Introduction to Algorithms 6.046J/18.401J

Lecture 3
Divide and conquer

- Binary search
- Powering a number
- Fibonacci numbers
- Matrix multiplication
- Strassen's algorithm
- VLSI tree layout

Prof. Charles E. Leiserson

The divide-and-conquer design paradigm

1. Divide the problem (instance) into subproblems.
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions.

Merge sort

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

Merge sort

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

© 2001-4 by Charles E. Leiserson

Master theorem (reprise)

$$
T(n)=a T(n / b)+f(n)
$$

CASE 1: $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$, constant $\varepsilon>0$

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

CASE 2: $f(n)=\Theta\left(n^{\log _{b} a} \lg ^{k} n\right)$, constant $k \geq 0$

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \lg ^{k+1} n\right)
$$

CASE 3: $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, constant $\varepsilon>0$, and regularity condition

$$
\Rightarrow T(n)=\Theta(f(n))
$$

Master theorem (reprise)

$$
T(n)=a T(n / b)+f(n)
$$

CASE 1: $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$, constant $\varepsilon>0$

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

CASE 2: $f(n)=\Theta\left(n^{\log _{b} a} \lg ^{k} n\right)$, constant $k \geq 0$

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \lg ^{k+1} n\right)
$$

CASE 3: $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, constant $\varepsilon>0$, and regularity condition

$$
\Rightarrow T(n)=\Theta(f(n))
$$

Merge sort: $a=2, b=2 \Rightarrow n^{\log _{b} a}=n^{\log _{2} 2}=n$

$$
\Rightarrow \text { CASE } 2(k=0) \Rightarrow T(n)=\Theta \underset{\odot}{2})(\underline{2001+4 b y})
$$

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
357
8
9
12
15
© 2001-4 by Charles E. Leiserson

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
$\begin{array}{lllllll}3 & 5 & 7 & 8 & 9 & 12 & 15\end{array}$

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
$\begin{array}{ll}3 & 5\end{array}$
8
$9 \quad 12 \quad 15$
© 2001-4 by Charles E. Leiserson

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
$\begin{array}{lll}3 & 5 & 7\end{array}$
8
$9 \quad 12 \quad 15$
© 2001-4 by Charles E. Leiserson

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9

$$
\begin{array}{lllllll}
3 & 5 & 7 & 8 & 9 & 12 & 15
\end{array}
$$

Binary search

Find an element in a sorted array:

1. Divide: Check middle element.
2. Conquer: Recursively search 1 subarray.
3. Combine: Trivial.

Example: Find 9
$\begin{array}{lllllll}3 & 5 & 7 & 8 & 9 & 12 & 15\end{array}$

Recurrence for binary search

Recurrence for binary search

$$
\begin{aligned}
& n^{\log _{b} a}=n^{\log _{2} 1}=n^{0}=1 \Rightarrow \text { CASE } 2(k=0) \\
& \Rightarrow T(n)=\Theta(\lg n) .
\end{aligned}
$$

Powering a number

Problem: Compute a^{n}, where $n \in \mathbb{N}$.

Naive algorithm: $\Theta(n)$.

Powering a number

Problem: Compute a^{n}, where $n \in \mathbb{N}$.
Naive algorithm: $\Theta(n)$.
Divide-and-conquer algorithm:

$$
a^{n}= \begin{cases}a^{n / 2} \cdot a^{n / 2} & \text { if } n \text { is even } \\ a^{(n-1) / 2} \cdot a^{(n-1) / 2} \cdot a & \text { if } n \text { is odd }\end{cases}
$$

Powering a number

Problem: Compute a^{n}, where $n \in \mathbb{N}$.
Naive algorithm: $\Theta(n)$.
Divide-and-conquer algorithm:

$$
\begin{gathered}
a^{n}= \begin{cases}a^{n / 2} \cdot a^{n / 2} & \text { if } n \text { is even; } \\
a^{(n-1) / 2} \cdot a^{(n-1) / 2} \cdot a & \text { if } n \text { is odd }\end{cases} \\
T(n)=T(n / 2)+\Theta(1) \Rightarrow T(n)=\Theta(\lg n)
\end{gathered}
$$

