

Unified Execution Mode in a GPU-style Softcore

Peera Thontirawong, Prabhas Chongstitvatana

Department of Computer Engineering

Chulalongkorn University

Bangkok 10300, Thailand

prabhas@chula.ac.th

Abstract— A GPU-style processor has large amount of

processing power on a given die compared to a general purpose

processor. However, a Graphic Processing Unit must be

executed in lock-step where a group of cores execute the same

instruction. This constraint puts a real limitation on

programming of a GPU. This work proposed a design of a

processor that unifies the execution of Graphic Processing Units

and a general purpose processor. The discussion of programming

model of vectorised instructions and the extension to allow multi-

cores to run independently is presented. The proposed design

required only 3% additional resource compared to the original

design. This design is suitable for embedded applications.

Keywords—Graphic Processing Units; Softcore; General

Purpose GPU; Programming GPU

I. INTRODUCTION

GPU has become “standard” in high performance
computing. Early days of computing saw the availability of
GPU allowed real-time applications such as video decoding
[1]. As time progresses, GPU design has been more mature,
there are attempts to make it more general purpose [2]. GPU
has advantage of energy efficiency in terms of computing
power per watt. It has been an important factor for media
applications in mobile devices and its energy efficiency has
been studied [3]. However, programming a GPU required
special skill [4]. It is also difficult to do general purpose
computing on a GPU. Therefore, GPU becomes a second
processor to a general purpose processor. Having both CPU
and GPU in one machine serves the purpose of running mixed
work environment and media centric applications. This
arrangement has become a de facto standard of PCs, notebooks
and mobile phones.

We would like to unify two processors. The advantage
would be that it eliminates interfacing between the two. Rather
than two processors communicating by sharing a common
memory, it becomes one processor (with many cores) with
uniform memory. Programming would be more flexible and
less idiosyncratic. Performance would be higher too (by the
advantage of being on the same die).

Previously, we have designed a GPU-style softcore [5]
intended for embedded applications (hence it is simple). It has
the instruction set that is similar to a GPU. The execution is in
a Single Instruction Multiple Data (SIMD) mode. All cores
execute same instruction but perform on different data. To

eliminate the memory access conflict, our design has all cores
go through a special unit, called Local Data Store, which
serialises multiple accesses to the memory. This is quite
effective.

In order the make it a general purpose processor, this
softcore should behave as a multi-core processor. The design
has been extended by additional instructions. The execution
cycle is changed to a Multiple Instruction Multiple Data
(MIMD) mode [6]. How to reconcile the two instruction sets
(one of a vectorised operation, another of control-oriented
operation) is the challenge of this work.

II. GPU SOFTCORE

A. Procesor Organization

This is a simple GPU with four 32-bit cores. It contains
four Processing Elements (PE or core). Each PE has 32
registers, one ALU and Local Data Store units (LDS). It also
includes a 32-bit random number generator organised as 4 by
8-bit. It has 1Kx32 bits of memory. The memory is interfaced
with processor through a buffer unit (BUF) connected to LDS.
LDS communicates to all PEs in parallel. The processor
operates in Single Instruction Multiple Data (SIMD) mode.
That is, every PE runs the same program in synchrony. It has
only one control unit, one Program Counter (PC) and one
Instruction Register (IR). Its instruction has fixed size of 32
bits.

Fig. 1. The diagram of GPU organization.

B. Instruction Set

The Processing Elements perform Arithmetic and Logic
with three-address format instructions, such as:

add r3 r1 r2

For branching, the command processor (control unit)
performs these instructions:

jmp @ads

jz r @ads

jnz r @ads

The conditional jump instructions read the result stored in a

register. In SIMD mode, the condition in that register of all PEs
must be satisfied for a branch to be taken.

