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Abstract — Aluminum alloy is one of the popular materials 

due to its abundant supply and its good properties. However, its 

casting process has one undesirable effect - porosity.  There are 

many attempts to predict its formation in order to avoid it. In 

this research, a way to predict total porosity percent from the 

initial chemical compositions and cooling rate after casting is 

proposed. The prediction is in a form of prediction function 

which utilizes the combination of genetic algorithm and 

differential evolution to generate the predicting formulae with 

datasets from other researches. The result functions achieve 

satisfying accuracy showing that they are capable of the good 

prediction. 
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I.  INTRODUCTION 

Aluminum alloys nowadays are very important materials. 
They are almost everywhere around us. Thanks to the 
abundance of aluminum on earth and their durability, lightness 
and corrosion resistance, they have become greatly preferred 
for areas of transportation and structural materials [1]. 
However, in forming process, especially casting which is 
appropriate for complex shapes, porosity arises and undesirably 
degrades mechanical properties which waste the cost and time 
in the industrial process. 

As an important problem, there are many researches 
involving prediction of porosity formation. In the beginning 
era, they are in the form of analytical models [2, 3] which were 
later developed to thermodynamic calculations and fluid flow 
simulations[4], extinguishing most of the macro porosity 
problems in the process. However, not a single existing model 
for micro porosity could overcome limitations and completely 
surpass industrial problems in every case [5]. After 
development of artificial neural networks had become mature, 
some researches try it for the prediction and gained satisfying 
results [6, 7]. Nevertheless, the error should still be able to 
reduce further. 

This research aims to use function approximation 
technique, which requires a target function, combined with 
polynomial approximation to synthesize the porosity amount 
prediction function. In order to achieve this, the target function 
as well as datasets is inferred from other researches. Genetic 

Algorithm is appointed to search for polynomial forms while 
Differential Evolution provides coefficients for each 
polynomial term. In the end, accuracies are compared with 
models acquired from neural networks. 

II. THEORETICAL BACKGROUNDS 

A. Porosity formation 

There are two main causes of porosity in alloy casting 
especially for aluminum [8]. The first type is gas porosity 
which happens from loss of ability of solvent to dissolve gas, 
hydrogen in case aluminum. To be precise, hydrogen gas is 
released as the alloys liquid cools down and solidifies. Then, 
with more cooling rate, there would be less time for hydrogen 
gas to form as pores resulting in less porosity. The second one 
is shrinkage porosity which arises from significant contraction 
of chemical bonds when solidify. In other words, when liquid 
alloys pass through solidification state, shrinkage occurs and 
with the lack of feeding and pressure, empty spaces are 
inevitable. This means that with higher cooling rate, porosity 
amount would increase because solidification occurs more 
rapidly forming more dendrites to resist the flow which make it 
more difficult to fill empty spaces.   

B. Genetic Algorithm (GA) 

The most widely known type of evolutionary algorithm is 
GA. Evolutionary algorithm is a group of search and 
optimization algorithms that mimics the process of Darwinian 
evolution. At first, for any problems, relevant solution must be 
transformed into an appropriate form (genotype) which is 
called ‘chromosome encoding’ or ‘chromosome 
representation’. The first generation of solutions is, then, 
randomly generated as an initial population. New generations 
of solutions would be iteratively generated from the previous 
one either from recombination or mutation or even both. Given 
a fitting function to be optimized, natural selection could be 
applied (survival of the fittest) which causes a rise in the fitness 
of each generation. Genetic algorithm, as being the most basic 
one, strongly inherits those ideas. Even though it was originally 
created as a means of studying adaptive behaviour, it is now a 
potent optimization method [9]. 

1) Representations 



Various chromosome representations exist in GA. The 
simplest one is binary representation consisting of a string of 
binary digits as its genotype. Other similar representations are 
integer and real-value that use integer numbers and floating-
point numbers instead of digits for their genotype respectively. 
Some other representations also exist such as tree 
representation and permutation representation which are even 
more complex. Representation selection is one of the most 
important steps for implementation of GA. 

2) Recombination 
They are actually many ways of reproducing a new solution 

from the former generation’s characteristics contained within 
two or more parents. Recombination of GA varies with 
representation. One of a basic technique is uniform crossover. 
The process is that an offspring chromosome is randomly 
selected from parents independently for each position. As for 
complex representations, they need more complicated 
recombination techniques. 

