978-1-4673-1921-8/12/$31.00 ©2012 IEEE

 122 =+ βα (4)

The 2α is the probability that the measurement of state

will result in state 0 , and the 2β is the probability that the

measurement of state will result in state 1 . Keep in mind that
the general qubit cannot be seen: whenever the qubit is
measured or observed, it spontaneously become a bit. Next, a
representation of a qubit is introduced

B. The Bloch Sphere.
The general state of one qubit system can be represented in

the form,
10 βαϕ += (5)

Where α and β are complex numbers. It might seem
there are four parameters. However, the equation holds the
condition that,
 122 =+ βα (6)

So, the equation can be reformed in terms of two
parameters,

1
2

sin0
2

cos θθϕ φie+= (7)

With natural ranges 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.
As only two real numbers are required to represent a qubit,

it can be mapped into a three-dimensional coordinate system.
The mapping looks like a unit sphere known as Bloch Sphere.
See Fig.1.

Figure 1. Bloch Sphere.

C. Quantum Operation
1) Measurement: The measure command measures the

quantum register and returns the measured value. The measure
operation is not reversible.

2) Unitary Gates:
a) Hadamard Gate: The Hadamard Gate is defined by

the transformation matrix,

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
11

11
2

1H (8)

The usage is to map n qubits initialized with 0 to a

superposition of all 2n orthogonal states in the 1,0 basis
with equal weight. This means, if observed, the state will
collapse to be a 0 or 1 with equal probability.

b) Qubit Rotation: The rotation of a single qubit is
defined by the transformation matrix,

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−
=

2
cos

2
sin

2
sin

2
cos

)(θθ

θθ

θU (9)

This operator is implemented as
Rot(real theta,qureg q);

The theta parameter used in this paper has range from
2
π

 to
2
π−

c) Using Hadamard gate and Qubit Rotation:Hadamard
gate is used for transforming into an even superposition state
of quantum register. According to Bloch’s sphere, a qubit can
be visualized as Fig.2-left. When a qubit rotation is applied,
for example pi/4, the state will be Fig.2-right. This means the
qubit is more likely to be 0, when measure, than 1.

Figure 2. Applying Rot(pi/4,x)

IV. THE MAPPING OF COMPACT GENETIC ALGORITHM –
QUANTUM CONSTRUCTION

The main contribution of this paper is the quantum
construction of the compact genetic algorithm. The algorithm
is described below:

Step 1) Initialize qureg x with Hadamard transform and
record the vector v.

Step 2) Generate two individuals from qureg by
measurement

 resetregister(x);
 H(x);
 restore(x,v);
 a := measure(x);
 resetregister(x);

132

 H(x);
 restore(x,v);
 b := measure(x);
Step 3) Let them compete
 {win, lose} := eval(a,b);
Step 4) Update qureg x with the “winner”
 for i := 1 to n do
 if win[i] != lose[i] then
 if win[i] = 1 and v[i] != -1*NHALFPI then v[i] := v[i] –1;
 if win[i] = 0 and v[i] != 1*NHALFPI then v[i] := v[i] +1;
Step 5) check loop time
 If time < LOOP_TIME then

time := time+1;
go to Step 2)

 else go to Step 6)
Step 6) generate the final result
 resetregister(x);
 H(x);
 restore(x,v);
 output := measure(x);

operator restore(qureg x, vector v)
for i := 0 to n-1 do
 Rot(THETA * v[i], x[i]);

parameter:
const pi = 3.14159265
const n = length
const THETA = small angle ,e.g. pi/32

The first step is to initialize a quantum register as a

quantum variable x. Then, apply Hadamard gate in order to
produce an even superposition state. Record vector v as a
vector of integer for tracking the operation. It will be used in
restore operator.

In step 2, the measurement operation is used to generate an
individual. The individual will be randomly produced
according to probability distribution in a quantum variable. As
a result, the quantum variable will be collapsed to a single
state. However, the second individual must be produced. This
can be done by resetting quantum register into the initial state,
i.e. zero; applying Hadamard-gate, and calling restore
procedure. The restore procedure iterates every bit to apply
Rotation operation by using v[i]*THETA as a parameter. The
THETA is a constant of small angle. The constant NHALFPI
means an integer that v[i]*THETA equals to pi/2. The
NHALFPI is used for bounding the condition to prevent the
rotation “overflow.”

