
1

4. Natural Language Processing

2

Features of Language That Make It Both
Difficult and Useful

The Problem: English sentences are incomplete descrip-
tions of the information that they are intended to convey:

Some dogs are outside.

Some dogs are on the lawn.
Three dogs are on the lawn.
Rover, Tripp, and Spot are on the lawn.

The Good Side: Language allows speakers to be as vague
or as precise as they like. It also allows speakers to leave
out things they believe their hearers already know.

3

Features of Language That Make It Both
Difficult and Useful (con’t)

The Problem: The same expression means different things
in different contexts:

Where’s the water?
• in a chemistry lab, it must be pure
• when you are thirsty, it must be potable
• dealing with a leaky roof, it can be filthy

The Good Side: Language lets us communicate about an
infinite world using a finite (and thus learnable) number
of symbols.

4

Features of Language That Make It Both
Difficult and Useful (con’t)

The Problem: No natural language program can be com-
plete because new words, expressions, and meanings can
be generated quite freely:

I’ll fax it to you.

The Good Side: Language can evolve as the experiences
that we want to communicate about evolve.

5

Features of Language That Make It Both
Difficult and Useful (con’t)

The Problem: There are lots of ways to says the same
things:

Mary was born on October 11.
Mary’s birthday is October 11.

The Good Side: When you know a lot, facts imply each
other. Language is intended to be used by agents who
know a lot.

6

Steps in Natural Language Understanding

• Morphological Analysis
- individual words are analyzed into their components

• Syntactic Analysis
- linear sequences of words are transformed into
structures that show how words relate to each other

• Semantic Analysis
- the structures are assigned meanings

• Discourse Integration
- consider the meaning of a sentence by referring to

the preceding sentences
• Pragmatic Analysis
- reinterpret what was actually meant

7

The Result of Syntactic Analysis of
“I want to print Bill’s .init file.”

S

NP VP

PRO V S
(RM3)

I want
NP VP

PRO V S
(RM4)

I print
ADJS NP

Bill’s ADJS N

(RM1)

.init file

8

A Knowledge Base Fragment

User
isa: Person
*login-name: must be <string>

User068
instance: User
login-name: Susan-Black

User073
instance: User
login-name: Bill-Smith

F1
instance: File-Struct
name: stuff
extension: .init
owner: User073
in-directory: /wsmith/

File-Struct
isa: Information-Object

9

A Knowledge Base Fragment (con’t)

Printing
isa: Physical-Event
*agent: must be <animate or program>
*object: must be <information-object>

Wanting
isa: Mental-Event
*agent: must be <animate>
*object: must be <state or event>

Commanding
isa: Mental-Event
*agent: must be <animate>
*performer: must be <animate or program>
*object: must be <or event>

This-System
instance: Program

10

The Result of Semantic Analysis of
“I want to print Bill’s .init file.”

RM1 {the whole sentence}
instance: Wanting
agent: RM2 {I}
object: RM3 {a printing event}

RM2 {I}

RM3 {a printing event}
instance: Printing
agent: RM2 {I}
object: RM4 {Bill’s .init file}

RM4 {Bill’s .init file}
instance: File-Struct
extension: .init
owner: RM5 {Bill}

RM5 {Bill}
instance: Person
first-name: Bill

11

The Result of Pragmatic Analysis of
“I want to print Bill’s .init file.”

Meaning
instance: Commanding
agent: User068
performer: This-System
object: P27

P27
instance: Printing
agent: This-System
object: F1

This leads to the final result:

lpr /wsmith/stuff.init

12

Syntactic Processing

• Role
- Constrain the number of constituents that semantics
can consider. Since syntax is cheaper than semantics,
this is cost effective.

• Components
- Grammar
- Parser

13

A Simple Context-Free Grammar for a
Fragment of English

S → NP VP
NP → ART N
NP → ART ADJ N
VP → V
VP → V NP

cried: V
dogs: N, V
the: ART
old: ADJ, N
man: N, V

Grammar 1.

Lexicon

1.
2.
3.
4.
5.

14

A Parse Tree for Sentences

S

NP VP

ART N cried

the dogs

S

NP VP

ART ADJ N cried

the old man

The tree for
“The dogs cried.”

The tree for
“The old man cried.”