The Local Data Store unit transfers data between PEs and
the main memory. It joins a narrow 32-bit bus, with a wide
32x4 -bit bus to PEs. It also performs broadcast from one of its
register to all PEs.

ld/st ls @ads load/store local-memory

ldr/str r load/store LDS-PE

ldw @ads load memory to all LDS

bc r ls broadcast LDS-PE

III. OPERATIONS IN SIMD MODE

This section will begin with describing how the vectorised
operations work and then how to incorporate control-oriented
operations on the same design.

To perform a control-flow, as all cores must be
synchronised, they must be doing exactly the same work
independently. The condition to transfer the control must be
that all cores meet the condition. For example, an n-time loop.

 ldw @n ; load Mem[n] to all LDS

 ldr 2 ; use reg 2

:loop

 ... ; body of loop

 dec 2

 jnz 2 @loop

Register 2 of all cores are doing the same work and jnz
performs test for zero on ALL register 2. Because of the
restriction on Single Instruction execution, some conditional
must be carefully written so that only the data is different
(between cores) but the instruction that being executed must be
the same. For example, move-if-true is such a conditional
instruction.

mv_t r3 r1 r2

if R[3] is true then move R[2] to R[1]. The result will depend
on the value of R[3] of each core but they all execute this
instruction. In a program where each core computes a different
point and it might terminate the loop at different time. To allow
this different termination, we use move-if-true to update the
value until the termination time (different between cores) but
all cores continue to run until completion. The core that is
already finished will not further update the value (to prevent
the overflow). So, when the loop is complete, each core has x,y

that terminates at the different time. The following code
snippet illustrates this situation. This is the pseudo code and the
assembly code for this operation.

 while x*x + y*y < bound
 compute next x,y

:while

 ; (x*x + y*y < bound) stored to R[8]

 ...

 jz 8 @exit ; jump all cores complete

 ...

 ; compute next x',y'

 mv_t 8 x x' ; update x

 mv_t 8 y y' ; update y

 jmp @while

:exit

So, for vectorised operations, SIMD mode is very good. It
is also good for synchronised loop. But for general conditional
(such as if..then) the program must be carefully written and
when it is not synchronised, it is difficult and it wastes a lot of
cycles (hence waste energy) to run until all cores come to
completion.

IV. OPERATIONS IN MULTI-CORE MODE

How to extend this GPU to run in MIMD mode? First and
foremost, each core must have its own trace of execution. So,
each core must contain its own program counter (PC) and
Instruction Register (IR). The instruction that alters control-
flow must be specific to individual core rather than having a
synchronised execution over all cores. All vectorised arithmetic
and logic instructions do not require any change when they are
operated independently. Lastly, the access to memory must
include independent load and store to registers of each core.
This can go through Local Data Store. The additional
instructions that allow the processor to run in MIMD mode will
be described next.

Let us start with the memory access. The load/store
instructions to LDS are:

ld k @ads load Mem[ads] to LDS of core k

For MIMD mode, this instruction will affect only the core k.
Other cores will take this instruction as no-operation.

ldr r load LDS[k] to R[r]

str r store R[r] to LDS[k]

Each core can execute these instructions independently.

st @ads k store LDS of core k to Mem[ads]

Now, this instruction can cause memory access conflict
when it runs in MIMD mode. Local Data Store unit must
resolve this event. When LDS requests a write to memory, it
must serialise the access. If there are more than one core
request a write, then only one core is granted the request, all
other cores must be stalled. And this will take care of LDS
memory access in MIMD mode.

For control-flow instructions, a new mode must be created

(beside synchronised execution). x_jz and x_jnz behave
similar to a normal processor, they check only the condition of
their own registers.

x_jz r @ads if R[r] == 0 then PC = ads

x_jnz r @ads if R[r] != 0 then PC = ads

One more instruction is sync. This is to synchronise all
cores. It is important to be able to synchronise all cores when
running a multi-core program.

sync wait for all cores to reach this point

To illustrate the extended processor running in MIMD
mode, the Mandelbrot program will be used. It is slightly
changed in order to run each core independently. This loop
computes one pixel.

