
S21 A Hypothetical 32-bit Processor 

 

This is a typical simple 32-bit CPU.  It has a three-address instruction architecture, with 32 registers and 

load/store instructions. This document presents only S21 assembly language view. It does not give details about 

microarchitecture (such as pipeline). 

 

S21 has three-address instruction set.  A general format of an instruction (register to register operations) is: 

 
op r1 r2 r3     means  R[r1] = R[r2] op R[r3] 

 

To pass values between memory and registers, load/store instructions are used.  There are three addressing 

mode: absolute, indirect and index. 

 

     load means    R <- mem 

     store means   mem <- R 

 
ld r1,ads         R[r1] = M[ads]          absolute 

ld r1,d(r2)       R[r1] = M[d+R[r2]]      indirect 

ld r1,(r2+r3)     R[r1] = M[R[r2]+R[r3]]  index 

st r1,ads         M[ads] = R[r1]          absolute 

st r1,d(r2)       M[d+R[r2]] = R[r1]      indirect 

st r1,(r2+r3)     M[R[r2]+R[r3]] = R[r1]  index 

 

In assembly language, these addressing modes are written as (using the convention op dest <- source): 

 
ld r1,ads         ld r1 ads 

ld r1,d(r2)       ld r1 @d r2 

ld r1,(r2+r3)     ld r1 +r2 r3 

st r1,ads         st ads r1 

st r1,d(r2)       st @d r2 r1 

st r1,(r2+r3)     st +r2 r3 r1 

 

There are three flags: Zero, Carry, Overflow/underflow. 

 

Instruction type 

arith & logic:  add sub mul div  and or xor eq ne lt le gt ge shl shr 

control flow:   jmp jt jf jal ret 

data:           ld st mv push pop 

 

Instruction meaning 

false == 0 

true  != 0 

R[0] always zero  

 
op r1 r2 r3     is    R[r1] = R[r2] op R[r3] 

op r1 r2 #n     is    R[r1] = R[r2] op n 

 

ld r1,ads       is    R[r1] = M[ads]          absolute 

ld r1,d(r2)     is    R[r1] = M[d+R[r2]]      indirect 

ld r1,(r2+r3)   is    R[r1] = M[R[r2]+R[r3]]  index 

st r1,ads       is    M[ads] = R[r1]          absolute 

st r1,d(r2)     is    M[d+R[r2]] = R[r1]      indirect 

st r1,(r2+r3)   is    M[R[r2]+R[r3]] = R[r1]  index 

 



jmp ads         is    pc = ads 

jt r1 ads       is    if R[r1] != 0  pc = ads 

jf r1 ads       is    if R[r1] == 0  pc = ads 

jal r1,ads      is    R[r1] = PC; PC = ads 

                      // jump and link, to subroutine  

ret r1          is    PC = R[r1]   

                      // return from subroutine 

 

mv r1 r2        is    R[r1] = R[r2] 

mv r1 #n        is    R[r1] = #n 

push r1 r2      is    R[r1]++; M[R[r1]] = R[r2] 

                      // push r2, r1 as sp    

pop  r1 r2      is    R[r2] = M[R[r1]]; R[r1]--    

                      // pop to r2, r1 as sp 

 

 

arithmetic 

two-complement integer arithmetic 

 
add r1,r2,r3     R[r1] = R[r2] + R[r3] 

add r1,r2,#n     R[r1] = R[r2] + sign extended n (n is 17 bits) 

 

add, sub affect Z,C -- C indicates carry (add) or borrow (sub) 

mul, div affect Z,O -- O indicates overlow (mul) or underflow (div) and divide by zero 

 

logic (bitwise) 

and r1,r2,r3     R[r1] = R[r2] bitand R[r3] 

and r1,r2,#n     R[r1] = R[r2] bitand sign extended n 

. . . 

eq r1,r2,r3      R[r1] = R[r2] == R[r3] 

eq r1,r2,#n      R[r1] = R[r2] == #n 

. . . 

shl r1,r2,r3     R[r1] = R[r2] << R[r3] 

shl r1,r2,#n     R[r1] = R[r2] << #n 

. . . 

