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Genetic Algorithms

A class of probabilistic search, inspired by natural evolution.

"the fittest survives"
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GA works on a set of solution, called "population".
GA uses fitness function to guide the search.
GA improves solutions by genetic operators:
  selection
  recombination (crossover)
  mutation

GA pseudo code
initialise population P
while not terminate
evaluate P by fitness function
P' = selection.recombination.mutation of P
P = P'
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terminating conditions:
1  found satisfactory solutions
2  waiting too long

Simple Genetic Algorithm

represent a solution by a binary string {0,1}*
selection:
  chance to be selected is proportional to its fitness
recombination
  single point crossover
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select a cut point  cut two parents, exchange parts

  AAAAAA  111111  cut at bit 2

  AA AAAA   11 1111   exchange parts

  AA1111  11AAAA

mutation
  single bit flip

  111111  -->  111011   flip at bit 4
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GA compare to other methods

“indirect” -- setting derivatives to 0
“direct” -- hill climber
enumerative – search them all
random – just keep trying
simulated annealing – single-point method
Tabu search

What problem GA is good for?

Highly multimodal functions
Discrete or discontinuous functions
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High-dimensionality functions, including many
combinatorial ones
Nonlinear dependencies on parameters
(interactions among parameters) -- “epistasis”
makes it hard for others
Often used for approximating solutions to NPcomplete
combinatorial problems

Applications

optimisation problems
combinatorial problems
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binpacking 3D  (container loading)

representation

1352689......

fitness function:
  num. of bin + empty space in the last bin

evolve robot programs for a biped

<video of biped walking>
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representation

mn....

m = {0+,0-,1+,1-,....6+,6-}
n is num. of repeat

fitness function:
  six stages of walking
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Why  GA work?

Schema theorem

schema represents set of individual

{0,1,*}   * = any

1******
**0**
1*****1
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schema compete with each other and go through genetic
operations

How many schema are there?

(2^l) - 1  schemata

GA sampling schema in parallel and search for solutions
(implicit parallelism)  O(n^3)  n is population size
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Simple Genetic Algorithm Analysis

m(H,t)  num. of schema H at time t

reproduction

m(H,t+1) = m(H,t) f(H)/f'

f' = average fitness

m(H,t+1) = m(H,0) (1+c)^t
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where c is the portion of schema that is has its fitness above
average

recombination

Let
p survival probability
pc crossover probability
d(H) defining length
l length of individual

p >= 1 - pc d(H)/(l-1)
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m(H,t+1) >=
m(H,t) f(H)/f' [ 1 - pc d(H)/(l-1) ]

mutation

Let
pm a single position mutation probability
o(H) order of schema

probability of surviving mutation

(1 - pm)^ o(H)
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pm << 1, approx.

1 - o(H) pm

conclusion

m(H,t+1) >=
m(H,t) f(H)/f'[1 - pc d(H)/(l-1)- o(H)pm ]

short, low order, above average, schema grows
exponentially.



State of the art in Genetic Algorithms’ research
Prabhas Chongstitvatana, Chulalongkorn University , August 2004                                          15

Building Block Hypothesis

BBs are sampled, recombined, form higher fitness
individual.

"construct better individual from the best partial solution of
past samples." (Goldberg 1989)
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Probabilistic model-building GA
(Estimation of distribution algorithms)

GA + Machine learning

current population -> selection -> model-building -> next
generation

replace crossover+mutation with learning and sampling
probabilistic model
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simple example probability vector
p = (p1, p2, .. pn)

pi = prob. of 1 in position i
learn p:  compute proportion of 1 in each position
sample p: sample 1 in position i with prob. pi

11001
10101

1.0, 0.5, 0.5, 0.0, 1.0 10101
10001
11101
11001



State of the art in Genetic Algorithms’ research
Prabhas Chongstitvatana, Chulalongkorn University , August 2004                                          18

PBIL (Baluja, 1995)
Compact GA (Harik, Lobo, Goldberg, 1998)
UMDA (Muhlenbein, Paass, 1996)

improvement

consider n-bit statistics instead of 1-bit

How to learn and use context for each position?

Then, we could solve problems decomposable into
statistics of order at most k with O(n^2) evaluations.
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Extended compact GA (Harik, 1999)

model

ABCDEF

AB              C              DEF
00 16%     0  86%     000  17%
01 45%     1  14%     001    2%
10 35%                      . . .
11 4%                        111  24%
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iterative merge two groups

metrics: minimum description length
minimise num. of bits to store model+data

MDL(M,D) = D_model + D_data

D_data = - N sum_X p(X) log p(X)

D_model = sum_g 2^(g-1) log N
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Bayesian Optimisation Algorithm (BOA)
(Pelikan, Goldberg, Cantu-paz, 1998)

Bayesian network as a model

acyclic directed graph
nodes are variables
conditional dependencies (edges)
conditional independencies (implicit)

learning
scoring metric (as MDL in ECGA)
search procedure (as merge in ECGA)
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search procedure
  execute primitive op. that improves the metric most

primitive op.
  edge addition
  edge removal
  edge reversal
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BOA theory

BOA solves order-k decomposable problems in O(n^1.55) to
O(n^2) evaluations

for Hierarchical problem

hBOA (Pelikan & Goldberg, 2000, 2001)

use local structure of BN
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representation for conditional prob.

x2 x3   P(x1=0 | x2 x3)
00      26%
01      44%
10      15%
11      15%

x1
/\
/ \
x2 x3

x2
0/\1
/ \
x3 15%

0/\1
/ \
26% 44%
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Another approach

Simulaneity matrix (Aporntewan & Chongstitvatana, 2003,
2004)

<show GECCO ppt>

similar work
Dependency structure matrix (Yu & Goldberg, 2004)
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Conclusion

� GA has been used successfully in many real world
applications

� GA theory is well developed
� Research community continue to develop more powerful

GA
� Model-building GA (PMBGA) is a recent development
� PMBGA scales well

http://www.cp.eng.chula.ac.th/~piak/
prabhas@chula.ac.th
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