
Accelerator Circuits for Quantum Simulation
Yuranan Kitrungrotsakul, Prabhas Chongstitvatana

Department of Computer Engineering

Chulalongkorn University

Phayathai Rd., Pathumwan, Bangkok, Thailand, 10330

yuranan.kit@student.chula.ac.th, prabhas.c@chula.ac.th

Abstract— Although a quantum computer is the future of
computing, its practical implementation is still far off.
Programming a quantum computer is also difficult. Thus, using a
quantum computer simulator is a way to learn how to use a
quantum computer. QCL is one of the quantum computer
simulators. It can simulate the quantum environment and
execute quantum computer programs. However, the quantum
computer simulator has limited storage due to its data structure
that simulates quantum bits. It takes long time to simulate a large
number of quantum bits. This work proposes an accelerator of
quantum simulator which is implemented in hardware circuits
with Field Programmable Gate Array technology.

Keywords—quantum computer; QCL simulator; acceleator
circuits;

I. INTRODUCTION

In every year, computers are developed to be smaller,

execute tasks faster and use lower power due to the

technology. The fabrication technology is able to achieve

double circuit density every year continuously for almost 40

years. Gordon Moore has forecasted that and it is accepted as

Moore’s law.

High performance computers are required to solve many

problems that cannot be solved with current generation of

computers such as in medicine, in science and so on. One of

the promising types of high performance computer is based on

using Quantum effect for computation. In order to create a

quantum computer, the fundamental storage, quantum bit, that

holds simultaneous many states must be realized. The

quantum computer is being created in research laboratories

with few quantum bits. Only one system has been available

commercially. D-wave systems [1] announced the first

commercial quantum computer operating on a 128-qubit in

2011. However, it does not have any of evidence, which prove

that it operates with the real quantum effects. In order to study

the behavior of a quantum computer, many of the quantum

simulators were created. The quantum simulator simulates the

behavior of quantum computer on classical computers. Users

can write programs for quantum computers that are executed

by classical computers via simulators.

In order to simulate operations of quantum bits, the

simulator must calculate all states that are in entanglement.

This calculation consumes both time and space. Due to this

constraint, the simulator can only work on the small number of

quantum bits. This work tackles the aspect of speed up the

simulator. The work proposed an accelerator circuit for a

particular simulator, QCL (Quantum computer language).

This simulator has been widely available. It is stable and open

source.

The next section describes the basic of quantum

computing. Section 3 describes the concept of QCL simulator.

Section 4 and 5 describe how to approach the problem of

finding where in the simulator to be replaced by a hardware

circuit. Section 6 gives the details of the design of the

accelerator circuit. Section 7 shows the experimental result

and the conclusion is in Section 8.

II. ESSENTIAL QUANTUM COMPUTATION

A. Quantum bit
A quantum computer [2] is totally different from the

classical computer. Quantum computer’s operations are based

on the theory of quantum mechanics. The smallest unit of

quantum computers is a quantum bit (Qubit). The qubit

represents a quantum particle, which has a superposition

property. Thus, the qubit is represented in a linear combination

as shown in equation 2.1.

(2.1)

The and are complex numbers. Due to the fact that the

qubit carries value in superposition state, it has the value 0 and

1 in the same time. This is a major fact that differentiates the

quantum computer from the classical computer which has only

one value either 0 or 1 in each bit. The qubit has value 0 with

probability and value 1 with probability . In order to

preserve the law of total probabilty, the value of and must

satisfy equation 2.2.

 (2.2)

Due to the law of total probability, equation 2.1 can be

rewritten with equation 2.2. The new equation is equation 2.3.

(2.3)

978-1-4799-1966-6/15/$31.00 ©2015 IEEE 236

2015 12th International Joint Conference on Computer Science and Software Engineering (JCSSE)

The and are real numbers and the can be

ignored because it does not affect the value of qubit. Thus,

equation 2.3 can be rewritten into equation 2.4.

 (2.4)

Equation 2.4 is explained by Bloch sphere in figure 1.

Figure.1: A qubit representation in Bloch sphere

From the figure 1, the , which is the value of qubit, is

pointed to somewhere on the surface of the Bloch sphere

depended on the value of and , which are an angle with

the X and Z axis of Bloch sphere. Thus, if means it

points to the highest of Bloch sphere, vice versa for one.

