Recurrence

Three methods to solve recurrences:

- Substitution
- Recurrence-tree
- Master method

Assumptions

n is an integer

running time of Merger sort is really:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 ,\\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{if } n > 1 . \end{cases}$$

omit statements of boundary conditions assume that T(n) is a constant for sufficiently small n.

The substitution method for solving recurrences entails two steps:

1. Guess the form of the solution.

2. Use mathematical induction to find the constants and show that the solution works.

Example

Determine an upper bound of the recurrence:

$$T(n) = 2T(\lfloor n/2 \rfloor) + n ,$$

- 1 We guess that $T(n) = O(n \lg n)$.
- 2 Prove that $T(n) \le c n \lg n$ for c > 0.

Assume

$$T\left(\lfloor n/2 \rfloor\right) \le c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)$$

Then

$$T(n) \leq 2(c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)) + n$$

$$\leq cn \lg(n/2) + n$$

$$= cn \lg n - cn \lg 2 + n$$

$$= cn \lg n - cn + n$$

$$\leq cn \lg n,$$

holds when $c \geq 1$

3 Show that our solution holds for the boundary conditions.

We cannot do T(1) = 1. However, we are required only to prove $T(n) \le c n \lg n$ for $n \ge n0$. Choose n0 > 2, then $T(2) \le c 2 \lg 2$, $T(3) \le c 3 \lg 3$. Any choice of $c \ge 2$ suffices for the base cases of n = 2 and n = 3 to hold.

Changing variables

$$T(n) = 2T\left(\lfloor \sqrt{n} \rfloor\right) + \lg n ,$$

let $m = \lg n$

$$T(2^m) = 2T(2^{m/2}) + m$$
.

let $S(m) = T(2^{m})$

$$S(m) = 2S(m/2) + m ,$$

 $S(m) = O(m \lg m)$

$$T(n) = T(2^m) = S(m) = O(m \lg m) = O(\lg n \lg \lg n).$$

Homework

¹
$$T(n) = T(\lceil n/2 \rceil) + 1$$
 is $O(\lg n)$.

² $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n \text{ is } O(n \lg n).$

3 Using change of variables to solve $T(n) = 2T(\sqrt{n}) + 1$

Recursion-tree

We will use recursion tree to generate a good guess.

Example

$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2).$$

We simplify it to

$$T(n) = 3T(n/4) + cn^2$$
,
for c > 0.

we assume that n is an exact power of 4

What is the height of the tree?

The subproblem size for a node at depth i is $n/4^i$. Thus, the subproblem size hits n = 1 when $n/4^i = 1$ or, equivalently, when $i = \log 4 n$. Thus, the tree has $\log 4 n + 1$ levels $(0, 1, 2, \ldots, \log 4 n)$.

The number of nodes at depth *i* is 3^i . Each node at depth i, for $i = 0, 1, 2, ..., \log 4 n - 1$, has a cost of $c(n/4^i)^2$.

The total cost over all nodes at depth i, for $i = 0, 1, 2, ..., \log 4 n - 1$, is $3^{i} c(n/4^{i})^{2} = (3/16)^{i} cn^{2}$. The last level, at depth log4 n, has $3^{\log 4 n} = n^{\log 4 3}$ nodes, each contributing cost T (1), for a total cost of $n^{\log 4 3}$ T (1), which is $\Theta(n^{\log 4 3})$.

the cost for the entire tree:

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \dots + \left(\frac{3}{16}\right)^{\log_{4}n-1}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \sum_{i=0}^{\log_{4}n-1} \left(\frac{3}{16}\right)^{i}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \frac{(3/16)^{\log_{4}n} - 1}{(3/16) - 1}cn^{2} + \Theta(n^{\log_{4}3}).$$

Use geometric series as an upper bound

$$T(n) = \sum_{i=0}^{\log_4 n-1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$< \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{1}{1-(3/16)} cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{16}{13} cn^2 + \Theta(n^{\log_4 3})$$

$$= O(n^2) .$$

Use subsitution method to verify our guess. We want to show that T (n) $\leq dn^2$ for some constant d > 0.

$$T(n) \leq 3T(\lfloor n/4 \rfloor) + cn^2$$

$$\leq 3d \lfloor n/4 \rfloor^2 + cn^2$$

$$\leq 3d(n/4)^2 + cn^2$$

$$= \frac{3}{16}dn^2 + cn^2$$

$$\leq dn^2,$$

last step holds as long as $d \ge (16/13)c$.