15

A Top-Down Parser

A parsing algorithm –
uses grammatical rules to search for a combination
that generates a tree describing the structure of the
input sentence

A top-down parser –
starts with the S symbol and rewrite it into a
sequence of terminal symbols that matches the
words in the input sentence

A state of parse is a pair of:
• symbol list : the result of operations applied so far
• a number indicating the current position in the
sentence

16

A Top-Down Parser (con’t)

For example, given the Grammar 1 and a sentence:
The dogs cried1 2 3 4

a typical parse state would be:

((N VP) 2)

Since the word “dogs” is listed as an N in the lexicon,
the next parse state would be:

((VP) 3)

If the first symbol is a nonterminal, like VP, then it is
rewritten using a grammar rule.
• Using rule 4 in Grammar 1: the next state is ((V) 3)
• Using rule 5 in Grammar 1: the next state is ((V NP) 3)

17

A Simple Top-Down Parsing Algorithm

• The algorithm uses a list of possible states:
- the current state (the first element of the list)
- backup states (the remaining elements)

• For example, a list of possible states:

indicates that the current state consists of the symbol
list (V) at position 3, and that there are two possible
backup states.

(((V) 3) ((V NP) 3) ((ART ADJ N VP) 1)

18

A Simple Top-Down Parsing Algorithm
(con’t)

The algorithm starts with the initial state ((S) 1) and no
backup states.
1. Take the first state off the possibilities list and call it C.

IF the list is empty, THEN fails
2. IF C consists of an empty symbol list and the word

position is at the end of the sentence, THEN succeeds
3. OTHERWISE, generate the next possible states.

3.1 IF the first symbol of C is a lexical symbol, AND
the next word in the sentence can be in that class,

THEN – create a new state by removing the first symbol
– updating the word position
– add it to the possibilities list.

3.2 OTHERWISE, IF the first symbol of C is a non-terminal
THEN – generate a new state for each rule that can rewrite

that non-terminal symbol
– add them all to the possibilities list

19

Top-Down Depth-First Parse of
“1 The 2 dogs 3 cried 4”

Step Current State Backup States Comment
1. ((S) 1) initial position
2. ((NP VP) 1) rewrite S by rule 1
3. ((ART N VP) 1) rewrite NP by rules 2&3

((ART ADJ N VP) 1)
4. ((N VP) 2) match ART with the

((ART ADJ N VP) 1)
5. ((VP) 3) match N with dogs

((ART ADJ N VP) 1)
6. ((V) 3) rewrite VP by rules 4&5

((V NP) 3)
((ART ADJ N VP) 1)

7. () the parse succeeds as V
is matched to cried

20

Top-Down Depth-First Parse of
“1 The 2 old 3 man 4 cried 5”

Step Current State Backup States Comment
1. ((S) 1) initial position
2. ((NP VP) 1) S rewritten to NP VP
3. ((ART N VP) 1) NP rewritten by rules 2&3

((ART ADJ N VP) 1)
4. ((N VP) 2)

((ART ADJ N VP) 1)
5. ((VP) 3)

((ART ADJ N VP) 1)
6. ((V) 3) VP rewritten by rules 4&5

((V NP) 3)
((ART ADJ N VP) 1)

7. (() 4)
((V NP) 3)
((ART ADJ N VP) 1)

8. ((V NP) 3) the first backup is chosen
((ART ADJ N VP) 1)

21

Top-Down Depth-First Parse of
“1 The 2 old 3 man 4 cried 5” (con’t)

Step Current State Backup States Comment
9. ((NP) 4)

((ART ADJ N VP) 1)
10. ((ART N) 4) looking for ART fails

((ART ADJ N) 4)
((ART ADJ N VP) 1)

11. ((ART ADJ N) 4) fails again
((ART ADJ N VP) 1)

12. ((ART ADJ N VP) 1) exploring backup state
saved in step 3

13. ((ADJ N VP) 2)
14. ((N VP) 3)
15. ((VP) 4)
16. ((V) 4)

((V NP) 4)
17. (() 5) success!

22

A Bottom-Up Chart Parser

• The basic operation in bottom-up parsing is to take a
sequence of symbols and match it to the right-hand
side of the rules.

