Week 1 lecture 2

Introduction to algorithms

InSERTION-SORT (A)
for $j \leftarrow 2$ to length $[A]$
$2 \quad$ do key $\leftarrow A[j]$

```
3
\(4 \quad i \leftarrow j-1\)
\(5 \quad\) while \(i>0\) and \(A[i]>\) key
\(6 \quad\) do \(A[i+1] \leftarrow A[i]\)
\(7 \quad i \leftarrow i-1\)
\(8 \quad A[i+1] \leftarrow\) key
```

(a)

(b)

(c)

(d)

(e)

(f)

Correctness proof

We state these properties of $A[1 \ldots j-1]$ formally as a loop invariant:
At the start of each iteration of the for loop of lines 1-8, the subarray $A[1 \ldots j-1]$ consists of the elements originally in $A[1 \ldots j-1]$ but in sorted order.

We use loop invariants to help us understand why an algorithm is correct. We must show three things about a loop invariant:

Initialization: It is true prior to the first iteration of the loop.
Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration.
Termination: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

Analysing insertion sort running time

$$
\begin{aligned}
& \text { INSERTION-SORT (} A \text {) cost times } \\
& 1 \text { for } j \leftarrow 2 \text { to length }[A] \\
& 2 \quad \text { do } \text { key } \leftarrow A[j] \\
& c_{1} \quad n \\
& 3 \triangleright \text { Insert } A[j] \text { into the sorted } \\
& \text { sequence } A[1 . . j-1] \text {. } \\
& i \leftarrow j-1 \\
& \text { while } i>0 \text { and } A[i]>k e y \\
& \text { do } A[i+1] \leftarrow A[i] \\
& i \leftarrow i-1 \\
& A[i+1] \leftarrow k e y \\
& c_{2} \quad n-1 \\
& 0 \quad n-1 \\
& 4 \quad i \leftarrow j-1 \\
& 5 \quad \text { while } i>0 \text { and } A[i]>\text { key } \\
& 6 \quad \text { do } A[i+1] \leftarrow A[i] \\
& 7 \quad i \leftarrow i-1 \\
& 8 \quad A[i+1] \leftarrow k e y \\
& c_{4} \quad n-1 \\
& \square \\
& c_{5} \quad \sum_{j=2}^{n} t_{j} \\
& T(n)=c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5} \sum_{j=2}^{n} t_{j}+c_{6} \sum_{j=2}^{n}\left(t_{j}-1\right) \\
& +c_{7} \sum_{j=2}^{n}\left(t_{j}-1\right)+c_{8}(n-1) .
\end{aligned}
$$

Best case running time, array is already sorted.
case occurs if the array is already sorted. For each $j=2,3, \ldots, n$, we then find that $A[i] \leq$ key in line 5 when i has its initial value of $j-1$. Thus $t_{j}=1$ for $j=2,3, \ldots, n$, and the best-case running time is

$$
\begin{aligned}
T(n) & =c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5}(n-1)+c_{8}(n-1) \\
& =\left(c_{1}+c_{2}+c_{4}+c_{5}+c_{8}\right) n-\left(c_{2}+c_{4}+c_{5}+c_{8}\right) .
\end{aligned}
$$

$$
a n+b, \text { linear function of } n
$$

Worst case running time, array is reverse sorted order.
If the array is in reverse sorted order-that is, in decreasing order-the worst case results. We must compare each element $A[j]$ with each element in the entire sorted subarray $A[1 \ldots j-1]$, and so $t_{j}=j$ for $j=2,3, \ldots, n$. Noting that

$$
\sum_{j=2}^{n} j=\frac{n(n+1)}{2}-1
$$

and

$$
\sum_{j=2}^{n}(j-1)=\frac{n(n-1)}{2}
$$

$$
\begin{aligned}
T(n)= & c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5}\left(\frac{n(n+1)}{2}-1\right) \\
& +c_{6}\left(\frac{n(n-1)}{2}\right)+c_{7}\left(\frac{n(n-1)}{2}\right)+c_{8}(n-1) \\
= & \left(\frac{c_{5}}{2}+\frac{c_{6}}{2}+\frac{c_{7}}{2}\right) n^{2}+\left(c_{1}+c_{2}+c_{4}+\frac{c_{5}}{2}-\frac{c_{6}}{2}-\frac{c_{7}}{2}+c_{8}\right) n \\
& -\left(c_{2}+c_{4}+c_{5}+c_{8}\right) . \\
& \operatorname{an}^{2}+\mathrm{bn}+\mathrm{c}, \text { Quadratic Function of } \mathrm{n}
\end{aligned}
$$

