Introduction to Algorithms $6.046 \mathrm{~J} / 18.401 \mathrm{~J} /$ SMA5503

Lecture 15

Prof. Charles E. Leiserson

Dynamic programming

Design technique, like divide-and-conquer.
Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both. "a" not "the"

Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

Analysis

- Checking $=O(n)$ time per subsequence.
- 2^{m} subsequences of x (each bit-vector of length m determines a distinct subsequence of x).
Worst-case running time $=O\left(n 2^{m}\right)$
$=$ exponential time.

Towards a better algorithm

Simplification:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.

Strategy: Consider prefixes of x and y.

- Define $c[i, j]=|\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])|$.
- Then, $c[m, n]=|\operatorname{LCS}(x, y)|$.

Recursive formulation

Theorem.

$c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max \{c[i-1, j], c[i, j-1]\} & \text { otherwise. }\end{cases}$
Proof. Case $x[i]=y[j]$:

Let $z[1 \ldots k]=\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])$, where $c[i, j]$
$=k$. Then, $z[k]=x[i]$, or else z could be extended. Thus, $z[1 \ldots k-1]$ is CS of $x[1 \ldots i-1]$ and $y[1 \ldots j-1]$.
© 2001 by Charles E. Leiserson
Introduction to Algorithms

Proof (continued)

Claim: $z[1 \ldots k-1]=\operatorname{LCS}(x[1 \ldots i-1], y[1 \ldots j-1])$. Suppose w is a longer CS of $x[1 \ldots i-1]$ and $y[1 \ldots j-1]$, that is, $|w|>k-1$. Then, cut and paste: $w \| z[k]$ (w concatenated with $z[k]$) is a common subsequence of $x[1 \ldots i]$ and $y[1 \ldots j]$ with $|w \| z[k]|>k$. Contradiction, proving the claim.
Thus, $c[i-1, j-1]=k-1$, which implies that $c[i, j]$
$=c[i-1, j-1]+1$.
Other cases are similar. \square

Dynamic-programming hallmark \#1

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If $z=\operatorname{LCS}(x, y)$, then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS

$\operatorname{LCS}(x, y, i, j)$

$$
\begin{aligned}
& \text { if } x[i]=y[j] \\
& \text { then } c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1 \\
& \text { else } c[i, j] \leftarrow \max \{\operatorname{LCS}(x, y, i-1, j), \\
& \quad \operatorname{LCS}(x, y, i, j-1)\}
\end{aligned}
$$

Worst-case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Recursion tree

Height $=m+n \Rightarrow$ work potentially exponential, but we're solving subproblems already solved!

Dynamic-programming hallmark \#2

> Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only $m n$.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.
$\operatorname{LCS}(x, y, i, j)$ if $c[i, j]=\mathrm{NIL}$
then if $x[i]=y[j]$

$$
\left.\begin{array}{rl}
\text { then } c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1 \\
\text { else } c[i, j] \leftarrow \max \{\operatorname{LCS}(x, y, i-1, j), \\
\operatorname{LCS}(x, y, i, j-1)\}
\end{array}\right\} \begin{aligned}
& \text { same } \\
& \text { as } \\
& \text { before }
\end{aligned}
$$

Time $=\Theta(m n)=$ constant work per table entry.
Space $=\Theta(m n)$.

Dynamic-programming algorithm

IDEA:
Compute the table bottom-up.
Time $=\Theta(m n)$.

Dynamic-programming algorithm

IDEA:

Compute the table bottom-up.

Time $=\Theta(m n)$.
Reconstruct
LCS by tracing backwards.

Space $=\Theta(m n)$. Exercise: $O(\min \{m, n\})$.

© 2001 by Charles E. Leiserson

Introduction to Algorithms

