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Dynamic programming
Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find 

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA = 
LCS(x, y)

functional notation, 
but not a function



Introduction to Algorithms Day 26      L15.3© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see 
if it is also a subsequence of y[1 . . n].

Analysis
• Checking = O(n) time per subsequence.
• 2m subsequences of x (each bit-vector of 

length m determines a distinct subsequence 
of x).

Worst-case running time = O(n2m)
= exponential time.
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Towards a better algorithm
Simplification:
1. Look at the length of a longest-common 

subsequence.  
2. Extend the algorithm to find the LCS itself.

Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

Notation: Denote the length of a sequence s
by | s |.
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Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j] 
= k.  Then, z[k] = x[i], or else z could be extended.  
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

Proof.  Case x[i] = y[ j]:

L
1 2 i m

L
1 2 j n

x:

y:
=
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Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).  

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1.  Then, cut and 
paste: w || z[k] (w concatenated with z[k]) is a 
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the 
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j] 
= c[i–1, j–1] + 1.
Other cases are similar.
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Dynamic-programming 
hallmark #1

Optimal substructure
An optimal solution to a problem 

(instance) contains optimal 
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is 
an LCS of a prefix of x and a prefix of y.
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Recursive algorithm for LCS

LCS(x, y, i, j)
if x[i] = y[ j]

then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j), 

LCS(x, y, i, j–1)}
Worst-case: x[i] ≠ y[ j], in which case the 
algorithm evaluates two subproblems, each 
with only one parameter decremented.
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same 
subproblem

,
but we’re solving subproblems already solved!

Recursion tree
m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m + n ⇒ work potentially exponential.

2,32,3

1,31,3 2,22,2

m+n
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Dynamic-programming 
hallmark #2

Overlapping subproblems
A recursive solution contains a 

“small” number of distinct 
subproblems repeated many times.

The number of distinct LCS subproblems for 
two strings of lengths m and n is only mn.
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Memoization algorithm
Memoization:  After computing a solution to a 
subproblem, store it in a table.  Subsequent calls 
check the table to avoid redoing work.

Time = Θ(mn) = constant work per table entry.
Space = Θ(mn). 

LCS(x, y, i, j)
if c[i, j] = NIL

then if x[i] = y[j]
then c[i, j] ← LCS(x, y, i–1, j–1) + 1
else c[i, j] ← max{LCS(x, y, i–1, j), 

LCS(x, y, i, j–1)}

same 
as 
before
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00 00 00 00 00

00 00 11 11 11
00 00 00

11 11 11

00 00 11 11 11 22 22D 22

00 00 11 22 22 22 22C 22

00 11 11 22 22 22 33A 33

00 11 22 22 33 33 33B 44

00 11 22 22 33 33

A

Dynamic-programming 
algorithm

IDEA:
Compute the 
table bottom-up.

A B C B D B

B

A 44 44

Time = Θ(mn).
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00 00 00 00 00 00 00 00

00 00 11 11 11 11 11 11

00 00 11 11 11 22 22D 22

00 00 11 22 22 22 22C 22

00 11 11 22 22 22 33A 33

00 11 22 22 33 33 33B 44

00 11 22 22 33 33

A

Dynamic-programming 
algorithm

IDEA:
Compute the 
table bottom-up.

A B C B D B

B

A 44 44

Time = Θ(mn).
Reconstruct 
LCS by tracing 
backwards.

0
A

4

0
B

B
1

C

C

2
B

B

3

A

A

D
1

A
2

D

3

B

4
Space = Θ(mn).
Exercise: 
O(min{m, n}).