• A very simple bottom-up parser
� formulate the matching process as search
� the state would consist of a symbol list, starting

with the words in the sentence
� successor states could be generated by exploring

all possible ways to :
-- rewrite a word by its possible lexical categories
-- replace a sequence of symbols that matches the right-

hand side of the rule by its left-hand side symbol

23

A Bottom-Up Chart Parser (con’t)

A more efficient algorithm : Chart parser
• uses chart that allows the parser to store the partial

results of the matching it has done so far
• uses key for matching by looking for

-- rules that start with the key
-- rules that have already been started by earlier keys

and require the present key either to complete the
rule or to extend the rule

24

A Bottom-Up Chart Parser (con’t)

1. S → NP VP
2. NP → ART ADJ N
3. NP → ART N
4. NP → ADJ N
5. VP → AUX VP
6. VP → V NP

Grammar 2.

• Example: given Grammar 2 and a sentence that starts with
ART, the parser uses ART to matched with rules 2 and 3.
-- use to indicate what has been seen so far
-- thus,

°

2′. NP → ART ADJ N
3′. NP → ART N

°
°

25

A Bottom-Up Chart Parser (con’t)

• If the next input key is an ADJ, then rule 4 may be
started, and the modified rule 2′ may be extended to:

• The chart maintains the record of
-- all the constituents (such as ART, NP) derived from

the sentence so far
-- “active arcs” (rules that have matched partially

but are not complete)

2′′ . NP → ART ADJ N°

26

A Bottom-Up Chart Parser (con’t)

• The chart after see an ADJ in position 2.

NP → ART ADJ N°

NP → ART ADJ N°

NP → ART N°
NP → ADJ N°

1 2 3

ADJ1ART1

27

A Bottom-Up Chart Parser (con’t)

• The basic operation of a chart parser involves combining
an active arc with a completed constituent.

• The result is
-- a new completed constituent, or
-- a new active arc that is an extension of the original arc
-- new completed constituents are maintained on a list

called agenda until they are added into the chart
• The process of extension of the arc is shown in the

next figure.

28

The Arc Extension Algorithm

To add a constituent C from position p1 to p2:
1. Insert C into the chart from position p1 to p2.
2. For any active arc of the form

X → X1 … C … Xn
from position p0 to p1, add a new active arc

X → X1 … C … Xn
from position p0 to p2.

3. For any active arc of the form
X → X1 … Xn C

from position p0 to p1, add a new constituent of
type X from p0 to p2 to the agenda.

°

°

°

29

A Bottom-Up Chart Parsing Algorithm

Do until there is no input left:
1. If the agenda is empty, look up the interpretations

for the next word in the input and add them to the
agenda.

2. Select a constituent C from the agenda.
(Let C is from position p1 to p2.)

3. For each rule in the grammar of form
X → C X1 … Xn

add an active arc of the form
X → C X1 … Xn

from position p1 to p2.
4. Add C to the chart using the arc extension algoritm.

°

30

An Example of Chart Parsing Algorithm

• Consider using the algorithm on the sentence

using the following Grammar 2 and following lexicon:

the: ART
large: ADJ
can: N, AUX, V
hold: N, V
water: N, V

“The large can can hold the water”

31

An Example of Chart Parsing Algorithm
(After parsing the large can)

NP → ART ADJ N°

NP → ART ADJ N°

NP → ART N°
NP → ADJ N°

V1

AUX1

N1ADJ1ART1

NP1 (rule 2)

NP2 (rule 4)

1 the 2 large 3 can 4

S → NP VP°
S → NP VP°

VP → AUX VP°
VP → V NP°

32

An Example of Chart Parsing Algorithm
(After adding hold)

1 the 2 large 3 can 4 can 5 hold 6

N3AUX2AUX1ADJ1ART1

V3V2V1

N2N1

NP1 (rule 2)

NP2 (rule 4)

S → NP VP°
S → NP VP°
VP → AUX VP°

VP → V NP°
VP → AUX VP°

VP → V NP°
VP → V NP°

* omitting arcs generated
for the first NP

33

An Example of Chart Parsing Algorithm
(After all the NPs are found)

N4ART2N3AUX2AUX1ADJ1ART1

V4V3V2V1

NP3 (rule 3)N2N1

NP1 (rule 2)

NP2 (rule 4)

1 the 2 large 3 can 4 can 5 hold 6 the 7 water 8

S → NP VP°
S → NP VP°
VP → AUX VP°

VP → AUX VP°

* omitting all but the crucial active arcs

34

An Example of Chart Parsing Algorithm
(The final chart)

N4ART2N3AUX2AUX1ADJ1ART1

V4V3V2V1

NP3 (rule 3)N2N1

VP1 (rule 6)NP1 (rule 2)