Fibonacci numbers

Recursive definition:

$$
F_{n}= \begin{cases}0 & \text { if } n=0 ; \\ 1 & \text { if } n=1 ; \\ F_{n-1}+F_{n-2} & \text { if } n \geq 2\end{cases}
$$

$$
\begin{array}{lllllllllll}
0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & \cdots
\end{array}
$$

Fibonacci numbers

Recursive definition:

$$
F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n \geq 2\end{cases}
$$

$\begin{array}{lllllllllll}0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & \cdots\end{array}$
Naive recursive algorithm: $\Omega\left(\phi^{n}\right)$ (exponential time), where $\phi=(1+\sqrt{5}) / 2$ is the golden ratio.
© 2001-4 by Charles E. Leiserson

Computing Fibonacci numbers

Bottom-up:

- Compute $F_{0}, F_{1}, F_{2}, \ldots, F_{n}$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

Computing Fibonacci numbers

Bottom-up:

- Compute $F_{0}, F_{1}, F_{2}, \ldots, F_{n}$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

Naive recursive squaring:
$F_{n}=\phi^{n} / \sqrt{5}$ rounded to the nearest integer.

- Recursive squaring: $\Theta(\lg n)$ time.
- This method is unreliable, since floating-point arithmetic is prone to round-off errors.

Recursive squaring

Recursive squaring

Theorem: $\left[\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{n}$.
Algorithm: Recursive squaring. Time $=\Theta(\lg n)$.

Recursive squaring

Theorem: $\left[\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{n}$.
Algorithm: Recursive squaring.
Time $=\Theta(\lg n)$.
Proof of theorem. (Induction on n.)
Base $(n=1):\left[\begin{array}{ll}F_{2} & F_{1} \\ F_{1} & F_{0}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{1}$.

Recursive squaring

Inductive step $(n \geq 2)$:

$$
\begin{aligned}
{\left[\begin{array}{cc}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right] } & =\left[\begin{array}{cc}
F_{n} & F_{n-1} \\
F_{n-1} & F_{n-2}
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n-1} \cdot\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n}
\end{aligned}
$$

Matrix multiplication

$\left.\begin{array}{l}\text { Input: } \quad A=\left[a_{i j}\right], B=\left[b_{i j}\right] . \\ \text { Output: } C=\left[c_{i j}\right]=A \cdot B .\end{array}\right\} \quad i, j=1,2, \ldots, n$.

$$
\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \cdot\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]
$$

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}
$$

Standard algorithm

for $i \leftarrow 1$ to n
do for $j \leftarrow 1$ to n
do $c_{i j} \leftarrow 0$
for $k \leftarrow 1$ to n
$\mathbf{d o} c_{i j} \leftarrow c_{i j}+a_{i k} \cdot b_{k j}$
© 2001-4 by Charles E. Leiserson

Standard algorithm

for $i \leftarrow 1$ to n
do for $j \leftarrow 1$ to n
do $c_{i j} \leftarrow 0$
for $k \leftarrow 1$ to n
$\mathbf{d o} c_{i j} \leftarrow c_{i j}+a_{i k} \cdot b_{k j}$

Running time $=\Theta\left(n^{3}\right)$

Divide-and-conquer algorithm

IDEA:

$n \times n$ matrix $=2 \times 2$ matrix of $(n / 2) \times(n / 2)$ submatrices:

$$
\begin{aligned}
{\left[\begin{array}{l:l}
r & s \\
\hdashline t & u
\end{array}\right] } & =\left[\begin{array}{l:l}
a & b \\
\hdashline c & d
\end{array}\right] \cdot\left[\begin{array}{c:c}
e & f \\
\hdashline g & h
\end{array}\right] \\
C & =A \cdot B
\end{aligned}
$$

