
Recurrence 
 
Three methods to solve recurrences: 

• Substitution 
• Recurrence-tree 
• Master method 

 
Assumptions 
n is an integer 
 
running time of Merger sort is really: 

 
 
omit statements of boundary conditions 
assume that T(n) is a constant for sufficiently small n. 
 
The substitution method for solving recurrences entails two steps: 
1. Guess the form of the solution. 
2. Use mathematical induction to find the constants and show that the solution 
works. 
 
Example 
 
Determine an upper bound of the recurrence: 
 

 
 
1  We guess that T(n) = O(n lg n).   
2  Prove that T(n) <= c n lg n  for c > 0. 
 
Assume   

 
 
Then  

 
 
holds when c ≥ 1 



 
3  Show that our solution holds for the boundary conditions. 
 
We cannot do T(1) = 1.  However, we are required only to prove 
T(n) ≤  c n lg n  for n ≥  n0.  Choose n0 > 2,  then  T(2) ≤  c 2 lg 2, T(3) ≤  c 3 lg 3. 
Any choice of c ≥ 2 suffices for the base cases of n = 2 and n = 3 to hold.   
 
Changing variables 
 

 
 
let m = lg n 
 

 
 
let S(m) = T(2 m) 
 

 
 
S(m) = O ( m lg m ) 
 

 
 
Homework 
 
1 

   
 
2 

 
 
3  Using change of variables to solve 

 



 
Recursion-tree 

 
We will use recursion tree to generate a good guess. 
 
Example 
 

 
 
We simplify it to 
 

 
for c > 0. 
 
we assume that n is an exact power of 4 
 

 
 
What is the height of the tree? 



 
The subproblem size for a node at depth i is n/4i . Thus, the subproblem size hits n = 1 
when n/4i = 1 or, equivalently, when i = log4 n. Thus, the tree has log4 n + 1 
levels (0, 1, 2, . . . , log4 n). 
 
The number of nodes at depth i is 3i . 
Each node at depth i, for i = 0, 1, 2, . . . , log4 n − 1, has a cost of c(n/4i )2. 
 
The total cost over all nodes at depth i , for i = 0, 1, 2, . . . , log4 n − 1, is 3i c(n/4i )2 = 
(3/16)icn2. The last level, at depth log4 n, has 3log4 n = nlog4 3 nodes, each contributing 
cost T (1), for a total cost of nlog4 3T (1), which is  Θ(nlog4 3). 
 
 
the cost for the entire tree: 
 

 
 
Use geometric series as an upper bound 
 

 
 
Use subsitution method to verify our guess. 
We want to show that T (n) ≤ dn2 for some constant d > 0. 
 



 
 
last step holds as long as d ≥ (16/13)c. 
 
Example 2 
 
T (n) = T (n/3) + T (2n/3) + O(n) 
 

 
 
n ..(2/3)n .. (2/3)2n .. .. 1. Since (2/3)kn = 1  when k = log3/2 n 
 
We expect the solution to the recurrence to be at most the number of levels times the cost of 
each level, or   O(cn log3/2 n) = O(n lg n). 
 
We can use the substitution method to verify that O(n lg n) is an upper bound for the solution 
to the recurrence. We show that T (n) ≤ dn lg n, where d is a suitable positive constant. 
 



 
 
where  d ≥ c/(lg 3−(2/3)). 
 
Homework 
 
1  Use recursion tree to determine a good asymptotic upper bound on the recurrence.  Use the 
substitution method to verify your answer. 

 
2  Draw the recursion tree for where c is a constant, and provide 
a tight asymptotic bound on its solution. Verify your bound by the substitution 
method. 

 



 
Master Method 

 
 

 
 
Examples 
 
T (n) = 9T (n/3) + n . 
 
For this recurrence, we have a = 9, b = 3, f (n) = n, and thus we have that 
nlogb a = nlog3 9 = O(n2). Since f (n) = O(nlog3 9−e), where e = 1, we can apply 
case 1 of the master theorem and conclude that the solution is T (n) = O(n2). 
 
T (n) = T (2n/3) + 1, 
 
in which a = 1, b = 3/2, f (n) = 1, and nlogb a = nlog3/2 1 = n0 = 1. Case 2 
applies, since f (n) = Θ(nlogb a) = Θ(1), and thus the solution to the recurrence is 
T (n) = Θ(lg n). 
 
T (n) = 3T (n/4) + n lg n , 
 
we have a = 3, b = 4, f (n) = n lg n, and nlogb a = nlog4 3 = O(n0.793). Since 
f (n) = Ω(nlog4 3+e), where e ≈ 0.2, case 3 applies if we can show that the regularity 
condition holds for f (n). For sufficiently large n, a f (n/b) = 3(n/4) lg(n/4) ≤ 
(3/4)n lg n = c f (n) for c = 3/4. Consequently, by case 3, the solution to the 
recurrence is T (n) =  Θ (n lg n). 
 
T (n) = 2T (n/2) + n lg n , 
 
even though it has the proper form: a = 2, b = 2, f (n) = n lg n, and nlogb a = n. 
It might seem that case 3 should apply, since f (n) = n lg n is asymptotically 
larger than nlogb a = n. The problem is that it is not polynomially larger. The ratio 
f (n)/nlogb a = (n lg n)/n = lg n is asymptotically less than n e for any positive 
constant e. 
 
Proof of Master theorem can be seen in “Introduction to Algorithms” by CLR 2nd ed 
pp. 76- 81. 


