Recurrence

Three methods to solve recurrences:

- Substitution
- Recurrence-tree
- Master method

Assumptions

n is an integer
running time of Merger sort is really:

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1, \\ T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+\Theta(n) & \text { if } n>1 .\end{cases}
$$

omit statements of boundary conditions
assume that $T(n)$ is a constant for sufficiently small n.
The substitution method for solving recurrences entails two steps:

1. Guess the form of the solution.
2. Use mathematical induction to find the constants and show that the solution works.

Example

Determine an upper bound of the recurrence:

$$
T(n)=2 T(\lfloor n / 2\rfloor)+n,
$$

1 We guess that $T(n)=O(n \lg n)$.
2 Prove that $\mathrm{T}(\mathrm{n})<=\mathrm{c} \mathrm{n} \lg \mathrm{n}$ for $\mathrm{c}>0$.
Assume

$$
T(\lfloor n / 2\rfloor) \leq c\lfloor n / 2\rfloor \lg (\lfloor n / 2\rfloor)
$$

Then

$$
\begin{aligned}
T(n) & \leq 2(c\lfloor n / 2\rfloor \lg (\lfloor n / 2\rfloor))+n \\
& \leq c n \lg (n / 2)+n \\
& =c n \lg n-c n \lg 2+n \\
& =c n \lg n-c n+n \\
& \leq c n \lg n,
\end{aligned}
$$

holds when $\mathrm{c} \geq 1$

3 Show that our solution holds for the boundary conditions.
We cannot do $\mathrm{T}(1)=1$. However, we are required only to prove
$\mathrm{T}(\mathrm{n}) \leq \mathrm{c} \mathrm{n} \lg \mathrm{n}$ for $\mathrm{n} \geq \mathrm{n} 0$. Choose $\mathrm{n} 0>2$, then $\mathrm{T}(2) \leq \mathrm{c} 2 \lg 2, \mathrm{~T}(3) \leq \mathrm{c} 3 \lg 3$.
Any choice of $\mathrm{c} \geq 2$ suffices for the base cases of $\mathrm{n}=2$ and $\mathrm{n}=3$ to hold.

Changing variables

$$
T(n)=2 T(\lfloor\sqrt{n}\rfloor)+\lg n,
$$

let $m=\lg n$

$$
T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+m
$$

$$
\text { let } \mathrm{S}(\mathrm{~m})=\mathrm{T}\left(2^{\mathrm{m}}\right)
$$

$$
S(m)=2 S(m / 2)+m
$$

$$
\mathrm{S}(\mathrm{~m})=\mathrm{O}(\mathrm{~m} \lg \mathrm{~m})
$$

$$
T(n)=T\left(2^{m}\right)=S(m)=O(m \lg m)=O(\lg n \lg \lg n)
$$

Homework

1

$$
T(n)=T(\lceil n / 2\rceil)+1 \text { is } O(\lg n) .
$$

2

$$
T(n)=2 T(\lfloor n / 2\rfloor+17)+n \text { is } O(n \lg n)
$$

3 Using change of variables to solve

$$
T(n)=2 T(\sqrt{n})+1
$$

Recursion-tree

We will use recursion tree to generate a good guess.

Example

$$
T(n)=3 T(\lfloor n / 4\rfloor)+\Theta\left(n^{2}\right)
$$

We simplify it to

$$
T(n)=3 T(n / 4)+c n^{2}
$$

for $\mathrm{c}>0$.
we assume that n is an exact power of 4
$T(n)$

(a)
(b)
(c)

What is the height of the tree?

The subproblem size for a node at depth i is $n / 4^{i}$. Thus, the subproblem size hits $n=1$ when $\mathrm{n} / 4^{\mathrm{i}}=1$ or, equivalently, when $\mathrm{i}=\log 4 \mathrm{n}$. Thus, the tree has $\log 4 \mathrm{n}+1$ levels $(0,1,2, \ldots, \log 4 n)$.

