
Asymptotic Notation 
 
Running time of an algorithm, order of growth 
Worst case  
Running time of an algorith increases with the size of the input in the limit as the size 
of the input increases without bound. 
 
Big-theta notation 
 

 
 

 
 

 
 
g(n) is an asymptotically  tight bound of f(n) 
 

 
 
 
Example 
 

 
 



 
 
n >= 1,  c2 >= 1/2 
n >= 7, c1 <= 1/14 
 
choose  c1 = 1/14, c2 = ½, n0 = 7. 
 
O-notation 
Asymptotic upper bound 
 

 
 

 
 

 
 
f(n) = O(g(n))   some constant multiple of g(n) is an asymptotic upper bound of f(n), 
no claim about how tight an upper bound is. 
 

 
 
Example 
The running time is O(n2) means there is a function f(n) that is   O(n2)  such that for 
any value of n, no matter what particular input of size n is chosen, the running time of 
that input is bounded from above by the value f(n). 
 



Big-Omega notation 
 
Asymptotic lowerbound 
 

 
 

 
 
Theorem 
 

 
 
 
When we say that the running time (no modifier) of an algorithm is Ω(g(n)), we 
mean that no matter what particular input of size n is chosen for each value of n, 
the running time on that input is at least a constant times g(n), for sufficiently 
large n 
 
Interpretation 
 

 
 

 
 
not specifying all lower-terms exactly 

 
 

 
 



 
 

 
 
“No matter how the anonymous functions are chosen on the left of the equal sign, 
there is a way to choose the anonymous functions on the right of the equal sign to 
make the equation valid.” 
 
for any function f (n) ∈ Θ(n), there is some function g(n) ∈Θ (n2)  
such that 2n2 + f (n) = g(n) for all n. 
 
In other words, the right-hand side of an equation provides a coarser level of detail 
than the left-hand side. 
 

 
 
o-notation 
 

 
 

 
 
w-notation 
 

 
 

 
 

 



 
Properties 
 

 
 
analogy to comparison of two real numbers, a, b. 
 

 
 



 
Standard notation 
 
Floor and ceiling,  
 
for any real x 
 

 
for any integer n 
 

 
 

 
 
Modular arithmetic 
 

 
 
if (a mod n) = (b mod n), we write   
 

 
 
a is equivalent to b, modulo n.  in other words, a and b have the same remainder when 
divided by n. Or n is a divisor of b – a. 
 
Polynomials 
 

 
 

 
 
Exponentials 
 
For all real constants a and b such that a > 1 



 
 
we can conclude that 

 
 
Thus, any exponential function with a base strictly greater than 1 grows faster than 
any polynomial function. 
 

 
 

 
 
when 

 
 
we have the approximation 

 
 

 
 

 
 
Logarithms 
 

 
 
for all real a > 0, b > 0, c > 0 and n 
 



 
 

 
 
where logarithm bases are not 1. 
 
Changing the base of a logarithm from one constant to another only changes the value 
of the logarithm by a constant factor, and so we shall often use the notation “lg n” 
when we don’t care about constant factors. 
 

 
 
polylogarithmic bound 
 

 
 

 
for any constant a > 0. Thus, any positive polynomial function grows faster than 
any polylogarithmic function. 



 
Factorials 
 
n >= 0 

 
 
A weak upper bound on the factorial function is n! ≤ nn, since each of the n 
terms in the factorial product is at most n. Stirling’s approximation, 
 

 
 
gives a tighter upper and lower bounds. 
 

 
 
Function iteration 
 

 
 
Iterated logarithm function 
 

 
 
reads  “log star of n” 
 
The iterated logarithm is a very slowly growing function: 
 



 
 
Be sure to distinguish lg(i) n (the logarithm function applied I times in succession, 
starting with argument n) from lgi n (the logarithm of n raised to the ith power). 
 
Fibonacci numbers 
 

 
 

 



 
Homework 
 
Rank the following functions by order of growth 
 

 
 
 
 
 
 
 
 
 
 