Example 2

T(n) = T(n/3) + T(2n/3) + O(n)

 $n ...(2/3)n ...(2/3)^2n 1$. Since $(2/3)^k n = 1$ when $k = \log_{3/2} n$

We expect the solution to the recurrence to be at most the number of levels times the cost of each level, or $O(cn \log_{3/2} n) = O(n \lg n)$.

We can use the substitution method to verify that $O(n \lg n)$ is an upper bound for the solution to the recurrence. We show that $T(n) \le dn \lg n$, where *d* is a suitable positive constant.

$$\begin{array}{rcl} T(n) &\leq & T(n/3) + T(2n/3) + cn \\ &\leq & d(n/3) \lg(n/3) + d(2n/3) \lg(2n/3) + cn \\ &= & (d(n/3) \lg n - d(n/3) \lg 3) \\ &\quad + (d(2n/3) \lg n - d(2n/3) \lg(3/2)) + cn \\ &= & dn \lg n - d((n/3) \lg 3 + (2n/3) \lg(3/2)) + cn \\ &= & dn \lg n - d((n/3) \lg 3 + (2n/3) \lg 3 - (2n/3) \lg 2) + cn \\ &= & dn \lg n - dn(\lg 3 - 2/3) + cn \\ &\leq & dn \lg n \end{array}$$

where $d \ge c/(\lg 3 - (2/3))$.

Homework

1 Use recursion tree to determine a good asymptotic upper bound on the recurrence. Use the substitution method to verify your answer.

 $T(n) = 3T(\lfloor n/2 \rfloor) + n.$

2 Draw the recursion tree for where c is a constant, and provide a tight asymptotic bound on its solution. Verify your bound by the substitution method.

 $T(n) = 4T(\lfloor n/2 \rfloor) + cn,$

Master Method

Theorem 4.1 (Master theorem)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n) ,

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) can be bounded asymptotically as follows.

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large *n*, then $T(n) = \Theta(f(n))$.

Examples

T(n) = 9T(n/3) + n.

For this recurrence, we have a = 9, b = 3, f(n) = n, and thus we have that $n^{\log b a} = n^{\log 3 9} = O(n^2)$. Since $f(n) = O(n^{\log 3 9-e})$, where e = 1, we can apply case 1 of the master theorem and conclude that the solution is $T(n) = O(n^2)$.

$$T(n) = T(2n/3) + 1,$$

in which a = 1, b = 3/2, f(n) = 1, and $n^{\log b a} = n^{\log 3/2 1} = n^0 = 1$. Case 2 applies, since $f(n) = \Theta(n^{\log b a}) = \Theta(1)$, and thus the solution to the recurrence is T (n) = $\Theta(\lg n)$.

 $T(n) = 3T(n/4) + n \lg n$,

we have a = 3, b = 4, $f(n) = n \lg n$, and $n^{\log b a} = n^{\log 4 3} = O(n^{0.793})$. Since $f(n) = \Omega(n^{\log 4 3+e})$, where $e \approx 0.2$, case 3 applies if we can show that the regularity condition holds for f(n). For sufficiently large n, a $f(n/b) = 3(n/4) \lg(n/4) \le (3/4)n \lg n = c f(n)$ for c = 3/4. Consequently, by case 3, the solution to the recurrence is T (n) = Θ (n lg n).

$$T(n) = 2T(n/2) + n \lg n$$
,

even though it has the proper form: a = 2, b = 2, $f(n) = n \lg n$, and $n^{\log b a} = n$. It might seem that case 3 should apply, since $f(n) = n \lg n$ is asymptotically larger than $n^{\log b a} = n$. The problem is that it is not *polynomially* larger. The ratio $f(n)/n^{\log b a} = (n \lg n)/n = \lg n$ is asymptotically less than n^e for any positive constant e.

Proof of Master theorem can be seen in "Introduction to Algorithms" by CLR 2nd ed pp. 76-81.