
Recurrence

Three methods to solve recurrences:

• Substitution
• Recurrence-tree
• Master method

Assumptions
n is an integer

running time of Merger sort is really:

omit statements of boundary conditions
assume that T(n) is a constant for sufficiently small n.

The substitution method for solving recurrences entails two steps:
1. Guess the form of the solution.
2. Use mathematical induction to find the constants and show that the solution
works.

Example

Determine an upper bound of the recurrence:

1 We guess that T(n) = O(n lg n).
2 Prove that T(n) <= c n lg n for c > 0.

Assume

Then

holds when c ≥ 1

3 Show that our solution holds for the boundary conditions.

We cannot do T(1) = 1. However, we are required only to prove
T(n) ≤ c n lg n for n ≥ n0. Choose n0 > 2, then T(2) ≤ c 2 lg 2, T(3) ≤ c 3 lg 3.
Any choice of c ≥ 2 suffices for the base cases of n = 2 and n = 3 to hold.

Changing variables

let m = lg n

let S(m) = T(2 m)

S(m) = O (m lg m)

Homework

1

2

3 Using change of variables to solve

Recursion-tree

We will use recursion tree to generate a good guess.

Example

We simplify it to

for c > 0.

we assume that n is an exact power of 4

What is the height of the tree?

The subproblem size for a node at depth i is n/4i . Thus, the subproblem size hits n = 1
when n/4i = 1 or, equivalently, when i = log4 n. Thus, the tree has log4 n + 1
levels (0, 1, 2, . . . , log4 n).

The number of nodes at depth i is 3i .
Each node at depth i, for i = 0, 1, 2, . . . , log4 n − 1, has a cost of c(n/4i)2.

The total cost over all nodes at depth i , for i = 0, 1, 2, . . . , log4 n − 1, is 3i c(n/4i)2 =
(3/16)icn2. The last level, at depth log4 n, has 3log4 n = nlog4 3 nodes, each contributing
cost T (1), for a total cost of nlog4 3T (1), which is Θ(nlog4 3).

the cost for the entire tree:

Use geometric series as an upper bound

Use subsitution method to verify our guess.
We want to show that T (n) ≤ dn2 for some constant d > 0.

last step holds as long as d ≥ (16/13)c.

Example 2

T (n) = T (n/3) + T (2n/3) + O(n)

n ..(2/3)n .. (2/3)2n 1. Since (2/3)kn = 1 when k = log3/2 n

We expect the solution to the recurrence to be at most the number of levels times the cost of
each level, or O(cn log3/2 n) = O(n lg n).

We can use the substitution method to verify that O(n lg n) is an upper bound for the solution
to the recurrence. We show that T (n) ≤ dn lg n, where d is a suitable positive constant.

where d ≥ c/(lg 3−(2/3)).

Homework

1 Use recursion tree to determine a good asymptotic upper bound on the recurrence. Use the
substitution method to verify your answer.

2 Draw the recursion tree for where c is a constant, and provide
a tight asymptotic bound on its solution. Verify your bound by the substitution
method.

Master Method

Examples

T (n) = 9T (n/3) + n .

For this recurrence, we have a = 9, b = 3, f (n) = n, and thus we have that
nlogb a = nlog3 9 = O(n2). Since f (n) = O(nlog3 9−e), where e = 1, we can apply
case 1 of the master theorem and conclude that the solution is T (n) = O(n2).

T (n) = T (2n/3) + 1,

in which a = 1, b = 3/2, f (n) = 1, and nlogb a = nlog3/2 1 = n0 = 1. Case 2
applies, since f (n) = Θ(nlogb a) = Θ(1), and thus the solution to the recurrence is
T (n) = Θ(lg n).

T (n) = 3T (n/4) + n lg n ,

we have a = 3, b = 4, f (n) = n lg n, and nlogb a = nlog4 3 = O(n0.793). Since
f (n) = Ω(nlog4 3+e), where e ≈ 0.2, case 3 applies if we can show that the regularity
condition holds for f (n). For sufficiently large n, a f (n/b) = 3(n/4) lg(n/4) ≤
(3/4)n lg n = c f (n) for c = 3/4. Consequently, by case 3, the solution to the
recurrence is T (n) = Θ (n lg n).

T (n) = 2T (n/2) + n lg n ,

even though it has the proper form: a = 2, b = 2, f (n) = n lg n, and nlogb a = n.
It might seem that case 3 should apply, since f (n) = n lg n is asymptotically
larger than nlogb a = n. The problem is that it is not polynomially larger. The ratio
f (n)/nlogb a = (n lg n)/n = lg n is asymptotically less than n e for any positive
constant e.

Proof of Master theorem can be seen in “Introduction to Algorithms” by CLR 2nd ed
pp. 76- 81.

