

Week 1 lecture 2
Introduction to algorithms

Correctness proof

We state these properties of A[1 . . j−1] formally as a loop invariant:

At the start of each iteration of the for loop of lines 1–8, the subarray
A[1 . . j −1] consists of the elements originally in A[1 . . j −1] but in sorted
order.

We use loop invariants to help us understand why an algorithm is correct. We
must show three things about a loop invariant:

Initialization: It is true prior to the first iteration of the loop.
Maintenance: If it is true before an iteration of the loop, it remains true before the
next iteration.
Termination: When the loop terminates, the invariant gives us a useful property
that helps show that the algorithm is correct.

Analysing insertion sort running time

Best case running time, array is already sorted.

an + b, linear function of n

Worst case running time, array is reverse sorted order.

a n 2 + bn + c , Quadratic Function of n

Worst and average case analysis

Order of growth, Rate of growth

Worst-case running time Θ (n 2)

Designing algorithms

Insertion sort uses

incremental approach: sort A[1..j-1] then insert A[j] to yield sorted A[1..j]

Divide-and-conquer

Divide the problem into a number of subproblems.
Conquer the subproblems by solving them recursively. If the subproblem sizes

are small enough, however, just solve the subproblems in a
straightforward manner.

Combine the solutions to the subproblems into the solution for the original
problem.

Merge sort

Divide: Divide the n-element sequence to be sorted into two subsequences of n/2
elements each.
Conquer: Sort the two subsequences recursively using merge sort.
Combine: Merge the two sorted subsequences to produce the sorted answer.

MERGE procedure takes time Θ (n), where n = r − p + 1

MERGE-SORT(A, 1, length[A]),

its running time can often be described by a recurrence equation or recurrence,

division of the problem yields a subproblems, each of which is 1/b the size of the original. If
we take D(n) time to divide the problem into subproblems and C(n) time to combine
the solutions to the subproblems into the solution to the original problem.

Divide: The divide step just computes the middle of the subarray, which takes
constant time. Thus, D(n) = Θ (1).
Conquer: We recursively solve two subproblems, each of size n/2, which contributes
2T (n/2) to the running time.
Combine: We have already noted that the MERGE procedure on an n-element
subarray takes time Θ (n), so C(n) = Θ (n).

To solve this recurrence, let rewrite it to

We can view it as a recurrent tree

The tree has lg n + 1 levels, each level has the cost cn, total is cn lg n + cn

Θ (n lg n)

Homework

What is the worst-case running time of bubble sort?