:while

 ; (x*x + y*y < bound) stored to R[8]

 ...

 x_jz 8 @exit ; independent jump

 ...

 ; compute next x',y'

 mov x x' ; update x

 mov y y' ; update y

 jmp @while

:exit

The next example shows a complex if-then-else sequence
that makes it difficult to write a vectorised code running on a
GPU. This is a part of Compact Genetic Algorithm [7] that
update the probability vector (p[i]) according to the pattern of
two genes (a[i], b[i]) and their fitness (fa, fb). There are four
cases to update p[i].

for i = 1 to k do

 if fa >= fb then

 if a[i] = 1 and b[i] = 0 then

 p[i] = min(1, p[i] + 1/n)

 if a[i] = 0 and b[i] = 1 then

 p[i] = max(0, p[i) - 1/n)

 else

 if a[i] = 1 and b[i] = 0 then

 p[i] = max(0, p[i] - 1/n)

 if a[i] = 0 and b[i] = 1 then

 p[i] = min(1, p[i) + 1/n)

To write a vectorised code, we decompose the operations
into logical operations which are executed in lock-step, as
shown below.

; select & update

xor 29 11 12 ; lb[t][i]= a[t][i] ^ b[t][i]

and 30 29 12 ; mb[t][i]= lb[t][i] & b[t][i]

lt 28 21 22

jnz 28 @check

xor 30 30 31 ; mb[t][i] ^= fa < fb ? 1 : 0

:check

; check upper bound

; lb[t][i]= ~ub[t][i]|mb[t][i] ? lb[t][i]:0

and 28 3 4

and 28 28 5

and 28 28 6

xor 28 28 31

or 28 28 30

and 29 29 28

:update

; 4-bit adder

...

and 29 30 4

xor 4 30 4

and 28 27 4

xor 4 27 4

or 27 29 28

...

xor 6 30 6

xor 6 27 6

In contrast to the vectorised code, a multi-core version is
simply following the pseudo code. Here is a snippet of the code
for the first case. Please note that at the end of the loop, we
synchronise all cores.

:loop

...

ge 11 9 10 ; fa >= fb

jz 11 @else

x_jz 1 @L1

x_jnz 2 @ending

inc 0 ; a[i]==1 && b[i]==0, p[i]++

lt 11 12 0 ; 255 < p[i], check up-bound

mv_t 11 0 12 ; p[i] = 255

jmp @ending

:L1 ; next case ...

...

:ending ; check terminate

sync

...

jnz 11 @loop

From the above code sequence, it becomes clear that this is
more like an ordinary (non-vectorised) code. Each core will
continue its own path without concerning other cores.

V. EXPERIMENTS

We ran two benchmark programs: matrix multiplication
and Mandelbrot. Matrix multiplication is 4x4 and the program
has fully unrolled the loop so it becomes essentially a straight
line code. Mandelbrot calculation on the grid size 64x64 with
fixed point arithmetic with 12 bits of fractional part. Both
benchmarks were run in two modes: SIMD and MIMD. Table
1 reports the number of execution cycles required.

TABLE I. THE NUMBER OF CYCLES REQUIRED TO RUN BENCHMARKS

Program SIMD MIMD

Matrix

Multiplication
1,406 1,406

Mandelbrot 15,350,074 13,476,882

Because matrix multiplication program does not contain
any branch, the results from both modes are the same. For
Mandelbrot program the MIMD mode is faster. This is due to
the fact that in MIMD mode each PE can finish its loop
independently while in SIMD mode all PEs have to
synchronise by waiting for the longest computation to finish.

