
Introduction to Algorithms
6.046J/18.401J/SMA5503

Lecture 16
Prof. Charles E. Leiserson

Introduction to Algorithms Day 27 L16.2© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Graphs (review)
Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E ⊆ V × V of edges.
In an undirected graph G = (V, E), the edge
set E consists of unordered pairs of vertices.
In either case, we have |E | = O(V 2). Moreover,
if G is connected, then |E | ≥ |V | – 1, which
implies that lg |E | = Θ(lgV).
(Review CLRS, Appendix B.)

Introduction to Algorithms Day 27 L16.3© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Adjacency-matrix
representation

The adjacency matrix of a graph G = (V, E), where
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

A[i, j] = 1 if (i, j) ∈ E,
0 if (i, j) ∉ E.

22 11

33 44

A 1 2 3 4
1
2
3
4

0 1 1 0
0 0 1 0
0 0 0 0
0 0 1 0

Θ(V 2) storage
⇒ dense
representation.

Introduction to Algorithms Day 27 L16.4© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Adjacency-list representation
An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to v.

22 11

33 44

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

For undirected graphs, |Adj[v] | = degree(v).
For digraphs, |Adj[v] | = out-degree(v).
Handshaking Lemma: ∑v∈V = 2 |E | for undirected
graphs ⇒ adjacency lists use Θ(V + E) storage —
a sparse representation (for either type of graph).

Introduction to Algorithms Day 27 L16.5© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Minimum spanning trees

Input: A connected, undirected graph G = (V, E)
with weight function w : E → R.
• For simplicity, assume that all edge weights are

distinct. (CLRS covers the general case.)

∑
∈

=
Tvu

vuwTw
),(

),()(.

Output: A spanning tree T — a tree that connects
all vertices — of minimum weight:

Introduction to Algorithms Day 27 L16.6© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of MST

6 12
5

14

3

8

10

15

9

7

Introduction to Algorithms Day 27 L16.7© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

u

v
Remove any edge (u, v) ∈ T. Remove any edge (u, v) ∈ T. Then, T is partitioned
into two subtrees T1 and T2.

T1

T2
u

v

Optimal substructure
MST T:

(Other edges of G
are not shown.)

Theorem. The subtree T1 is an MST of G1 = (V1, E1),
the subgraph of G induced by the vertices of T1:

V1 = vertices of T1,
E1 = { (x, y) ∈ E : x, y ∈ V1 }.

Similarly for T2.

Introduction to Algorithms Day 27 L16.8© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Proof of optimal substructure

w(T) = w(u, v) + w(T1) + w(T2).
Proof. Cut and paste:

If T1′were a lower-weight spanning tree than T1 for
G1, then T ′ = {(u, v)} ∪ T1′ ∪ T2 would be a
lower-weight spanning tree than T for G.

Do we also have overlapping subproblems?
•Yes.
Great, then dynamic programming may work!
•Yes, but MST exhibits another powerful property
which leads to an even more efficient algorithm.

Introduction to Algorithms Day 27 L16.9© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Hallmark for “greedy”
algorithms

Greedy-choice property
A locally optimal choice

is globally optimal.

Theorem. Let T be the MST of G = (V, E),
and let A ⊆ V. Suppose that (u, v) ∈ E is the
least-weight edge connecting A to V – A.
Then, (u, v) ∈ T.

Introduction to Algorithms Day 27 L16.10© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T:

u

v

(u, v) = least-weight edge
connecting A to V – A

Introduction to Algorithms Day 27 L16.11© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T:

u

Consider the unique simple path from u to v in T.

(u, v) = least-weight edge
connecting A to V – A

v

Introduction to Algorithms Day 27 L16.12© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T:

u
(u, v) = least-weight edge
connecting A to V – A

v

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V – A.

Introduction to Algorithms Day 27 L16.13© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T ′:

u
(u, v) = least-weight edge
connecting A to V – A

v

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V – A.
A lighter-weight spanning tree than T results.

Introduction to Algorithms Day 27 L16.14© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Prim’s algorithm
IDEA: Maintain V – A as a priority queue Q. Key
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.
Q ← V
key[v] ←∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v) ⊳ DECREASE-KEY

π[v] ← u

At the end, {(v, π[v])} forms the MST.

Introduction to Algorithms Day 27 L16.15© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of Prim’s algorithm

∈ A
∈ V – A

∞∞

∞∞ ∞∞

∞∞ 00

∞∞

∞∞

∞∞

6 12
5

14

3

8

10

15

9

7

Introduction to Algorithms Day 27 L16.16© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of Prim’s algorithm

∈ A
∈ V – A

∞∞

∞∞ ∞∞

∞∞ 00

∞∞

∞∞

∞∞

6 12
5

14

3

8

10

15

9

7

Introduction to Algorithms Day 27 L16.17© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of Prim’s algorithm

∈ A
∈ V – A

∞∞

∞∞ 77

∞∞ 00

1010

∞∞

1515

6 12
5

14

3

8

10

15

9

7

Introduction to Algorithms Day 27 L16.18© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of Prim’s algorithm

∈ A
∈ V – A

∞∞

∞∞ 77

∞∞ 00

1010

∞∞

1515

6 12
5

14

3

8

10

15

9

7

Introduction to Algorithms Day 27 L16.19© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of Prim’s algorithm

∈ A
∈ V – A

1212

55 77

∞∞ 00

1010

99

1515

6 12
5

14

3

8

10

15

9

7

Introduction to Algorithms Day 27 L16.20© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of Prim’s algorithm

∈ A
∈ V – A

1212

55 77

∞∞ 00

1010

99

1515

6 12
5

14

3

8

10

15

9

7

Introduction to Algorithms Day 27 L16.21© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of Prim’s algorithm

∈ A
∈ V – A

66

55 77

1414 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

Introduction to Algorithms Day 27 L16.22© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of Prim’s algorithm

∈ A
∈ V – A

66

55 77

1414 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

Introduction to Algorithms Day 27 L16.23© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of Prim’s algorithm

∈ A
∈ V – A

66

55 77

1414 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

Introduction to Algorithms Day 27 L16.24© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of Prim’s algorithm

∈ A
∈ V – A

66

55 77

33 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

Introduction to Algorithms Day 27 L16.25© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of Prim’s algorithm

∈ A
∈ V – A

66

55 77

33 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

Introduction to Algorithms Day 27 L16.26© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of Prim’s algorithm

∈ A
∈ V – A

66

55 77

33 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

Introduction to Algorithms Day 27 L16.27© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Example of Prim’s algorithm

∈ A
∈ V – A

66

55 77

33 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

Introduction to Algorithms Day 27 L16.28© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Handshaking Lemma ⇒Θ(E) implicit DECREASE-KEY’s.

Q ← V
key[v] ←∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)

π[v] ← u

Analysis of Prim

degree(u)
times

|V |
times

Θ(V)
total

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Introduction to Algorithms Day 27 L16.29© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

Analysis of Prim (continued)

Time = Θ(V)·TEXTRACT-MIN + Θ(E)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(V) O(1) O(V2)
binary
heap O(lg V) O(lg V) O(E lg V)

Fibonacci
heap

O(lg V)
amortized

O(1)
amortized

O(E + V lg V)
worst case

Introduction to Algorithms Day 27 L16.30© 2001 by Charles E. Leiserson© 2001 by Charles E. Leiserson

MST algorithms

Kruskal’s algorithm (see CLRS):
• Uses the disjoint-set data structure (Lecture 20).
• Running time = O(E lg V).

Best to date:
• Karger, Klein, and Tarjan [1993].
• Randomized algorithm.
• O(V + E) expected time.