The number of nodes at depth i is 3^{i}.
Each node at depth i, for $i=0,1,2, \ldots, \log 4 n-1$, has a cost of $c\left(n / 4^{i}\right)^{2}$.
The total cost over all nodes at depth i , for $\mathrm{i}=0,1,2, \ldots, \log 4 \mathrm{n}-1$, is $3^{\mathrm{i}} \mathrm{c}\left(\mathrm{n} / 4^{\mathrm{i}}\right)^{2}=$ $(3 / 16)^{\mathrm{i}} \mathrm{cn}^{2}$. The last level, at depth $\log 4 \mathrm{n}$, has $3^{\log 4 \mathrm{n}}=\mathrm{n}^{\log 43}$ nodes, each contributing cost T (1), for a total cost of $n^{\log 43} T(1)$, which is $\Theta\left(n^{\log 43}\right)$.
the cost for the entire tree:

$$
\begin{aligned}
T(n) & =c n^{2}+\frac{3}{16} c n^{2}+\left(\frac{3}{16}\right)^{2} c n^{2}+\cdots+\left(\frac{3}{16}\right)^{\log _{4} n-1} c n^{2}+\Theta\left(n^{\log _{4} 3}\right) \\
& =\sum_{i=0}^{\log _{4} n-1}\left(\frac{3}{16}\right)^{i} c n^{2}+\Theta\left(n^{\log _{4} 3}\right) \\
& =\frac{(3 / 16)^{\log _{4} n}-1}{(3 / 16)-1} c n^{2}+\Theta\left(n^{\log _{4} 3}\right)
\end{aligned}
$$

Use geometric series as an upper bound

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{\log _{4} n-1}\left(\frac{3}{16}\right)^{i} c n^{2}+\Theta\left(n^{\log _{4} 3}\right) \\
& <\sum_{i=0}^{\infty}\left(\frac{3}{16}\right)^{i} c n^{2}+\Theta\left(n^{\log _{4} 3}\right) \\
& =\frac{1}{1-(3 / 16)} c n^{2}+\Theta\left(n^{\log _{4} 3}\right) \\
& =\frac{16}{13} c n^{2}+\Theta\left(n^{\log _{4} 3}\right) \\
& =O\left(n^{2}\right)
\end{aligned}
$$

Use subsitution method to verify our guess.
We want to show that $\mathrm{T}(\mathrm{n}) \leq \mathrm{dn}^{2}$ for some constant $\mathrm{d}>0$.

$$
\begin{aligned}
T(n) & \leq 3 T(\lfloor n / 4\rfloor)+c n^{2} \\
& \leq 3 d\lfloor n / 4\rfloor^{2}+c n^{2} \\
& \leq 3 d(n / 4)^{2}+c n^{2} \\
& =\frac{3}{16} d n^{2}+c n^{2} \\
& \leq d n^{2},
\end{aligned}
$$

last step holds as long as $\mathrm{d} \geq(16 / 13) \mathrm{c}$.

Example 2

$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 3)+\mathrm{T}(2 \mathrm{n} / 3)+\mathrm{O}(\mathrm{n})$

Total: $O(n \lg n)$
$\mathrm{n} . .(2 / 3) \mathrm{n} . .(2 / 3)^{2} \mathrm{n}$.. .. 1. Since $(2 / 3)^{\mathrm{k}} \mathrm{n}=1$ when $\mathrm{k}=\log _{3 / 2} \mathrm{n}$
We expect the solution to the recurrence to be at most the number of levels times the cost of each level, or $O\left(c n \log _{3 / 2} n\right)=O(n \lg n)$.

We can use the substitution method to verify that $O(n \lg n)$ is an upper bound for the solution to the recurrence. We show that $T(n) \leq d n \lg n$, where d is a suitable positive constant.

$$
\begin{aligned}
T(n) \leq & T(n / 3)+T(2 n / 3)+c n \\
\leq & d(n / 3) \lg (n / 3)+d(2 n / 3) \lg (2 n / 3)+c n \\
= & (d(n / 3) \lg n-d(n / 3) \lg 3) \\
& \quad+(d(2 n / 3) \lg n-d(2 n / 3) \lg (3 / 2))+c n \\
& =d n \lg n-d((n / 3) \lg 3+(2 n / 3) \lg (3 / 2))+c n \\
= & d n \lg n-d((n / 3) \lg 3+(2 n / 3) \lg 3-(2 n / 3) \lg 2)+c n \\
= & d n \lg n-d n(\lg 3-2 / 3)+c n \\
\leq & d n \lg n
\end{aligned}
$$

where $d \geq c /(\lg 3-(2 / 3))$.

