Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 15

Prof. Charles E. Leiserson

Dynamic programming

Design technique, like divide-and-conquer.

Example: Longest Common Subsequence (LCS)
* Given two sequences x| 1 .. m] and y[1 .. n], find

a longest subsequence common to them both.
\ 66a99 nOt “the,,

X: A/B (II B\D 1A‘x B >BCBA=

» B D C A B A /L/CS(X’y)
functional notation,
but not a function

© 2001 by Charles E. Leiserson Introduction to Algorithms Day26 L15.2

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if 1t 1s also a subsequence of y[1 . . n].

Analysis
* Checking = O(n) time per subsequence.

* 2" subsequences of x (each bit-vector of
length m determines a distinct subsequence

of x).
Worst-case running time = O(n2")
= exponential time.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day26 L15.3

Towards a better algorithm

Simplification:

1. Look at the length of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by |s].

Strategy: Consider prefixes of x and y.
* Define [z, j| = |LCS(x[1 ..], v[1 ../])|.
* Then, c¢[m, n] = |LCS(x, y)].

© 2001 by Charles E. Leiserson Introduction to Algorithms Day26 L154

Recursive formulation

Theorem.

(i1 if x[i] = y{/],
C[laj] - maX{C[i_j-aj]a 6[19]_1]} otherwise.

Proof. Case x[i]| = y[/]:

1 2] m

) NT T

Letz[1..kl=LCS(x[1..1],y|]1../]),where c[i, j]
= k. Then, [k] x[i], or else z could be extended.
Thus, z[1 .. A~1]1sCSof x[1 ../i—1]and y[1 .. j-1].

© 2001 by Charles E. Leiserson Introduction to Algorithms Day26 L15.5

Proof (continued)

Claim: z[1 . . /1] =LCS(x[1 .. 1], y[1../-1]).
Suppose wis alonger CSof x[1 ..i—1] and
y[1..j—1], that1s, |w|> k1. Then cut and
paste w | z[k] (W concatenated with z[k]) 1s a
common subsequence of x[1 . .| and y[I .. /]

with |w || z[k]| > k. Contradiction, proving the
claim.
Thus, c[i—1, j—1]| = k—1, which implies that ¢[i, /]
=cli—1, j-1] + 1.

Other cases are similar.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 26 LI15.6

Dynamic-programming
hallmark #1

o0

(D Optimal substructure

An optimal solution to a problem
(instance) contains optimal
solutions to subproblems.

—/

If z=LCS(x, y), then any prefix of z 1s
an LCS of a prefix of x and a prefix of y.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 26 L15.7

Recursive algorithm for LCS

LCS(x, v, 1, /)
it x[i] = y[J]
then ¢[i, j| < LCS(x, y, i—1, /1) + 1
else c[i, j| < max{LCS(x, y, i1,)),
LCS(x, v, i,j—l)}

Worst-case: x[i] # y| /], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day26 L15.8

Recursion tree
m=3,n=4: @
24 same (33
subproblem

19 Ly 23) . () min
1) (22 1) (22

Height = m + n = work potentially exponential,
but we’re solving subproblems already solved!

© 2001 by Charles E. Leiserson Introduction to Algorithms Day26 L15.9

Dynamic-programming
hallmark #2

L)

(D Overlapping subproblems
A recursive solution contains a
“small” number of distinct
subproblems repeated many times.

)

—/

The number of distinct LCS subproblems for
two strings of lengths m and 7 1s only mn.

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 26 L15.10

Memoization algorithm

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls
check the table to avoid redoing work.

LCS(x, v, 1,)
if c[i, /] = NIL
then if x[i/] = y[/]
then c[i, j] < LCS(x, y, i~1,j-1)+ 1 | s4mne
else c[i, /] < max{LCS(x,v,i1,/), [.
LCS(x, y, i,j—l)}/ gfore

Time = ©(mn) = constant work per table entry.
Space = O(mn).

'\

© 2001 by Charles E. Leiserson Introduction to Algorithms Day 26 L15.11

Dynamic-programming

algorithm

IDEA: A B CB D A B
Compute the 0/,0/0/040(0(0J0
table bottom-up. Blolo 1\1 i 1\1
Time=0(mn). o lol1 11115 5]
C 040 212120122
AlO0O|141]2]2 2\3 3

\ \

B|O 212133134

A0 21213 3\4 4

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 26 L15.12

Dynamic-programming

algorithm

IDEA: B C B A
Compute the 0/,0/,0/040(0]0J0
table bottom-up. BlololH 1\1 1 1\1
Time = ©(mn). N R
Reconstruct —N

LCS by tracing Clogotp2)2 2\2 2
backwards. 0 11 2\2 2 3\3
Space = ®O(mn). B |0 21213 3\3 4
Exercise: AlO 271213131414

O(min{m, n}).

© 2001 by Charles E. Leiserson

Introduction to Algorithms

Day 26 L15.13

