Recurrence

Three methods to solve recurrences:
e Substitution
e Recurrence-tree
e Master method

Assumptions
n is an integer

running time of Merger sort is really:

rom - 1O ifn—=1.
) =T (tn/2) + T(1n/2]) + O(n) ifn> 1.

omit statements of boundary conditions
assume that T(n) is a constant for sufficiently small n.

The substitution method for solving recurrences entails two steps:

1. Guess the form of the solution.

2. Use mathematical induction to find the constants and show that the solution
works.

Example

Determine an upper bound of the recurrence:

T(n)=2T(|n/2])+n,

1 We guess that T(n) = O(n Ig n).
2 Prove that T(n) <=cnlgn forc>0.

Assume
I'(ln/2]) = c|n/2]lg(ln/2])
Then
T(n) < 2(cln/2g(ln/2]) +n
< cnlg(n/2)+n
cnlgn —cnlg2 +n
cnlgn —cn+n
= cnlgn,

holds when ¢ > 1



3 Show that our solution holds for the boundary conditions.

We cannot do T(1) = 1. However, we are required only to prove
T(n) < cnlgn forn> n0. Choose n0>2, then T(2)< c21g2, T3)< ¢c31g3.
Any choice of ¢ > 2 suffices for the base cases of n =2 and n = 3 to hold.

Changing variables

T(n)=2T ([v/n]) +1gn .

letm=Ign

T(2") =2T(2"%) +m .

let S(m)=T2 ™)

Stm)=25m/2)+m

S(m)=0 (mlgm)

T(n)=T2")=Sm)=0(mlgm) =0(lgnlglgn).

Homework
1
T(n)y=T([n/2])+ lis O(lgn).

2
T(n)=2T(|n/2]+17)+nis O(nlgn).

3 Using change of variables to solve

T(n) =2T(/n) +1



Recursion-tree
We will use recursion tree to generate a good guess.

Example
T(n) = 3T (ln/4])) + ©(n*).
We simplify it to

T'n) = 3T (n/4) + cn?,

for ¢ > 0.

we assume that n is an exact power of 4
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@ Total: O(n?)

What is the height of the tree?



The subproblem size for a node at depth i is n/4'. Thus, the subproblem size hits n = 1

when n/4' = 1 or, equivalently, when i = log4 n. Thus, the tree has log4 n + 1
levels (0, 1,2, ..., log4 n).

The number of nodes at depth i is 3i . '
Each node at depth i, fori=0, 1, 2, ..., log4 n— 1, has a cost of c(n/41 )2.

The total cost over all nodes at depth i, fori=0, 1,2,...,logdn—1,is 3 c(n/4i )2 _
(3/16)'cn’. The last level, at depth log4 n, has 3'°%*" = n'°**® nodes, each contributing
cost T (1), for a total cost of 08437 (1), which is @(n10g4 3).

the cost for the entire tree:
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Use geometric series as an upper bound
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= 0.

Use subsitution method to verify our guess.
We want to show that T (n) < dn’ for some constant d > 0.



T(n) < 3T(|n/4])+ cn?
< 3d|n/4)* +cen’
< 3d(n/1)?* + cn’

3 s ] 2
= Edn“—i—{?n“
< dn’® |

last step holds as long as d > (16/13)c.
Example 2

T (n) =T (n/3) + T (20/3) + O(n)
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Total: O(nlgn)

n.(2/3)n .. (2/3)n .. .. 1. Since (2/3)n = 1 when k = logs» n

We expect the solution to the recurrence to be at most the number of levels times the cost of
each level, or O(cn logz»n) = O(n Ig n).

We can use the substitution method to verify that O(n 1g n) is an upper bound for the solution
to the recurrence. We show that T (n) = dn Ig n, where d is a suitable positive constant.



T(n)

I Il 1A TA

=

T(n/3)+T(2n/3) +cn
d(n/3)1g(n/3)+d(2n/3)1g(2n/3) + cn
(d(n/3)lgn —d(n/3)1g3)
+(d(2n/3)lgn —d(2n/3)1g(3/2)) + cn
dnlgn —d((n/3)1g3+ (2n/3)1g(3/2)) +cn
dnlgn —d((n/3)1g3+ 2n/3)1g3 — (2n/3)1g2) 4 cn
dnlgn —dn(lg3 —2/3) +cn
dnlgn ,

where d = c/(lg 3—(2/3)).

Homework

1 Use recursion tree to determine a good asymptotic upper bound on the recurrence. Use the
substitution method to verify your answer.

T(n)=3T(|n/2])+ n.

2 Draw the recursion tree for where ¢ is a constant, and provide
a tight asymptotic bound on its solution. Verify your bound by the substitution

method.

T(n)=4T (In/2])+cn,



Master Method

Theorem 4.1 (Master theorem)
Leta = 1 and b > 1 be constants, let f(n) be a function, and let T (n) be defined
on the nonnegative integers by the recurrence

T(n)=aT (n/b)+ f(n),

where we interpret n/b to mean either |n/b] or [n/b]. Then T (n) can be bounded
asymptotically as follows.

1. If f(n)= O (n'°209—¢) for some constant € > 0, then T (n) = O (n'°% %),

2. If f(n) = O (n'°%9) then T (n) = O (n'°% 7 lg n).
3. It f(n) = Q(n'°%9%%) for some constant € = 0, and if af(n/b) < cf(n) for
some constant ¢ < 1 and all sufficiently large n, then T (n) = O( f(n)). [
Examples

T(m)=9T (n/3) +n.

For this recurrence, we have a=9, b = 3, f (n) = n, and thus we have that
nlogb 2= nlog3 7 - O(nz). Since f (n) = O(nlOg3 o

case 1 of the master theorem and conclude that the solution is T (n) = O(nz).

), where e = 1, we can apply

Tm)=T@2n/3)+1,

inwhicha=1,b=3/2,f(n)=1, and nlogb t= nlog3/2 "= n=1. Case 2

applies, since f (n) = ®(nlogb " = (1), and thus the solution to the recurrence is
T (n) = O(Ig n).

Tm)=3T(n4)+nlgn,

we havea=3,b=4,f(n)=nlgn, and n0g0a — plogd3 _ O(n0'793). Since
f(n)= Q(n10g4 3+e)’ where e = 0.2, case 3 applies if we can show that the regularity
condition holds for f (n). For sufficiently large n, a f (n/b) = 3(n/4) Ig(n/4) <

(3/4)n 1g n = ¢ f(n) for ¢ = 3/4. Consequently, by case 3, the solution to the
recurrence is T (n) = O (n Ig n).

T(m)=2T (n/2) +nlgn,

even though it has the proper form: a=2,b =2, f (n) =nlgn, and n°— .
It might seem that case 3 should apply, since f (n) =n Ig n is asymptotically
larger than n°® %= n The problem is that it is not polynomially larger. The ratio
f (n)/n10gb * = (nlg n)/n = Ig n is asymptotically less than n © for any positive
constant e.

Proof of Master theorem can be seen in “Introduction to Algorithms” by CLR 2™ ed
pp. 76- 81.



