
1 INTRODUCTION

In economics, excess demand refers to excess of
need over supply of products being offered to the
market at a given price. This leads to upper prices
along with the opportunity of employment. Howev-
er, excess demand in order acceptance (OA) prob-
lems is the situation that orders arrival rate greater
than service level of manufacturers. So far, under the
high competition conditions, the manufacturers can-
not straightforwardly raise their prices or just in-
crease the temporary working capacity, subsequent-
ly, they need to select the most profitable set of the
orders with regular employment cost and capacity.

OA is classified as a multi-dimensional knapsack
problem which is a well-known NP hard problem.
Additionally, there also exists the necessity of order
sequencing which makes it much more difficult than
the general knapsack problems. For example, the
difference sequence of orders can result in difference
profit level. (Senju & Toyoda 1968, Kleywegt
&Papastavrou 2001)

In 2011, Slotnick presented a recent overview of
OA which addresses simultaneous order acceptance
and scheduling decisions. From the literature it was
found that most of the researches focus on accepting
order in a single machine or process. However, by
assuming that all the processes are grouped into a
single process, the accepting consequences become
inefficient in many real production situations such as
tardiness or over or under capacity utilization.

This paper presents a new technique to solve or-
der acceptance or rejection in multi-process envi-

ronments using Node Based Coincidence Algorithm
(NB-COIN). The method is presented in section 2.
The results are compared with Genetic Algorithm in
section 3. Finally, the section 4 concludes the work.

2 METHODOLOGY

2.1 The Order Acceptance Model

The set of order i =(1,2,…,i), where i is one of the
k product type and profit per unit is Pik . Each order
must be processed through set of production unit
N=(1,2,…,n). An order i is said to be early if finish-
ing time t is equal or less than due date d, t-Di ≤ 0
and overdue if t is more than the due date t-Di > 0. A
product k consumes capacity 𝐶𝑇𝑃!" as 𝑒!"#$% per
unit, so the selected orders will occupy total produc-
tion capacity 𝑒!𝑞!"#! for ∀𝑡. Each production or-
der consists of several jobs. The jobs have prece-
dence (i.e., job j + 1 can start only if job j is
completed). 𝑅𝑇! is the regular working time al-
lowed in a day, which is assumed to be eight hours.
The model can be defined as follow:

Capacity Constraint
𝑅𝑇! Total capacity of workstation n
𝐶𝑇𝑃!" Unassigned capacity of workstation n at pe-

riod t (t=1,…,T)
𝑒!"#!" Consumption of 𝐶𝑇𝑃! for product k in order

i by job j

Application of Node Based Coincidence Algorithm for Solving
Order Acceptance with Multi-process Capacity Balancing Problems

Watcharee Wattanapornprom and Tieke Li
Dongling School of Economics and Management, University of Science and Technology Beijing, Beijing, China
Warin Wattanapornprom and Prabhas Chongstitvatana
Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand

ABSTRACT: Over the past decade the strategic importance of order acceptance has been widely recognized
in practice. This paper presents the application of node based coincidence algorithm to solve the order ac-
ceptance problem with multi-process capacity. The results show that Node Based Coincidence Algorithm
(NB-COIN) is a potential algorithm which can maximize both profit and can maximize the capacity used at
the same time.
KEYWORD: Order Acceptance; limited capacity; node based coincidence algorithm; genetic algorithm

𝑓!"#$% Time unit that workstation n utilize 𝐶𝑇𝑃!
for product k in order i by job j at period t

𝑔! Cost of unassigned capacity of workstation n
𝐶𝑇𝑃! per time unit

𝛼! Cost rate of leftover capacity at workstation n
𝑑!" Amount of leftover capacity at workstation n

Order Constraint
𝑝!" Profit of order i
𝑞!"# Demand quantity of product k in order i due

at period t

Decision Constraint
𝑅!" = 1, if the order i for product k is accepted
 = 0, otherwise
𝐹!"#$% = 1, if the order i for product k is produced
 at workstation n by job j at period t
 = 0, otherwise

