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Graphs (review)
Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E ⊆ V × V of edges.
In an undirected graph G = (V, E), the edge 
set E consists of unordered pairs of vertices.
In either case, we have |E | = O(V 2).  Moreover, 
if G is connected, then  |E | ≥ |V | – 1, which 
implies that lg |E | = Θ(lgV).  
(Review CLRS, Appendix B.)
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Adjacency-matrix 
representation

The adjacency matrix of a graph G = (V, E), where 
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

A[i, j] = 1 if (i, j) ∈ E,
0 if (i, j) ∉ E.

22 11

33 44

A 1 2 3 4
1
2
3
4

0 1 1 0
0 0 1 0
0 0 0 0
0 0 1 0

Θ(V 2) storage 
⇒ dense
representation.
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Adjacency-list representation
An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to v.

22 11

33 44

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

For undirected graphs, |Adj[v] | = degree(v).
For digraphs, |Adj[v] | = out-degree(v).
Handshaking Lemma: ∑v∈V = 2 |E | for undirected 
graphs ⇒ adjacency lists use Θ(V + E) storage —
a sparse representation (for either type of graph).
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Minimum spanning trees

Input: A connected, undirected graph G = (V, E)
with weight function w : E → R.
• For simplicity, assume that all edge weights are 

distinct. (CLRS covers the general case.)

∑
∈

=
Tvu

vuwTw
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Output: A spanning tree T — a tree that connects 
all vertices — of minimum weight:
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Example of MST

6 12
5

14

3

8

10

15

9

7



Introduction to Algorithms Day 27      L16.7© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

u

v
Remove any edge (u, v) ∈ T.  Remove any edge (u, v) ∈ T.  Then, T is partitioned 
into two subtrees T1 and T2.

T1

T2
u

v

Optimal substructure
MST T: 

(Other edges of G
are not shown.)

Theorem. The subtree T1 is an MST of G1 = (V1, E1), 
the subgraph of G induced by the vertices of T1:

V1 = vertices of T1,
E1 = { (x, y) ∈ E : x, y ∈ V1 }.

Similarly for T2.
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Proof of optimal substructure

w(T) = w(u, v) + w(T1) + w(T2).
Proof. Cut and paste:

If T1′were a lower-weight spanning tree than T1 for 
G1, then T ′ = {(u, v)} ∪ T1′ ∪ T2 would be a 
lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?
•Yes.
Great, then dynamic programming may work!
•Yes, but MST exhibits another powerful property 
which leads to an even more efficient algorithm.
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Hallmark for “greedy” 
algorithms

Greedy-choice property
A locally optimal choice 

is globally optimal.

Theorem. Let T be the MST of G = (V, E), 
and let A ⊆ V.  Suppose that (u, v) ∈ E is the 
least-weight edge connecting A to V – A. 
Then, (u, v) ∈ T.
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Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T:

u

v

(u, v) = least-weight edge 
connecting A to V – A
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Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T:

u

Consider the unique simple path from u to v in T.  

(u, v) = least-weight edge 
connecting A to V – A

v
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Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T:

u
(u, v) = least-weight edge 
connecting A to V – A

v

Consider the unique simple path from u to v in T.  
Swap (u, v) with the first edge on this path that 
connects a vertex in A to a vertex in V – A.
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Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T ′:

u
(u, v) = least-weight edge 
connecting A to V – A

v

Consider the unique simple path from u to v in T.  
Swap (u, v) with the first edge on this path that 
connects a vertex in A to a vertex in V – A.
A lighter-weight spanning tree than T results.
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Prim’s algorithm
IDEA: Maintain V – A as a priority queue Q.  Key 
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.
Q ← V
key[v] ←∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v) ⊳ DECREASE-KEY

π[v] ← u

At the end, {(v, π[v])} forms the MST.
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Handshaking Lemma ⇒Θ(E) implicit DECREASE-KEY’s.

Q ← V
key[v] ←∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)

π[v] ← u

Analysis of Prim

degree(u)
times

|V |
times

Θ(V)
total

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY
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Analysis of Prim (continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)
binary 
heap O(lg V) O(lg V) O(E lg V)

Fibonacci 
heap

O(lg V)
amortized

O(1)
amortized

O(E + V lg V)
worst case
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MST algorithms

Kruskal’s algorithm (see CLRS):
• Uses the disjoint-set data structure (Lecture 20).
• Running time = O(E lg V).

Best to date:
• Karger, Klein, and Tarjan [1993].
• Randomized algorithm.
• O(V + E) expected time.