3) Mutation 
It is a generic name given to any methods of modifying an 

existing individual into a new one by applying some 
randomized change. Similar to the recombination, mutation 
varies with representation. Uniform mutation is the easiest one 
in case of the three basic representations. In its process, with 
probability pm, often referred to as mutation rate, a new value is 
chosen randomly from a set of permissible values in each 
position.  

4) Selection 
Selection is a mechanism to select a group of survivors to 

be a new generation. The selection could pick survivors from 
both µ parents and λ offspring ((µ + λ) selection). While 
selection only from λ offspring ((µ, λ) selection) is an 
alternative way to avoid premature convergence – the situation 
that searching converges too early before finding the global 
optima. Algorithm to choose survivors is also one important 
topic for consideration. A good one is elitist which allows only 
the µ best individuals to survive as the new generation.  

C. Differential Evolution (DE) 

 DE holds ideas similar to those of GA. Though it is 
developed to be reliable and versatile function optimizer, it is 
also easy to use. It is designed to efficiently move around 
continuous search-space making it suitable for numerical 
optimization problem. Representation for DE is real-value 
which is now recognized as vector [10]. 

Mutation, recombination and survivor selection are all 
changed to DE style and need to be operated in order. In each 
round, every individual in the population would be operated 
and firstly considered as target vectors. In differential mutation 
process, other 3 vectors r1, r2 and r3 are randomly picked from 
the population and combined with simple arithmetic operator to 
create mutant vector vi as shown in (1) when F is a scale factor, 
F ϵ (0,1+). But with another mutation strategy such as 
DE/rand/1 either-or-algorithm, mutant vector combination uses 
(2) instead.  
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Recombination is operated after mutation. Technically it is 
similar to GA’s uniform crossover. The crossover builds trial 
vector ui out of parameter values that have been taken from 
target vector xi and mutant vector: 
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Crossover probability, Cr ϵ [0, 1], is a user-defined value to 
specify the fraction of new and old parameter values. 

The last part of iteration is the selection. It is a step to 
compare whether newly produced trial vectors are better than 
their target vectors or not. Only the trial vectors that beat their 
counterparts are allowed to replace the position and stay as new 
candidate solutions.  

III. METHODOLOGY 

A. Selecting a Template Formula 

According to the explanation of porosity formation, it could 
be inferred that there are two trends of formation focusing 
cooling rate. The first one is decreased if the rate goes higher 
which resemble exponential decay the most. While the other 
one is increased along with the rate. Even though exponential 
growth or power functions are able to explain the inclination, 
their infinite growing property is unacceptable, making the 
logistic function to come in their stead. Dependence between 
the two types of porosity is still unknown, so it is only allowed 
to hypothesize that they are independent of one another. With 
that, the total porosity is summation of them as in (4). 

 shrinkagehydrogen ppp %   

When p% is total porosity percent. If other hypotheses 
previously made are also applied then the equation (5) could be 
the result. 
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When Pi are polynomials that act as graph magnitude 
adjusters, translators and stretchers and R is the cooling rate. 

B. GA and DE Combination 

To generate proper the polynomials which fit the equation 
to experimental data, the datasets of independent variables 



consist of initial chemical composition and cooling rate are 
used. GA is used in conjunction with DE to find parameters in 
the equation (5). GA is responsible for generation of terms and 
power of each variable, while DE is for finding of the 
appropriate parameters of each term.  

Actually, a normal GA representation and recombination 
could handle this problem. However, to enable variable length 
property of polynomials, a special form is necessary. For 
representations, powers of each variable are encoded into 
chromosomes of integers separately for each polynomial. In 
other words, if there are six polynomials in an equation, there 
are six chromosomes. As for recombination a slightly more 
complicated technique is applied but it would be explained 
later. About DE, parameters of each polynomial term are 
normally serialized into a vector as shown in Fig. 1. 

The overall work flow of GA-DE combination method is 
shown in Fig. 2. It is mainly focused in GA and employs DE 
only before the step of survivor selection to evaluate the error 
values. The flow could be summarized as follow: 

 Specify the data and various configuration constraints. 

 Randomize initial members to be the first generation of 
populations with number of population (µ) 250. 

 Check if the termination criterions are satisfied or not. 
If they are satisfied, then return the best fit formula and 
stop the operation but if they are still not satisfied, 
repeat the following steps until they are. 

 Produce new offspring by recombine members in the 
last generation population pool with number of 

offspring (λ) 75. 

