
CompactRISC processor cores are designed specifically
for embedded applications. The CompactRISC architec-
ture is available in a wide range of implementations,
supported by a common set of software development
tools from multiple vendors. The CompactRISC archi-
tecture is scalable over a range of 8-, 16-, 32- and  64-
bit processors, with common: variable-length instruc-
tion set, registers, addressing modes, interrupt and trap
handling, debug support, and non-aligned data access-
es, and efficient HLL execution.

❚ Available in Synethesizeable Verilog HDL

❚ Less than 1mm2 @ 0.35µ

❚ 2Mbytes of linear address space

❚ Less than 0.3mA per MHZ @ 3 Volts, 0.35µ

❚ Static 0 to 50 Megahertz

❚ Atomic Memory Direct Bit Manipulation of 
single bits

❚ Save and Restore of Multiple Registers

❚ Push and Pop of Multiple Registers

❚ Hardware Multiplier Unit for fast 16-bit 
multiplication

����
����Features

����
����Introduction

Shifter Multiplier Displacement

Decode &

COntrol

ALU

Register

File

Program

Counter

Queue

M

U

X

MUXMUX



21

2
1

1
6

21

21

16

ADDRESS Data

MUX



National Semiconductor

COMPACTRISC
TM
16-Bit

Architecture

National Semiconductor

COMPACTRISC
TM
16-Bit

Architecture



All registers are 16 bits wide, except for the four
address registers, which are 21 bits wide.  Bits specified
as “reserved” must be written as 0, and return unde-
fined results when read.

The internal registers of the CR16B are grouped by
function: 

❚ 16 general-purpose registers
❚ Eight processor registers:

◆ Three dedicated address registers
◆ One processor status register
◆ One configuration register 
◆ Three debug control registers

CR16B Registers

The CR16B has two programming modes: small and
large. The small model is limited to 128 Kbytes of pro-
gram address space, and 256 Kbytes of data address
space. The large model supports up to 2 Mbytes of pro-
gram and data space.

The two programming models are almost identical.
They differ only in the instructions used for branching
and program flow control.

A stack is a one-dimensional data structure. Values are
entered and removed, one item at a time, at one end of
the stack called the top-of-stack. The stack consists of a
block of memory, and a variable called the stack point-
er. Stacks are important data structures in both systems
and applications programming. They are used to store
status information during sub-routine calls and inter-
rupt servicing. In addition, algorithms for expression
evaluation in compilers and interpreters use stacks to
store intermediate results. High level languages, such
as “C”, keep local data and other information on a
stack.

The CR16B supports two kinds of stacks: the interrupt
stack and the program stack.

The Interrupt Stack

The processor uses the interrupt stack to save and
restore the program state during the handling of an
exception condition. This information is automatically
pushed, by the hardware, on to the interrupt stack
before entering an exception service procedure. On exit
from the exception service procedure, the hardware
pops this information from the interrupt stack. The
interrupt stack can reside in the first 64 Kbytes of the
address range, and is accessed via the ISP processor
register.

The Program Stack

The program stack is normally used by programs at
run time, to save and restore register values upon pro-
cedure entry and exit. It is also used to store local and
temporary variables. The program stack is accessed via
the SP general-purpose register and therefore must
reside in the first 64 Kbytes of the address range. Note
that this stack is handled by software only, e.g., the
CompactRISC “C” Compiler generates code that push-
es data on to, and pops data from, the program stack.
Only PUSH and POP instructions adjust the SP auto-
matically; otherwise, software must manage the SP
during save and restore operations.

Both stacks expand downward in memory, toward
address zero.

����
����Stacks

����
����
����CR16B Small and Large 

Programming Models

Process Status Register

reserved
01234567891011

CTLOOFZNOEI P

Carry

Low
Trace Enabled

General Field
Zero

Negative
Local Interrupt Mask

Trace Pending
Global Interrupt Mask

1215/31

reserved

Dedicated Address Register
16  15 020

PC

ISP

INTBASEL

00000

INTBASEH

Configuration Register
     15 0

reserved

Debug Registers
     15 0

DCR

DSR

CARLCARH

General Purpose Registers
     15 0

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13/ERA

RA

SP

reserved

20

8

ED

O

����
����Register Set



The CR16B implements 21-bit addresses. This allows
the CPU to access up to 256 Kbytes of data, and 128
Kbytes of program memory in the small model, and 2
Mbytes of program and data in the large model. The
memory is a uniform linear address space. Memory
locations are numbered sequentially starting at 0 and
ending at 218-1 in the small model, and at 221-1 in the
large model. The number specifying a memory location
is called an address.

CR16B data addressing is always byte-related (i.e., data
can be addressed at byte-resolution). The instructions,
by contrast, are always word-aligned, and therefore
instruction addresses are always even-addressed.