Adding the MIMD execution mode into a GPU involves a
tradeoff between flexibility and resources. Each PE has its
own control unit and the memory controller. The question is
how much additional resource is needed and whether it worth
the tradeoff? The design in [6] has been synthesized on the
Field Programmable Gate Array, Xilinx Spartan3, XC3
S1500L. The amount of resource used is shown in Table 2. To
measure the resource, we convert the synthesis result into the
number of gates. If we assume that a register is equivalent to 8
gates, LUT is 6 gates, and a multiplier unit is 5,000 gates. The
total gate count for SIMD GPU is 230,708 gates. Breaking
down the detail of the resource used, the PE cores consume
most resource, 96%, while the control unit is only 0.4%. So,
duplicating the control unit to each core is not expensive. To
understand why the control unit is very small, one has to
consider that the core design is really simple, no pipeline,
multi-cycle execution. Therefore the control unit is simple.

To add MIMD execution mode, we assume the control unit
will be larger, 2 times for each core due to additional
instructions and addressing modes. The memory controller also
needs to be duplicated for each core as they can access the
memory independently. The estimate result for this proposed
design is shown in Table 2. The conclusion is that it is larger
than the original design by only 3%. This is an excellent trade
off.

VI. CONCLUSION

This work proposed a method to improve GPU-style
processors in order to make them more flexible in
programming. By extending instructions and allow each
Processing Element to execute independently, the processor
can perform similar to multi-core processors. The effect of the
new mode of execution has been demonstrated. Although the
proposed design uses more resource, it is shown that this
additional resource is small, only 3%.

The resource for this design is available online at
http://www.cp.eng.chula.ac.th/faculty/pjw/project/npu.htm.
The site contains a simulator and an assembler, including
benchmark programs.

REFERENCES

[1] G. Shen, L. Zhu, S. Li, H. Shum, Y. Zhang, “Accelerating video

decoding using GPU,” IEEE Int. Conf. Acoustics, Speech, and Signal
Processing, 6-10 April 2003, vol 4, pp. 772-775.

[2] J. Wang, A. Sun, Y. Li, H. Liu, “Programmable GPUs: New General
Computing Resources Available for Desktop Grids,” Int. Conf. Grid and
Cooperative Computing, Oct. 2006, pp. 46-49.

[3] J. Pool, A. Lastra, M. Singh, “An energy model for graphics processing
units,” IEEE Int. Conf. on Computer Design (ICCD), 3-6 Oct. 2010, pp.
409-416.

[4] J. Sanders, E. Kandrot, CUDA by Example: An Introduction to General-
Purpose GPU Programming, 2011, ISBN 978-0-13-138768-3.

[5] N. Thammasan, and P. Chongstitvatana, “Design of a GPU-styled
Softcore on Field Programmable Gate Array,” Int. Joint Conf. on
Computer Science and Software Engineering (JCSSE), 30 May - 1 June
2012, pp. 142-146.

[6] Chongstitvatana, P., "Putting General Purpose into a GPU-style
Softcore," Int. Conf. on Embedded Systems and Intelligent Technology,
Jan 13-15, 2013, Thailand.

[7] G. R. Harik, F. G. Lobo, D. E. Goldberg, “The compact genetic
algorithm,” IEEE Trans. on Evolutionary Computation, vol.3, no.4,
pp.287-297, Nov 1999, doi: 10.1109/4235. 797971.

TABLE II

BREAKDOWN OF THE SYNTHESIS RESULT OF THE ORIGINAL GPU AND THE PROPOSED DESIGN

 GPU 4 PEs Control U LDS &

PC

Random Memory

Controller

Registers 4576 4232 44 268 32 0

4 input LUTs 12350 11620 92 593 1 44

Slices 8430 8035 56 300 16 23

Multiplier Units 24 24 0 0 0 0

Est. Gate 230708 223576 904 5702 262 264

Gate % 100.00 96.91 0.39 2.47 0.11 0.11

 GPU2

Est. Gate 237828 223576 7232 5702 262 1056

Gate % 100.00 94.01 3.04 2.40 0.11 0.44