VP2 (rule 5)NP2 (rule 4)

VP3 (rule 5 with AUX1 and VP2)

S2 (rule 1 with NP2 and VP2)

S1 (rule 1 with NP1 and VP2)

1 the 2 large 3 can 4 can 5 hold 6 the 7 water 8

35

Transition Network Grammar

• Transition network grammar is another useful formalism.
• It consists of nodes and labeled arcs :
-- initial or start state is the first node of the network
-- start at the initial state, and traverse an arc if the

current word in the sentence is in the category on arc
-- if the arc is followed, the current word is updated to

the next word
-- a phrase is a legal one if there is path from the initial

state to a pop arc

36

Transition Network Grammar (con’t)

NP NP1 NP2

adj

art noun pop

NP:

NP → ART NP1
NP1 → ADJ NP1
NP1 → N

transition network 1.

• The transition network 1 can be used to parse the NP
“a purple cow”.

37

Recursive Transition Network (RTN)

• A recursive transition network (RTN) is a transition
network that allows arc labels to refer to other
networks as well as word categories.

• RTN is more powerful than a simple transition network
• In a RTN,
-- uppercase labels refer to networks
-- lowercase labels refer to word categories.

• Transition network 2 shows an example of RTN that
can be used to parse a sentence

“The purple cow ate the grass”.

38

An Example of RTN

NP NP1 NP2

adj

art noun pop

NP:

transition network 2 (RTN)

S S1 S2

NP verb NP

S: S3

pop

39

Top-Down Parsing with RTN

• The algorithm for parsing with RTNs represents a
parse state as follows:
-- current node : the node at which you are located in

the network
-- current position : a pointer to the next word to be

parse
-- return points : a stack of nodes in other networks

where you will continue if you pop
from the current network

40

Top-Down Parsing with RTN

• At each node, you can leave the current node and
traverse an arc in the following cases:
Case 1: IF arc is word category and next word in the

sentence is in that category,
THEN (1) update current position to start at the

next word
(2) update current node to the destination

of the arc.
Case 2: IF arc is a push arc to a network N,

THEN (1) add the destination of the arc onto
return points;

(2) update current node to the starting node
in the network N.

Case 3: IF arc is a pop arc and return points list is not empty,
THEN (1) remove first return point and make it

current node
Case 4: IF arc is a pop arc, return points list is empty and

there are no words left
THEN (1) parse completes successfully

41

Another Example of RTN

transition network 3 (RTN)

NP NP1 NP2

adj

art noun pop

NP:

number

1

2
pronoun

3
1

2 1

S S1 S2

NP verb pop

S:

NP

1 1 1

2

42

A Trace Using Transition Network 3
of Parsing “1 The 2 old 3 man 4 cried 5”

Current Current Return Arc to be
Step Node Position Points Followed Comments

1. (S, 1, NIL) S/1 initial position
2. (NP, 1, (S1)) NP/1 followed push arc to

NP network, to return
to S1

3. (NP1, 2, (S1)) NP1/1 followed arc NP/1(the)
4. (NP1, 3, (S1)) NP1/2 followed arc NP1/1(old)
5. (NP2, 4, (S1)) NP2/1 followed arc NP1/2(man)

since NP1/1 is not
applicable

6. (S1, 4, NIL) S1/1 the pop arc gets us back
to S1

7. (S2, 5, NIL) S2/1 followed arc S2/1(cried)
8. Parse succeeds on pop

arc from S2

43

A Top-Down RTN Parse with Backtracking for
“1 One 2 saw 3 the 4 man 5”

Step Current State Arc to be followed Backup States
1. (S,1,NIL) S/1 NIL
2. (NP,1,(S1)) NP/2(&NP/3 for backup) NIL
3. (NP1,2,(S1)) NP1/2 (NP2,2,(S1))
4. (NP2,3,(S1)) NP2/1 (NP2,2,(S1))
5. (S1,3,NIL) no arc can be followed (NP2,2,(S1))
6. (NP2,2,(S1)) NP2/1 NIL
7. (S1,2,NIL) S1/1 NIL
8. (S2,3,NIL) S2/2 NIL
9. (NP,3,(S2)) NP/1 NIL

10. (NP1,4,(S2)) NP1/2 NIL
11. (NP2,5,(S2)) NP2/1 NIL
12. (S2,5,NIL) S2/1 NIL
13. Parse succeeds