Homework

1 Use recursion tree to determine a good asymptotic upper bound on the recurrence. Use the substitution method to verify your answer.

$$
T(n)=3 T(\lfloor n / 2\rfloor)+n .
$$

2 Draw the recursion tree for where c is a constant, and provide a tight asymptotic bound on its solution. Verify your bound by the substitution method.

$$
T(n)=4 T(\lfloor n / 2\rfloor)+c n,
$$

Master Method

Theorem 4.1 (Master theorem)

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence
$T(n)=a T(n / b)+f(n)$,
where we interpret n / b to mean either $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$. Then $T(n)$ can be bounded asymptotically as follows.

1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and if $a f(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

Examples

$\mathrm{T}(\mathrm{n})=9 \mathrm{~T}(\mathrm{n} / 3)+\mathrm{n}$.
For this recurrence, we have $\mathrm{a}=9, \mathrm{~b}=3, \mathrm{f}(\mathrm{n})=\mathrm{n}$, and thus we have that
$n^{\operatorname{logb} a}=n^{\log 39}=O\left(n^{2}\right)$. Since $f(n)=O\left(n^{\log 3-e}\right)$, where $e=1$, we can apply
case 1 of the master theorem and conclude that the solution is $T(n)=O\left(n^{2}\right)$.
$T(n)=T(2 n / 3)+1$,
in which $\mathrm{a}=1, \mathrm{~b}=3 / 2, \mathrm{f}(\mathrm{n})=1$, and $\mathrm{n}^{\log \mathrm{a}}=\mathrm{n}^{\log 3 / 21}=\mathrm{n}^{0}=1$. Case 2 applies, since $f(n)=\Theta\left(n^{\operatorname{logb} a}\right)=\Theta(1)$, and thus the solution to the recurrence is $T(n)=\Theta(\lg n)$.
$T(n)=3 T(n / 4)+n \lg n$,
we have $\mathrm{a}=3, \mathrm{~b}=4, \mathrm{f}(\mathrm{n})=\mathrm{n} \lg \mathrm{n}$, and $\mathrm{n}^{\log \mathrm{a}}=\mathrm{n}^{\log 43}=\mathrm{O}\left(\mathrm{n}^{0.793}\right)$. Since $\mathrm{f}(\mathrm{n})=\Omega\left(\mathrm{n}^{\log 43+\mathrm{e}}\right)$, where $\mathrm{e} \approx 0.2$, case 3 applies if we can show that the regularity condition holds for $\mathrm{f}(\mathrm{n})$. For sufficiently large n , a $\mathrm{f}(\mathrm{n} / \mathrm{b})=3(\mathrm{n} / 4) \lg (\mathrm{n} / 4) \leq$ (3/4)n $\lg n=c f(n)$ for $c=3 / 4$. Consequently, by case 3 , the solution to the recurrence is $T(n)=\Theta(n \lg n)$.
$\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n} \lg \mathrm{n}$,
even though it has the proper form: $a=2, b=2, f(n)=n \lg n$, and $n^{\log b a}=n$. It might seem that case 3 should apply, since $f(n)=n \lg n$ is asymptotically larger than $\mathrm{n}^{\operatorname{logb} \mathrm{a}}=\mathrm{n}$. The problem is that it is not polynomially larger. The ratio $f(n) / n^{\operatorname{logb} a}=(n \lg n) / n=\lg n$ is asymptotically less than n^{e} for any positive constant e.

Proof of Master theorem can be seen in "Introduction to Algorithms" by CLR $2^{\text {nd }}$ ed pp. 76-81.