In step 3, the eval function is called to compare the fitness
values between individual a and individual b. The higher
fitness individual will be denoted as a “winner.”

In step 4, this is where the tracking operation is used to
store integer. We iterate all bits. Notice that if a bit of winner is
set, the value is decremented and vice versa. The reason is the
output of the Rotation operation will go to 0 when the

parameter is pi/2. Conversely, the output of the Rotation
operation will go to 1 if the parameter is –pi/2.

V. EXPERIMENTAL RESULT FOR THE MAPPING
One-max problem is used to validate the quantum cGA.

The one-max problem is a simple benchmark in GA. Its
purpose is to search for the binary string with all ones. Only
the fitness function, counting ones, is used to guide the search.
Assume an individual A competes with individual B.

Individual chromosome fitness
 A 1011 3
 B 1001 2

The winner is A. The quantum variable is then updated
toward the winner via qubit rotation. An experiment is set up
with the following parameters: n = 5; LOOP_TIME = 150;
THETA = pi/32. This is a 5-qubit quantum register. The
execution is iterated 150 steps with the increment angle pi/32.

The Fig.3 was captured at i = 0, 10, 20, 30, 50 and 150
respectively.

Figure 3. Plotting quantum variable

133

Fig.3 shows the probability distribution of a 5-qubit
register. The x axis represents the basis state starting from 0 to
31 toward the right hand side. The y axis represents the
probability of each state. Notice that at i = 0, it is starting from
even superposition state of quantum variable. For each
iteration, the Rotation operation will rotate the probability up to
the winner of each stage. The direction will be toward to the
one-max value, i.e. 31 which is 111112.

VI. THE COMPACT GENETIC ALGORITHM – QUANTUM
ALGORITHM CONSTRUCTION

In order to achieve benefits over a classical computer, a
quantum parallelism must be realized. The mapping of
compact genetic algorithm into quantum computers has
demonstrated that is at least computationally equivalent to
classical computers. This section introduces enhanced version
of compact genetic algorithm using quantum computation.
The algorithm is described below:

Step 1) Initialize qureg x with Hadamard transform, and
a single qubit qureg y and record the vector v.

Step 2) Generate the first individual from qureg by
measurement

 resetregister(x);
 H(x);
 restore(x,v);
 a := measure(x);
 Step 3) Generate the second individual with the

condition that the fitness is greater than or equal to the first
individiual

 resetregister(x&y);
 H(x);
 restore(x,v);
 Fit(x,y,a);
 c := measure(y);
 if c = 0 then go to Step 3)
 if c = 1 then
 b := measure(x);

 go to Step 4)
Step 4) Let them compete
 {win, lose} := eval(a,b);
Step 5) Update qureg x with the “winner”
 for i := 1 to n do
 if win[i] != lose[i] then
 if win[i] = 1 and v[i] != -1*NHALFPI then v[i] := v[i] –1;
 if win[i] = 0 and v[i] != 1*NHALFPI then v[i] := v[i] +1;
Step 6) check loop time
 If time < LOOP_TIME then

time := time+1;
go to Step 2)

 else go to Step 7)
Step 7) generate the final result
 resetregister(x);
 H(x);
 restore(x,v);
 output := measure(x);

operator restore(qureg x, vector v)
for i := 0 to n-1 do
 Rot(THETA * v[i], x[i]);

qufunct Fit(qureg x,qureg y,int a)
for each state s in x do
 if (fitness of s >= fitness of a) then Not(y);

parameter:
const pi = 3.14159265
const n = length
const THETA = small angle ,e.g. pi/32

The main concept of the algorithm is to generate the second

individual based on the first individual. The fitness of the
second individual is greater than or equal to the fitness of first
individual. The tendency of second individual will be based on
the greater than or equal one. Regardless of direction of the
gradient, the evolution continues toward the solution.

The first step is the same as previous algorithm including a
1-qubit register y is initialized.
 In step 3, this is perhaps the most interesting part. The
quantum function [5] is introduced. A quantum function is a
pseudo-classic operator with the characteristic:

yxyx
xfxxF)(0: → (10)

In this step, Fit quantum function is merely:

otherwisex

afitxfitifx
xFit

x

x
yx 0

)()(1
0:

≥
→ (11)

By using this function, all population is divided into two
groups: the greater or equal and the lower. The greater group
is obtained by measuring the 1-qubit quantum register y. If the
measure value is not one, repeat the process until the value
one is obtained. Notice that a quantum function used here is
performed on every possible state at once: achieving quantum
parallelism.