Model Objective
Maximize Z = 𝑝!"𝑞!"#𝑅!" !!!
 − 𝛼!! 𝑑!"𝑔!! (1)
Subject to

Workstation-level activities Constraint

𝑒!"#𝑞!"#×!!! 𝑅!"#$ ≤ 𝐶𝑇𝑃!"! ∀𝑛 (2)
𝑑!" = 𝑅𝑇! − 𝐶𝑇𝑃!" − 𝑒!"#𝑞!"#𝑓!"#$!! ∀𝑛 (3)

Order-level activities Constraint
𝑓!"#𝑞!"# ≥ 𝐹!"#$ ∀𝑖, 𝑗, 𝑘,𝑛, 𝑡 (4)
𝑓!"#𝑞!"# ≤ 𝑒!"#𝑞!"#𝐹!"#$ ∀𝑖, 𝑗, 𝑘,𝑛, 𝑡 (5)

𝑡𝐹! ! !"#! ≤ 𝐷!𝑅!" ∀𝑖, 𝑘, 𝑡 (6)
𝑓!" !!! 𝑞!"#´!! + 𝑓!"#𝑞!"#! ≥

𝑒!"(!!!)𝑞!"#! 𝐹!"#$ ∀𝑖, 𝑗/ 1 , 𝑘, 𝑡 (7)

Binary and non-negativity Constraint
𝑅!" = 0𝑜𝑟1 ∀𝑖, 𝑘 (8)
𝐹!"#$% = 0𝑜𝑟1 ∀𝑖, 𝑗, 𝑘,𝑛, 𝑡 (9)
𝑓!"#$% ≥ 0 ∀𝑖, 𝑗, 𝑘,𝑛, 𝑡 (10)

This problem is considered to be a two objectives
optimization problem. However, the two objectives
are bind into one single objective. The objective
function consists of two parts (i) to maximize the to-
tal profit and (ii) to minimize the leftover capacity.
Generally speaking, the objective is to choose the set
and sequence of the profitable orders using as much
working capacity as possible. The leftover capacity
is considered to have some certain penalty cost. The
first set of constraints is established to ensure that
the whole capacity of production plant is not dis-
rupted. Constraint (2) was set to calculate the penal-
ty of under capacity utilization. Constraints (3) and
(4) sets the Fijkrt decision variables to either 1 or 0.

The Fijkrt is the indicator variable; it becomes 1 when
fijkrt > 0, indicating that job j of item i is being pro-
cessed on resource k in period t, otherwise it be-
comes 0. The Fijkrt variable is used to ensure the
precedence relationship. The constraint set (5) en-
sures that when an order for an item is accepted, the
completion time of the final job of that order does
not exceed the order due date. The constraint set (6)
imposes precedence restrictions to ensure that job j
of item i can be processed in period t only after
completing job j-1.

2.2 Solution Procedures
This work compares the result of Node Based Coin-
cidence Algorithm (NB-COIN) (Waiyapara et al.
2013) with Genetic Algorithm (GA) (Syswerda
1991). The algorithms are modified such that they
would consider only the accepted sets of orders.

2.2.1 Node Based Coincidence Algorithm
NB-COIN is a permutation based Estimation of

Distribution Algorithm (EDA). It generates solution
strings in sequences, ensuring that only valid permu-
tations are sampled. NB-COIN is a variation of Co-
incidence Algorithm (COIN) proposed by Wattan-
apornprom and others (2013). It uses a data structure
called coincidence matrix H to model substructures
from absolute positions. The matrix Hxy represents
the probability of y found in the absolute position x.
The update equation of NB-COIN is

𝐻!" 𝑡 + 1 = 𝐻!" 𝑡 +
𝑘
𝑛

𝑟!" 𝑡 + 1 − 𝑝!" 𝑡 + 1

+ !
! ! 𝑝!" 𝑡 + 1!

!!! − 𝑟!" 𝑡 + 1!
!!!

 (11)

 where k denotes the learning step, n is the prob-
lem size, rxy is the number of xy found in the better-
group, and pxy is the number of xy found in the
worse-group. The incremental and detrimental step
is !

!!!
, and the term !