 Apply uniform mutation to offspring with mutation rate 
(pm) 0.3 

 Employ DE acquire the relevant coefficients for every 
single new equations with the configuration stated in 
TABLE. I. 

 Select the survivors by evaluating the error of every 
members 

TABLE I.  CONFIGURATION OF DE 

Configuration Value 

Population (µ) 200 

Scale Factor (F) 0.85 

Crossover Probability (Cr) 0.75 

Strategy DE/rand/1 either-or-algorithm 

 

C. GA’s recombination 

Recombination of GA needs to be modified in order to 
achieve variable length of chromosomes. The first constraint is 
that a chromosome could only crossover with another one of 
the same polynomial position because a term from a position 
should not disturb terms from other position. Another 
constraint is the maximum length of each polynomial position. 
Although the chromosome’s length could be variable, it should 
not grow to infinite. This modification only changes the 
crossing over between parents, so the ways of parent selection 

 
Fig. 1. GA-DE representations model 

 
Fig. 2. Flow chart of GA-DE method 

Recombination  

 

n : number of parents to crossover 

m : number of polynomials 

P1,P2,...,Pn : parents of crossing over 

c1,c2,...,cm : maximum length of each polynomial 

 

P = initialize new Equation; 

for i = 1 to m{ 

 P(i).addTermsFrom(P1(i)..Pn(i)); 

 P(i).removeDuplicatedTerms(); 

 P(i).randomRemoveTermsUntil(ci); 

 for each (Term t in P(i)){ 

  if(random(0,1) < Dr) 

   P(i).remove(t); 

 } 

} 

Return P; 



could be the same as normal GA. The pseudo code for the 

crossing over is shown here. 

The important parts of the operation are the part that 
removes duplicated terms and the part that randomly removes 
terms at the rate of Dr – deleting rate It should be the value 
between (0, 1). These parts make the polynomial variable in 
length and greatly increase GA’s performance. 

D. Datasets and Evaluation 

Experimental data of porosity (vol. %) in this research are 
gathered from previous researches. Dataset 1 is from [11] 
which gives 96 samples with initial amount of Si, Fe, Cu, Mg, 
Mn, Sr, Ti (wt. %) and cooling rate (°C) as independent 
variables. Dataset 2 is from [12] and gives other 48 samples 
with the same independent variables as datasets 1 plus initial 
amount of hydrogen and other elements which were omitted to 
allow it to merge with dataset 1. 

The first dataset would be fed to GA-DE model followed 
by dataset 1+2 to be more challenge since the merged dataset 
must possess more complexity.   

IV. RESULTS AND DISCUSSION 

Prediction results from formulae generated by GA-DE 
model are shown in Fig. 3. It is demonstrated that prediction 
values over dataset 1 are promisingly accurate. This is because 
the data is from only a single source. In contrast, the prediction 
over the mixed dataset provides worse performance. There are 
groups of data that prediction gives good results as well as the 
bad ones. The bad results are the results from incompatibility 
of datasets. 

TABLE II.  COMPARISON OF ERRORS 

Data Error 
Proposed Model 

(vol.%) 

Neural Networks 

(vol.%) 

Dataset 1 

rms 0.0502 0.0643 

mae 0.0353 0.0472 

r 0.9941 0.9765 

Dataset 1+2 
rms 0.3029 0.6591 

mae 0.1386 0.3871 

r 0.8187 0.2053 

 

After GA-DE finish its process, the resulted functions are 
then compared with the models acquired from performing ten-
fold cross validation from neural networks with 5 – 15 hidden 
nodes that give the best fit. The results are expressed in 
TABLE II. Errors provided, consisting of root mean square 
(rms), mean absolute error (mae) and correlation coefficient (r), 
are normal tools to evaluate the performances of prediction 
models. The proposed model proved better in every field 

V. CONCLUSION 

This research proposed a method to predict the total 
porosity formation percent from aluminum alloy casting 
process. The method utilizes the traditional function 
approximation in conjunction with polynomials approximation 
by GA and DE to fill unknown positions. The accuracies of 
predicting functions are satisfying. They beat models from 
neural networks, which were designed to learn and predict 
complicated data, guaranteeing performance of the generated 
formulae. Moreover, the predicting functions can be used for 
factors' influence analysis. This is simpler than using models 
from neural networks. These benefits could obviously improve 
industrial process by reducing chances of wasting product.  
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