
Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 15
Prof. Charles E. Leiserson

Introduction to Algorithms Day 26 L15.2© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA =
LCS(x, y)

functional notation,
but not a function

Introduction to Algorithms Day 26 L15.3© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis
• Checking = O(n) time per subsequence.
• 2m subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

Worst-case running time = O(n2m)
= exponential time.

Introduction to Algorithms Day 26 L15.4© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Towards a better algorithm
Simplification:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

Notation: Denote the length of a sequence s
by | s |.

Introduction to Algorithms Day 26 L15.5© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

Proof. Case x[i] = y[j]:

L
1 2 i m

L
1 2 j n

x:

y:
=

Introduction to Algorithms Day 26 L15.6© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j]
= c[i–1, j–1] + 1.
Other cases are similar.

Introduction to Algorithms Day 26 L15.7© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

Introduction to Algorithms Day 26 L15.8© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

Introduction to Algorithms Day 26 L15.9© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

same
subproblem

,
but we’re solving subproblems already solved!

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

2,32,3

1,31,3 2,22,2

m+n

Introduction to Algorithms Day 26 L15.10© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

Introduction to Algorithms Day 26 L15.11© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Memoization algorithm
Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.

Time = Θ(mn) = constant work per table entry.
Space = Θ(mn).

LCS(x, y, i, j)
if c[i, j] = NIL

then if x[i] = y[j]
then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}

same
as
before

Introduction to Algorithms Day 26 L15.12© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

00 00 00 00 00

00 00 11 11 11
00 00 00

11 11 11

00 00 11 11 11 22 22D 22

00 00 11 22 22 22 22C 22

00 11 11 22 22 22 33A 33

00 11 22 22 33 33 33B 44

00 11 22 22 33 33

A

Dynamic-programming
algorithm

IDEA:
Compute the
table bottom-up.

A B C B D B

B

A 44 44

Time = Θ(mn).

Introduction to Algorithms Day 26 L15.13© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

00 00 00 00 00 00 00 00

00 00 11 11 11 11 11 11

00 00 11 11 11 22 22D 22

00 00 11 22 22 22 22C 22

00 11 11 22 22 22 33A 33

00 11 22 22 33 33 33B 44

00 11 22 22 33 33

A

Dynamic-programming
algorithm

IDEA:
Compute the
table bottom-up.

A B C B D B

B

A 44 44

Time = Θ(mn).
Reconstruct
LCS by tracing
backwards.

0
A

4

0
B

B
1

C

C

2
B

B

3

A

A

D
1

A
2

D

3

B

4
Space = Θ(mn).
Exercise:
O(min{m, n}).