!!! ! 𝑝!" 𝑡 + 1!
!!! −

𝑟!" 𝑡 + 1!
!!! represents the adjustment of all

other Hxj, where 𝑗 ≠ 𝑥 and 𝑗 ≠ 𝑦.

 After each population was evaluated and ranked,
two groups of candidates are selected according to
their fitness values: better-group and worse-group.
The better-group is selected from the top c% of the
rank and is used as a reward, and Hxy is increased for
every pair of xy found in this group. The punishment
is a decrease in Hxy for every pair of xy found in the
worse group of the bottom c% of the population
rank.

The pseudo code of NB-COIN is simplified as
follows:

Step 1 Initialize the model
Step 2 Sample the population
Step 3 Evaluate the population
Step 4 Select candidates
Step 5 Update the model
Step 6 Repeat steps 2 to 5 until terminated.

2.2.2 Genetic Algorithm
The GA used in this research is the permutation

based GA with Position-based crossover (PBX)
(Syswerda 1991). PBX preserves not only absolute
order substructures but also relative order substruc-
tures from two parents. Figure 1 illustrates the steps
and the example of PBX. The proto offspring 1
mimics the absolute order substructures from the
parent 1 and then imitates the relative sequence or-
der of the remaining substructures from the parent 2
and vice versa.

For this problem, the chromosomes are se-

quenced subsets of jobs. The diversity is maintained
by ancestor replacement. If a new candidate is better
than its ancestors it is used to replace one of its own
parents. In this study, the local search is also applied
to the new candidates with improvement. The swap-
ping and insertion operations are randomly applied
to the candidates until the candidates are no longer
improved. The pseudo code of GA is as follows:

Step 1 Randomly generate the population.
Step 2 Evaluate the population.
Step 3 Perform crossover and mutation. If the

newly generated candidate is better than its an-
cestors, then perform the local search until the
candidate is no longer improved.

Step 4 Repeat Step 3 until the maximum
number of generation is reached.

Although the encoded solution of GA is a full set

of the jobs in the pool, the evaluation process con-
siders only the accepted orders. The evaluation pro-
cess not only evaluates the orders sequence, but also
re-sorts the orders sequences to separate the accept-
ed and rejected orders as illustrated in the Figure 2.
The sequence of the accepted orders is kept in the
accepted pool while the remaining orders are kept in
the rejected pool. The candidate solution is re-sorted
by concatenating the accepted pool with the rejected
pool.

Figure 1. Position-based crossover (PBX).

Figure 2. Evaluation with cutting off.

Even though, GA and NB-COIN are in the same

group of evolutionary algorithms, however, the
evaluation process and the updating process of NB-
COIN for the order acceptance are slightly different.
GA needs to maintain the genetic materials, there-
fore the whole set of orders need to be maintained.
However, NB-COIN can reproduce the missing se-
quences by itself. In addition, the sequences of the
rejected pool are considered to be the useless infor-
mation, therefore, NB-COIN only updates the mod-
els from the accepted sequences of orders. Conse-
quently the evaluation process does not need to
concatenate the rejected pool with the accepted pool.
The evaluation processes in the figure 2 simply use
the accepted pool as the candidate for the NB-COIN.

2	 4	 1

	 	

3	 7	 6	 9	 8	 5	

9	 1	 4

	 	

7	 5	 3	 8	 2	 6	

Parent	 1	

Parent	 2	

Step	 1.	 Choose	 the	 cut	 position	

Step	 2.	 Appending	 the	 chromosome	 and	 eliminating	 the	 duplicates.	

Proto-‐Offspring	

1	
Proto-‐Offspring	

2	

Offspring	 1	

Offspring	 2	

Step	 3.	 Legalize	 the	 offspring	

1	

6	

5

	 	
7	 9	 3	

9	 2	 6	

1	

4	

4

	 	

3	 7	 8	

8	 2	 5	

2	 4	 1

	 	

3	 7	 6	 9	 8	 5	

9	 1	 4

	 	

7	 5	 3	 8	 2	 6	

Parent	 1	

Parent	 2	

	 4	 	 	 	 7	 	 9	 	 	

	 	 	 7	 	 3	 	 2	 	

2.3 Test Problems and Experimental Design

A list of products and their profit per piece was ran-
domly generated. The generated profits are ranged
between 5 to 15 currency units per piece. Then these
profit attributes were used to generate the capacity
utilization for each product such that producing the
least profitable product would utilize the most bal-
ance capacity in each process, while the random
time were added according to their profits. The ca-
pacities used by each processes are ranged between
0.1 to 1 pieces per minute.