Worst and average case analysis
Order of growth, Rate of growth
Worst-case running time $\Theta\left(\mathrm{n}^{2}\right)$

Designing algorithms

Insertion sort uses
incremental approach: sort $\mathrm{A}[1 . . \mathrm{j}-1]$ then insert $\mathrm{A}[\mathrm{j}]$ to yield sorted $\mathrm{A}[1 . . \mathrm{j}]$

Divide-and-conquer

Divide the problem into a number of subproblems.
Conquer the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
Combine the solutions to the subproblems into the solution for the original problem.

Merge sort

Divide: Divide the n-element sequence to be sorted into two subsequences of $n / 2$ elements each.
Conquer: Sort the two subsequences recursively using merge sort.
Combine: Merge the two sorted subsequences to produce the sorted answer.

```
\(\operatorname{Merge}(A, p, q, r)\)
    \(n_{1} \leftarrow q-p+1\)
    \(n_{2} \leftarrow r-q\)
    create arrays \(L\left[1 \ldots n_{1}+1\right]\) and \(R\left[1 \ldots n_{2}+1\right]\)
    4 for \(i \leftarrow 1\) to \(n_{1}\)
    \(5 \quad\) do \(L[i] \leftarrow A[p+i-1]\)
    6 for \(j \leftarrow 1\) to \(n_{2}\)
    \(7 \quad\) do \(R[j] \leftarrow A[q+j]\)
    \(8 \quad L\left[n_{1}+1\right] \leftarrow \infty\)
    \(9 \quad R\left[n_{2}+1\right] \leftarrow \infty\)
    \(10 \quad i \leftarrow 1\)
    \(11 j \leftarrow 1\)
    12 for \(k \leftarrow p\) to \(r\)
    13 do if \(L[i] \leq R[j]\)
    \(14 \quad\) then \(A[k] \leftarrow L[i]\)
    15
                        \(i \leftarrow i+1\)
        else \(A[k] \leftarrow R[j]\)
        \(j \leftarrow j+1\)
```


Merge procedure takes time $\Theta(\mathrm{n})$, where $n=r-p+1$
$\operatorname{Merge-Sort}(A, p, r)$

$$
\begin{array}{lc}
1 & \text { if } p<r \\
2 & \text { then } q \leftarrow\lfloor(p+r) / 2\rfloor \\
3 & \operatorname{Merge-Sort}(A, p, q) \\
4 & \operatorname{Merge-Sort}(A, q+1, r) \\
5 & \operatorname{Merge}(A, p, q, r)
\end{array}
$$

Merge-Sort(A, 1, length[A]),
its running time can often be described by a recurrence equation or recurrence,
division of the problem yields a subproblems, each of which is $1 / b$ the size of the original. If we take $D(n)$ time to divide the problem into subproblems and $C(n)$ time to combine the solutions to the subproblems into the solution to the original problem.

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq c \\ a T(n / b)+D(n)+C(n) & \text { otherwise }\end{cases}
$$

Divide: The divide step just computes the middle of the subarray, which takes constant time. Thus, $D(n)=\Theta(1)$.
Conquer: We recursively solve two subproblems, each of size $n / 2$, which contributes $2 T(n / 2)$ to the running time.
Combine: We have already noted that the MERGE procedure on an n-element subarray takes time $\Theta(n)$, so $C(n)=\Theta(n)$.

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1, \\ 2 T(n / 2)+\Theta(n) & \text { if } n>1\end{cases}
$$

To solve this recurrence, let rewrite it to

$$
T(n)= \begin{cases}c & \text { if } n=1, \\ 2 T(n / 2)+c n & \text { if } n>1,\end{cases}
$$

We can view it as a recurrent tree

The tree has $\lg \mathrm{n}+1$ levels, each level has the cost cn , total is $\mathrm{cn} \lg \mathrm{n}+\mathrm{cn}$

$$
\Theta(n \lg n)
$$

Homework
What is the worst-case running time of bubble sort?

```
Bubblesort ( \(A\) )
\(1 \quad\) for \(i \leftarrow 1\) to length \([A]\)
\(2 \quad\) do for \(j \leftarrow\) length \([A]\) downto \(i+1\)
3 do if \(A[j]<A[j-1]\)
4 then exchange \(A[j] \leftrightarrow A[j-1]\)
```