 

affect Z,S bits 

 
trap n           special instruction, n is in r1-field. 

 

trap 0                   stop simulation 

trap 1                   print integer in R[30] 

trap 2                   print character in R[30] 

 

stack operation 

To facilitate passing the parameters to a subroutine and also to save state (link register) for recursive call, two 

stack operations are defined: push, pop.  r1-field is used as a stack pointer. 

 

Instruction format 



L-format    op:5 rd1:5 ads:22 

D-format    op:5 rd1:5 rs2:5 disp:17 

X-format    op:5 rd1:5 rs2:5 rs3:5 xop:12 

(rd dest, rs source, ads and disp sign extended) 

 

Instructions are fixed length at 32-bit.  Register set is 32, with R[0] always return zero. The address space is 32-

bit, addressing is word.  Flags are: Z zero, S sign, C carry, O overflow/underflow. 

 

ISA and opcode encoding 

mode:  

a - absolute  

d - displacement  

x - index  

i - immediate  

r - register  

r2 - register 2 operands  

s - special  1 operand 

 

 

opcode op mode  format 

0 nop 

1 ld     a     L    ld r1 ads 

2 ld     d     D    ld r1 d(r2) 

3 st     a     L    st ads r1 

4 st     d     D    st d(r2) r1 

5 mv     a     L    mv r1 #n (22 bits) 

6 jmp    a     L        r1 = 0 

7 jal    a     L    jal r1 ads 

8 jt     a     L 

9 jf     a     L 

10 add   i     D    add r1 r2 #n 

11 sub   i     D 

12 mul   i     D 

13 div   i     D 

14 and   i     D 

15 or    i     D 

16 xor   i     D 

17 eq    i     D 

18 ne    i     D 

19 lt    i     D 

20 le    i     D 

21 gt    i     D 

22 ge    i     D 

23 shl   i     D 

24 shr   i     D 

25..30 undefined 

31 xop   -     X 

 
xop 

0 add    r     X    add r1 r2 r3 

1 sub    r     X 

2 mul    r     X 

3 div    r     X 

4 and    r     X 

5 or     r     X 

6 xor    r     X 



7 eq     r     X 

8 ne     r     X 

9 lt     r     X 

10 le    r     X 

11 gt    r     X 

12 ge    r     X 

13 shl   r     X 

14 shr   r     X 

15 mv    r2    X    mv r1 r2 

16 ld    x     X    ld r1 (r2+r3) 

17 st    x     X    st (r2+r3) r1 

18 ret   s     X      use r1 

19 trap  s     X      use r1 as number of trap 

20 push  r2    X        use r1 as stack pointer 

21 pop   r2    X        use r1 as stack pointer 

22 not   r2    X      

23..4095 undefined 

 

 

Historical fact 

S21 is an extension of S2 in 2007, as a result of my experience in teaching assembly language.  S2 has been 

used for teaching since 2001.  

S2 itself is an "extended" version of S1 (a 16-bit cpu) which is used since 1997. 

  

To improve understandability of S2 assembly language, flags are not used.  Instead, new logical instructions that 

have 3-address are introduced.  They are similar to existing arith instructions.  The result (true/false) is stored in 

a register.  Two new conditional jumps are introduced "jt", "jf" to make use of the result from logical 

instructions.  Also to avoid the confusion between absolute addressing and moving between registers, a new 

instruction "mv" is introduced. (and to make ld/st symmetry, "ld r1 #n" is eliminated.) 

 

The opcode format and assembly language format for S2 follow the tradition dest = source1 op source2 from 

PDP, VAX and IBM S360. As r0  

always is zero, many instructions can be synthesis using r0. 

 

or r1,r2,r0         move r1 <- r2 

or r1,r0,r0         clear r1 

sub r0,r1,r2        compare r1 r2  affects flags 

 

To complement a register, xor with 0xFFFFFFFF (-1) can be used. 

 

xor r1,r2,#-1       r1 = complement r2 

 

last update 20 Nov 2010 