The ten problems of size 50, 75 and 100 were also
randomly generated according to the products and
their profits such that the less profitable products
have more chance to be demanded. Each order was
generated from a log-normal distribution with an
underlying normal distribution with mean 0 and
standard deviation 1. The quantity for each order
was randomly generated using the range between
1×1000 pieces and 12×1000 pieces. Each product
has to be processed through 5 parallel production
units which mean that there are totally 5 processes ×
5 parallel machines for each process. The maximum
capacity was set to two weeks. The due dates of each
order were generated from a uniform distribution
plus calculated lead-time for each of the order. The-
se parameters were imitated from the existent manu-
factures in Thailand. Therefore, the wage penalty for
this problem was set to 300 baht per worker per one
production unit per day.

To compare the results, both NB-COIN and GA

were given the same population size and maximum
number of generations which are equal to the prob-
lem size × 2. The probabilities of crossover and mu-
tation of GA are equal to 0.8 and 0.2 respectively.
The learning step, k, of NB-COIN is 0.05. The selec-
tion pressure of GA is 50% of the whole population,
while NB-COIN uses 25% of the top ranks for re-
wards and 25% of the bottom ranks for punishment.
Test programs were coded in Lazarus and ran on OS
X 10.4 on Intel Pentium Core i5 2.50 GHz processor
with 4 GB of RAM.

3 RESULTS

Table 1. Performance of NB-COIN vs. GA in order acceptance
with multi-process capacity balancing problem.

Problem size
NB-COIN GA

Util. Profit Util. Profit
50 orders 74.7% 18,5605 54.4% 14,4370
75 orders 80.7% 19,4074 57.5% 15,2562
100 orders 85.5% 21,0095 61.6% 16,1686

The performances of NB-COIN and GA are com-

pared in terms of profit and capacity utilization. The
performances are compared using the actual profit
averaged from each of the best solutions out of ten
runs. The capacity utilization is the wage penalty al-
ready deducted from the actual profit. The perfor-
mance of NB-COIN to select from 50 orders are far
better than GA that selected from 100 orders. The
explanation is that the generated test problems were
design such that the lowest profitable product utiliz-
es the most balanced capacity. On the other hand,
the most profitable product leaves more capacity
leftover. The greedy profit maximization would re-
sults in the worse capacity utilization. NB-COIN is
the algorithm that is good in solving multimodal and
multi-objective problems (Waiyapara et al. 2013) as
it tries to maintain the entire good substructures in
order to recombine them.

4 CONCLUSION
This paper presents the application of NB-COIN to
solve the order acceptance problem with multi-
process capacity. The results show that NB-COIN is
far better than GA for both profit and capacity utili-
zation.

REFERENCES
Kleywegt, A.J. & Papastavrou, J.D. 2001. The dynamic and

stochastic knapsack problem with random sized items. Opera-
tions Research 49 (1): 26–41.

Senju, S. & Toyoda, Y. 1968. An approach to linear program-
ming with 0–1 variables. Management Science 15 (4),
B196–B207.

Slotnick, S.A. 2011. Order acceptance and scheduling: A tax-
onomy and review, European Journal of Operational Re-
search 210(3): 527-536

Syswerda. 1991. A Handbook of Genetic Algorithms. Schedule
Optimization Using Genetic Algorithms

Waiyapara, K. et al. 2013. Solving Sudoku Puzzles with Node
Based Coincidence Algorithm; Proc. of International Joint
Conference on Computer Science and Software Engineering
(JCSSE 2013)

Wattanapornprom, W. et al. 2013. Application of Estimation
of Distribution Algorithms for Solving Order Acceptance
with Weighted Tardiness Problems ; Proc. of IEEE Inter-
national Conference on Industrial Engineering and Engi-
neering Management (IEEM13-P-0588).