In case of multiple qubits, equation 2.1 changes in to

equation 2.5 due to the increasing state of qubit.

 (2.5)

where , , and are probability of qubits that

have value 00, 01, 10 and 11, respectively. Also, it must

preserve the law of total probability, so their values must

follow the equation 2.6.

 (2.6)

Evaluation the value of multiple qubits is more complex

than the single qubit. The order of qubits must be considered.

If the value of first qubit is 0, the value of multiple qubits is

evaluated by equation 2.7.

 (2.7)

From the equation 2.7, is a renormalize

form in order to preserve the law of total probability. The

double qubits have a significant state, which is Bell state or

ERP pair. They have a correlation property, which is some

relationship between two qubits. If the value in one of qubit is

known, then the value of another qubit can be interpreted by

using information of the known value qubit. Bell state is an

important concept to define the Quantum teleportation

phenomenon. Bell state is presented in equation 2.8.

 (2.8)

B. Quantum parallelism
A quantum parallelism is a property of quantum computers

which uses the advantage of the superposition property. When

a unitary matrix operates with qubit, it will operate with all

possibility of value. It can be explained with figure 2.

Figure 2: An example of a quantum circuit

From the figure 2, the quantum circuit has 2 inputs, which

are and . is a controller qubit for input . The

result of evaluation this circuit shows in equation 2.10.

 (2.10)

In case of n-Qubit, the result shows in equation 2.11.

 (2.11)

An output depends on the function . Due to quantum

parallelism property, a quantum computer can execute

program faster than a classical computer. However, this

property changes the way we design an algorithm. Many

algorithms were designed for quantum computers such as

Deutsch’s algorithm or Deutsh-Jozsa algorithm [3].

III. QCL SIMULATOR

QCL is one of the quantum computer simulator which is

implemented in C++ language. The language of QCL has

structured and it has hybrid mix of classical statements and

quantum operations [4].

A. Quantum Programming
Most of the classical computers have high level language

available, such as C, Java, Pascal, and so on. The high level
languages are divided into 3 groups: logical, functional and
procedural. A structured quantum programming [5] is an
extended version of a procedural language. It extends the
classical concept into the quantum concept.

B. Hybrid architecture
A hybrid architecture is a combination of classical

computers and quantum computers. The inputs and outputs of

237

QCL simulator are classical bits. It behaves just like an

ordinary input and output of a classical computer. However,

the classical inputs are processed by the quantum program.

QCL simulates a quantum machine to execute the quantum

program. After that, the qubits are measured, so the qubits

collapse into classical bits.

IV. BENCHMARK PROGRAM

From the section 2 and 3, programing the quantum program
is completely different from the classical program because of
its behavior. Benchmark programs for QCL simulator should
be the programs that are designed for quantum computer and
coded in QCL.

In order to accelerate the QCL simulator, the simulator was
inspected in details to analyze the data flow of program. The
quantum version of the compact genetic algorithm [6] and Shor
algorithm [7] were chosen as the benchmark programs to
evaluate the QCL simulator.

Compact genetic algorithm
A compact genetic algorithm is a heuristic algorithm, which

imitates the process of natural selection. It consists of three
major steps.

1) The first step is to create the population. This step

creates new data related to the old data’s information. After

that, the new data are adjusted with some rules.

2) The second step is evaluation. This step evaluates the

data from first step. The data are evaluated with the fitness

rule, which depends on the problem. The data that are closest

to solution of the problem has the highest fitness.

3) The last step is determination. This step determines the

data that have the highest possibility to be the solution of the

problem.

Because of the probabilistic nature of executing a quantum

algorithm, it is necessary to iterate the algorithm as many

times as required to achieve a better accuracy. The higher

number iteration returns more accurate solutions.

In order to take advantage of quantum computation, the

compact genetic algorithm is modified. Due to the

superposition property, the qubits are operated with all

possible values. Thus, using the quantum gates and quantum

bits is exponentially faster than a classical computer because

the quantum parallelism property is applied.