$\left.\begin{array}{l}r=a e+b g \\ s=a f+b h\end{array}\right\} \quad 8$ mults of $(n / 2) \times(n / 2)$ submatrices
$t=c e+d g\} 4$ adds of $(n / 2) \times(n / 2)$ submatrices
$u=c f+d h$

Divide-and-conquer algorithm

IDEA:

$n \times n$ matrix $=2 \times 2$ matrix of $(n / 2) \times(n / 2)$ submatrices:

$$
\begin{aligned}
{\left[\begin{array}{l:l}
r & s \\
\hdashline t & u
\end{array}\right] } & =\left[\begin{array}{l:l}
a & b \\
\hdashline c & d
\end{array}\right] \cdot\left[\begin{array}{c:c}
e & f \\
\hdashline g & h
\end{array}\right] \\
C & =A \cdot B
\end{aligned}
$$

$\left.\begin{array}{l}r=a e+b g \\ s=a f+b h\end{array}\right\} \frac{\text { recursive }}{8 \text { mults of }(n / 2) \times(n / 2) \text { submatrices }}$
$t=c e+d h\} 4$ adds of $(n / 2) \times(n / 2)$ submatrices
$u=c f+d g]$

Analysis of D\&C algorithm

Analysis of D\&C algorithm

$n^{\log _{b} a}=n^{\log _{2} 8}=n^{3} \Rightarrow$ CASE $1 \Rightarrow T(n)=\Theta\left(n^{3}\right)$.

Analysis of D\&C algorithm

$$
n^{\log _{b} a}=n^{\log _{2} 8}=n^{3} \Rightarrow \text { CASE } 1 \Rightarrow T(n)=\Theta\left(n^{3}\right) .
$$

No better than the ordinary algorithm.

© 2001-4 by Charles E. Leiserson

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{aligned}
& P_{1}=a \cdot(f-h) \\
& P_{2}=(a+b) \cdot h \\
& P_{3}=(c+d) \cdot e \\
& P_{4}=d \cdot(g-e) \\
& P_{5}=(a+d) \cdot(e+h) \\
& P_{6}=(b-d) \cdot(g+h) \\
& P_{7}=(a-c) \cdot(e+f)
\end{aligned}
$$

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{aligned}
& P_{1}=a \cdot(f-h) \\
& P_{2}=(a+b) \cdot h \\
& P_{3}=(c+d) \cdot e \\
& P_{4}=d \cdot(g-e) \\
& P_{5}=(a+d) \cdot(e+h) \\
& P_{6}=(b-d) \cdot(g+h) \\
& P_{7}=(a-c) \cdot(e+f)
\end{aligned}
$$

$$
\begin{aligned}
& r=P_{5}+P_{4}-P_{2}+P_{6} \\
& s=P_{1}+P_{2} \\
& t=P_{3}+P_{4} \\
& u=P_{5}+P_{1}-P_{3}-P_{7}
\end{aligned}
$$

© 2001-4 by Charles E. Leiserson

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{aligned}
& P_{1}=a \cdot(f-h) \\
& P_{2}=(a+b) \cdot h \\
& P_{3}=(c+d) \cdot e \\
& P_{4}=d \cdot(g-e) \\
& P_{5}=(a+d) \cdot(e+h) \\
& P_{6}=(b-d) \cdot(g+h) \\
& P_{7}=(a-c) \cdot(e+f)
\end{aligned}
$$

$$
\begin{aligned}
& r=P_{5}+P_{4}-P_{2}+P_{6} \\
& s=P_{1}+P_{2} \\
& t=P_{3}+P_{4} \\
& u=P_{5}+P_{1}-P_{3}-P_{7} \\
& 7 \text { mults, } 18 \text { adds/subs. } \\
& \text { Note: No reliance on } \\
& \text { commutativity of mult! }
\end{aligned}
$$