VII. EXPERIMENTAL RESULT FOR QUANTUM ALGORITHM
CONSTRUCTION

Trap functions are deceptive. It is hard to find the global
optimum of these functions by using GAs. In this experiment,
the two-peak trap function is used as a benchmark of
effectiveness of the algorithm. An experiment is set up with
the following parameters: n = 6; LOOP_TIME = 150;
THETA = pi/64. The trap function is as Fig.4

Figure 4. Two-peak trap.There is a false maximum at i = 0 with fitness of 31

134

The Fig.5 was captured at i = 5, 10, 20, 40, 80 and 120.

Figure 5. Plotting 6-qubit quantum variable

The Fig.5 shows the probability distribution of a 6-qubit
register. The x axis represents the basis state starting from 0 to
31 toward the right hand side. The y axis represents the
probability of each state. Notice that there are two side of
tendency which is false peak and real maximum. The tendency
of second individual will be based on the greater than or equal
the first one. Regardless of direction of the gradient, the
evolution continues toward the solution. Here is the solution
quality of this algorithm compared to the mapping version.
The fitness function used in the table was two-peak trap as the
Fig.4. The accuracy was calculated from the percentage of
corrected outputs running 100 times. Notice that the proposed
algorithm has slightly benefited over the mapping version.
However, the solution quality can be improved by increasing
the number of selection iteration of quantum function.

TABLE I. COMPARISON OF THE SOLUTION QUALITY

qubits
the Mapping of cGA Proposed Algorithm

1 2 3 1 2 3

4 87% 86% 87% 91% 91% 90%

5 68% 71% 69% 76% 78% 80%

6 57% 54% 52% 68% 64% 64%

The proposed quantum algorithm exploits the power of
quantum parallelism. Also, the algorithm shows that the
second individual is guided by the first individual. It will
speed up the coverage toward the solution. Therefore, the
experiment has achieved an enhancement in terms of speed
and quality.

VIII. CONCLUSION
There are two quantum program presented here. The first

one is the mapping of compact genetic algorithm into quantum
computers which is similar to the version running on a classical
computer. The whole population is stored in a quantum
register. The running time complexity of quantum cGA is the
same as a classical one. In order to achieve benefits over a
classical computer, a quantum parallelism must be realized.
The work presented here has achieved this goal. The later
quantum program is the enhancement version using quantum
computation

What this work has demonstrated is a kind of quantum
computation which introduces the enhancement in terms of
solution quality and speed.

REFERENCES

[1] Grover L.K.: A fast quantum mechanical algorithm for database search,
Proceedings, 28th Annual ACM Symposium on the Theory of
Computing, (May 1996) p. 212.

[2] P. W. Shor, Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer, SIAM J. Computing 26, pp.
1484-1509 (1997).

[3] Andrea Malossini, Enrico Blanzieri, T. Calarco: Quantum Genetic
Optimization. IEEE Trans. Evolutionary Computation 12(2): 231-241
(2008).

[4] Georges R. Harik, Fernando G. Lobo, David E. Goldberg: The compact
genetic algorithm. IEEE Trans. Evolutionary Computation 3(4): 287-297
(1999).

[5] Bernhard Ömer. A procedural formalism for quantum computing.
Master's thesis, Department of Theoretical Physics, Technical University
of Vienna, 1998.

[6] Bernhard Ömer. Quantum programming in QCL. Master's thesis,
Institute of Information Systems, Technical University of Vienna, 2000.

[7] Bernhard Ömer. Structured Quantum Programming. PhD thesis,
Technical University of Vienna, 2003.

[8] Nielsen, Michael A. and Chuang, Isaac L. Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge :
Cambridge University Press, 2010. 978-1-107-00217-3.

[9] Yanofsky, Noson S. and Mannucci, Mirco A. Quantum Computing for
Computer Scientists. Cambridge : Cambridge University Press, 2008.
978-0-521-879965.

[10] R.P. Feynman, R.B. Leighton, and M. Sands. The Feynman Lectures on
Physics, volume III. Addison-Wesley, 1965b.

135