V. ANALYSIS

The QCL simulator was developed in C++ language. It
operates in Linux operating system, so profiling was chosen as
a tool to inspect the flow of program. The source code of QCL
simulator was modified in order to perform profiling.

The QCL simulator executed the benchmark programs,

which are compact genetic algorithm and Shor algorithm, with

different qubit length and number of iteration. The profiler’s

result shows functions that spend more than 15% of the total

execution time. They are these three functions:

1) bitvec::bitvec(bitvec const&)
2) termlist::add(bitvec const&, std::complex<double>)
3) quSubString::unmap(bitvec const&) const

In order to perform quantum operations, the QCL

simulator specifies new data types such as bitvec, terminfo,

qustate and so on. The most time consuming method is

bitvec::bitvec(bitvec const&), which is a constructor method.

Therefore it should not be considered to be implemented in

hardware circuits. The second function, termlist::add(bitvec
const&, std::complex<double> const&), were considered to

be implemented on hardware circuits. Moreover, it calls other

methods. The callee methods are implemented. A pseudo code

of method termlist::add(bitvec const&, std::complex
<double> const&) is described below.

void termlist::add(const bitvec& v, const complex& z) {
 Using value of input bitvec v perform hash
 //First part
 while(1)
 Store data termlist from hash in caller to pt
 if(pt doesn’t have data) {
 if(caller size is smaller than its specification) {
 //Second part
 Increase caller size and call add method with same input
 } else {
 //Third part
 Create new termlist and store it to caller’s hash at pt
 }
 return;
 }
 if(pt has bitvec same the input bitvec v) {
 //Fourth part
 Updating new data in pt with input z
 return;
 }
 //Fifth part
 Change hash function to get new hash index.
 }
}

The method is divided into 5 parts. The first part is the

basic step which executes every time the method is called. It

does a hash function, hashfunct1. Then enter a while loop. The

second part is in the nested-if case. This part increases size of

data storage and recreate it with new size. The third part is in

the else case of nested-if. This part stores new data to the data

storage. The fourth part is in if-case. This part updates old data

in data storage which matches the input. The last part operates

if and only if the other parts are not operated. This part does

another hash, hashfunct2. Then it repeats the while loop.

VI. DESIGN AND IMPLEMENTATION

In order to implement the accelerator circuits, the high

level data structures and operations must be changed. The

methods coding in C++ were changed into hardware

238

description language. The accelerator circuits were designed

to take an advantage of the hardware parallelism.

A. Flow chart
The flow chart of method was derived from the software

code. The code is divided into 5 parts, so the flow chart has 5

states.

The flow chart of method is shown in figure 3.

h = hashfunct1(v)
pt <= hash[h]

!pt

_nterms >=
listlen

T

F

F

list[_nterms].setvect(v);
list[_nterms].setampl(z);
hash[h]=&list[_nterms];

 _nterms++;

pt->setampl(pt-
>ampl()+z);

fin = 1

start?

T

F

idle

waitPt

part3

part4

finish

Figure 3: The modified flow chart of termlist::add(bitvec const&,

std::complex<double> const&) method

The termlist::add(bitvec const&, std::complex<double>
const&) module was designed to has 5 inputs and 2 outputs.

The first input is clk signal, which controls the flip flop

function. The second input is a start signal. The others are the

inputs of the method: termlist, bitvec v and complex z. A

block diagram of this module is in figure 4.

fin

complx
start
clk

termlist
bitvec
termlist

add
termlist

z
v

termlist

fin

start

clk

Figure 4: Block diagram of termlist::add(bitvec const&,

std::complex<double> const&) method

1) State machine
The state machine was derived from the flow chart using

Moore machine. It used 3 registers to store the current state.

2) Hashfunct module

The hashfunct1 and hashfunct2 have same root method,

which is bitvec::hashfunct(). The difference of hashfunct1 and

hashfunct2 is masking.

The bitvec::hashfunct() was implemented by combination

circuits, so it instantly produces the result of its function.

B. Floating point unit
The termlist::add(bitvec const&, std::complex<double>

const&) method uses complex data type, which is real number,

so floating point unit must be designed because the tool for

implementation of FPGA does not provide a floating point

unit. The floating point unit was designed in the format IEEE

754 double precision standard.