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{aligned}
& P_{1}=a \cdot(f-h) \\
& P_{2}=(a+b) \cdot h \\
& P_{3}=(c+d) \cdot e \\
& P_{4}=d \cdot(g-e) \\
& P_{5}=(a+d) \cdot(e+h) \\
& P_{6}=(b-d) \cdot(g+h) \\
& P_{7}=(a-c) \cdot(e+f)
\end{aligned}
$$

$$
\begin{aligned}
& r= P_{5}+P_{4}-P_{2}+P_{6} \\
&=(a+d)(e+h) \\
&+d(g-e)-(a+b) h \\
&+(b-d)(g+h) \\
&= a e+a h+d e+d h \\
&+d g-d e-a h-b h \\
&+b g+b h-d g-d h \\
&= a e+b g \\
& \text { evol-4by Cranese E. Le.eseson } \\
& \text { L3.39 }
\end{aligned}
$$

Strassen's algorithm

1. Divide: Partition A and B into $(n / 2) \times(n / 2)$ submatrices. Form terms to be multiplied using + and - .
2. Conquer: Perform 7 multiplications of $(n / 2) \times(n / 2)$ submatrices recursively.
3. Combine: Form C using + and - on $(n / 2) \times(n / 2)$ submatrices.

Strassen's algorithm

1. Divide: Partition A and B into $(n / 2) \times(n / 2)$ submatrices. Form terms to be multiplied using + and - .
2. Conquer: Perform 7 multiplications of $(n / 2) \times(n / 2)$ submatrices recursively.
3. Combine: Form C using + and - on $(n / 2) \times(n / 2)$ submatrices.

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

Analysis of Strassen

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

Analysis of Strassen

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

$$
n^{\log _{b} a}=n^{\log _{2} 7} \approx n^{2.81} \Rightarrow \text { CASE } 1 \Rightarrow T(n)=\Theta\left(n^{\lg 7}\right)
$$

Analysis of Strassen

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

$$
n^{\log _{b} a}=n^{\log _{2} 7} \approx n^{2.81} \Rightarrow \text { CASE } 1 \Rightarrow T(n)=\Theta\left(n^{\lg 7}\right)
$$

The number 2.81 may not seem much smaller than 3 , but because the difference is in the exponent, the impact on running time is significant. In fact, Strassen's algorithm beats the ordinary algorithm on today's machines for $n \geq 32$ or so.

Analysis of Strassen

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

$$
n^{\log _{b} a}=n^{\log _{2} 7} \approx n^{2.81} \Rightarrow \text { CASE } 1 \Rightarrow T(n)=\Theta\left(n^{\lg 7}\right)
$$

The number 2.81 may not seem much smaller than 3 , but because the difference is in the exponent, the impact on running time is significant. In fact, Strassen's algorithm beats the ordinary algorithm on today's machines for $n \geq 32$ or so.

Best to date (of theoretical interest only): $\Theta\left(n^{2.376 \cdots}\right)$.

Problem: Embed a complete binary tree with n leaves in a grid using minimal area.

VLSI layout

Problem: Embed a complete binary tree with n leaves in a grid using minimal area.

© 2001-4 by Charles E. Leiserson

VLSI layout

Problem: Embed a complete binary tree with n leaves in a grid using minimal area.

© 2001-4 by Charles E. Leiserson

VLSI layout

Problem: Embed a complete binary tree

 with n leaves in a grid using minimal area.
© 2001-4 by Charles E. Leiserson

VLSI layout

Problem: Embed a complete binary tree

 with n leaves in a grid using minimal area.

H-tree embedding

H-tree embedding

H-tree embedding

$$
\begin{aligned}
L(n) & =2 L(n / 4)+\Theta(1) \\
& =\Theta(\sqrt{n})
\end{aligned}
$$

$$
\text { Area }=\Theta(n)
$$

Conclusion

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method (so practice this math).
- The divide-and-conquer strategy often leads to efficient algorithms.