The following instructions are included in the CR16B

16  15

16  15

Opcode Rdst Rsrc/Imm Basic
Instruction

05  49  815

Opcode Med. Imm.
to Register

05  49  816  15

Base Reg Short
Load/Store

05  49  815

Base Reg Medium
Load/Store

06  59  8

disp(d4-d0) Short
Branch

05  49  815

Opcode Medium
Branch

059  8

RdstOpcode

31

Imm

d0

1

Regdisp(d4-d1)

13  12

Opcode

0Regd17 d16

11  1031

Opcodedisp(d15-d0)

Conditiondisp(d8-d5)Opcode

34

d16ConditionOpcode

31

disp(d15-d0)

����
����Instruction Set

����
����memory Organization

Instruction Commands

The following instructions are included in the CR16B.

Mnemonic Operands Description

MOVES

MOVi Rsrc/imm, Rdest Move

MOVXB Rsrc, Rdest Move with sign extension

MOVZB Rsrc, Rdest Move with zero extension

INTEGER ARITHMETIC

ADD[U]i Rsrc/imm, Rdest Add

ADDCi Rsrc/imm, Rdest Add with carry

MULi Rsrc/imm, Rdest
Multiply: Rdest(8):= Rdest(8) * Rsrc(8)/lmm

Rdest(16):= Rdest(16) * Rsrc(16)/lmm

SUBi Rsrc/imm, Rdest Subtract (Rdest := Rdest – Rsrc)

SUBCi Rsrc/imm, Rdest Subtract w/carry (Rdest – Rsrc – PSR.C)

INTEGER COMPARISON

CMPi Compare (Rdest – Rsrc)

LOGICAL AND BOOLEAN

ANDi Rsrc/imm, Rdest Logical AND

ORi Rsrc/imm, Rdest Logical OR

Scond Rdest Save condition code as boolean

XORi Rsrc/imm, Rdest Logical exclusive OR

SHIFTS

ASHUi Rsrc/imm, Rdest Arithmetic left/right shift

LSHi Rsrc/imm, Rdest Logical left/right shift

Rsrc/imm, Rdest

MULSB Rsrc, Rdest Multiply: Rdest(16):= Rdest(8) * Rsrc(8)

MULSW Rsrc, Rdest Multiply: (Rdest+1, Rdest):= Rdest(16) * Rsrc(16)

MULUW Rsrc, Rdest Multiply: unsigned (Rdest+1,Rdest):= Rdest(16) * Rsrc(16)

BEQ01 Rsrc, disp Compare Rsrc to 0 and branch if EQUAL 

BNE0i Rsrc, disp Compare Rsrc to 0 and branch if NOT-EQUAL 

BEQ1i Rsrc, disp Compare Rsrc to 1 and branch if EQUAL 

BNE1i Rsrc, disp Compare Rsrc to 1 and branch if NOT-EQUAL

MOVD imm, (Rdest+1, Rdest) Move 21-bit immediate to register-pair



Instruction Commands (cont.)

BITS

TBIT Roffset/imm, Rsrc Test bit

PROCESSOR REGISTER MANIPULATION

LPR Rsrc, Rproc Load processor register

SPR Rproc, Rdest Store processor register

STORi

Rsrc, disp(Rbase)
Rsrc, disp(Rpair +1, Rpair)
Rsrc, abs
sm_imm, 0(Rbase)
sm_imm, disp(Rbase)
sm_imm, abs

Bcond disp Conditional branch

BAL Rlink, disp Branch and link

JUMPS AND LINKAGE

Store (register relative)
Store (far-relative)
Store (absolute)
Store small immediate in memory

BR disp Branch

EXCP vector Trap (vector)

Jcond Rtarget Conditional Jump

JAL Rlink, Rtarget Jump and link

JUMP Rtarget Jump

MISCELLANEOUS

RETX Return from exception

LOADi
disp(Rbase), Rdest
abs, Rdest
disp(Rpair+1, Rpair), Rdest

Load (register relative)
Load (absolute)
Load (far-relative)

LOAD AND STORE

EI Enable maskable interrupts

DI Disable maskable interrupts

WAIT Wait for interrupt

NOP No operation

SBITi
Iposition, 0(Rbase)
Iposition, disp16(Rbase)
Iposition, abs

Set a bit in memory

CBITi
Iposition, 0(Rbase)
Iposition, disp16(Rbase)
Iposition, abs

Clear a bit in memory

TBITi
Iposition, 0(Rbase)
Iposition, disp16(Rbase)
Iposition, abs

Test a bit in memory

PUSH imm, Rsrc
Push “imm” number of registers on user 
stack starting with RSRC

POP imm, Rdest
Push “imm” number of registers on user 
stack starting with Rdest

POPRET imm, Rdest
Restore registers (similar to POP) and perform JUMP RA 
or JUMP (RA, ERA) depending on memory model

LOADM imm
Load 1 to 4 registers (R2-R5) from memory, starting at 
the address in R0, according to imm count value

STORM imm
Store 1 to 4 registers (R2-R5) into memory, starting at 
the address in R1, according to imm count value

EIWAIT Enable interrupts and wait for interrupt

©1997 NATIONAL SEMICONDUCTOR, and   are registered trademarks and CompactRISC is a trademark of National Semiconductor Corporation.  All rights reserved.
633170-001