In order to add floating point together, firstly, if the

exponent bits of two numbers are not equal. The exponents

must be aligned. The bigger exponent is decreased until it is

equal the other. Then the fractional bits of the bigger number

will change depend on how much exponent changed. After the

exponent bits are equal, the add operation can be performed on

fractional bits. The alignment of exponents requires an

algorithm that finds the first bit that has value 1 in the

exponent. The divide and conquer method is used to

efficiently finding the first 1 value bit from the bit string. The

bit string is divided into two substrings with equal length, the

most significant substring and the least significant substring.

Then, iteration the dividing with the most significant substring

until it has only two bits. After that, two bits are compared

with each other. If its value is both 0 check other two bits with

in the same substring. If its value is both 1, the most

significant bit is the first 1 value bit from bit string. If it is not

equal, the higher one is the first 1 value bit from bit string.

This method finds the first 1 value bit in O(log n).

The accelerator circuits were implemented in Verilog,

which is one of the hardware description languages. The

implementation is carried out on an FPGA board. Because of

the limit number of input/output of the FPGA board, the data

of two dimensional array, which are used in the simulator,

cannot be fully implemented. To allow analysis of the speed

up of the circuits, a partial implementation is done. Refer to

the pseudo code of termlist method; the first part, the third part

and the fourth part are implemented. These three parts

consume 99% of the total execution time so they are good

enough representative. The rest of the simulation is executed

with the software.

VII. EXPERIMENTAL RESULT

To collect the experimental data, the interface between

hardware circuits and the software of the QCL simulator is

defined. The data going through this interface is collected.

The hardware circuit is then tested offline (in separation from

the simulator). The values through the interface are checked

to validate the correct function of the accelerator circuits. To

measure the speed up of the accelerator circuits, the number of

cycles of the circuit (one clock) is compared with machine

code instruction of the software (the assembly language of the

PC machine) which is collected from the profile of the running

239

simulator. This assumption seems fair and allows the result to

be independent of the speed of processor used in PC machine.

The accelerator circuits met the functional correctness. The

comparison of the execution time between the accelerator

circuits and the software is shown in Table 1.

Methods Number
of clock

cycle

Number of
machine

instruction
termlist::add(const bitvec&

v,const complex& z)

5 120

termlist::hashfunct1(const

bitvec& v) const

instant 144

bitvec::hashfunct() const instant 96

summary 5 360
Table 1: Comparing the accelerator circuits with the QCL simulator

VIII. CONCLUSION

From the section 7, it shows that accelerator circuits are

much faster than the software. The accelerator is faster than

the QCL simulator software 72 times.

The limit of this study is that it is driven by the profile of

the simulator running benchmarks. Therefore the speed up is

limited to the frequent operations in software. To fully

explore the accelerator that aims to really speed up the

simulator, perhaps the redesign of data structure should be

considered. If the data structure is suitable for implementation

is the hardware using RAM storing in the FPGA board, many

other parts of simulation can be discovered that have high

speed up potential. However, this approach will require

rewriting the simulator.

REFERENCES

[1] Tameem Albash, Walter Vinci, Anurag Mishra, Paul A. Warburton,
Daniel A. Liar, Consistency tests of classical and quantum models for a
quantum annealer, 2014.

[2] Michael A. Nielsen, Isaac L. Chuang, Quantum Computation and
Quantum Information, 2011.

[3] David Deutsh and Richard Jozsa, Rapid soulutions of problems by
quantum computation, Proceedings of the Royal Society of London
A 439: 553, 1992.

[4] Bernhard Umer. A Procedural Formalism for Quantum Computing.
Master’s Thesis, Department of Theoretical Physics, Technical
University of Vienna, 1998.

[5] Bernhard Umer. Structured Quantum Programming. Ph.D. Thesis,
Technical University of Vienna, 2003.

[6] Yingchareonthawornchai, S., Aporntewan, C., and Chongstitvatana, P.,
An Implementation of Compact Genetic Algorithm on a Quantum
Computer, Int. Joint Conf. on Computer Science and Software
Engineering, 2012, pp.131-135..

[7] P. W. Shor, Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer, SIAM J. Computing 26,
pp.1484-1509(1997).

240

