Introduction to Algorithms $6.046 \mathrm{~J} / 18.401 \mathrm{~J} /$ SMA5503

Lecture 16

Prof. Charles E. Leiserson

Graphs (review)

Definition. A directed graph (digraph) $G=(V, E)$ is an ordered pair consisting of

- a set V of vertices (singular: vertex),
- a set $E \subseteq V \times V$ of edges.

In an undirected graph $G=(V, E)$, the edge set E consists of unordered pairs of vertices.
In either case, we have $|E|=O\left(V^{2}\right)$. Moreover, if G is connected, then $|E| \geq|V|-1$, which implies that $\lg |E|=\Theta(\lg V)$.
(Review CLRS, Appendix B.)

Adjacency-matrix representation

The adjacency matrix of a graph $G=(V, E)$, where $V=\{1,2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$
A[i, j]= \begin{cases}1 & \text { if }(i, j) \in \mathrm{E} \\ 0 & \text { if }(i, j) \notin \mathrm{E}\end{cases}
$$

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

$\Theta\left(V^{2}\right)$ storage \Rightarrow dense representation.

Adjacency-list representation

An adjacency list of a vertex $v \in V$ is the list $\operatorname{Adj}[v]$ of vertices adjacent to v.

$$
\begin{aligned}
\operatorname{Adj}[1] & =\{2,3\} \\
\operatorname{Adj}[2] & =\{3\} \\
\operatorname{Adj}[3] & =\{ \} \\
\operatorname{Adj}[4] & =\{3\}
\end{aligned}
$$

For undirected graphs, $|\operatorname{Adj}[v]|=$ degree(v). For digraphs, $|\operatorname{Adj}[v]|=$ out-degree(v).

Handshaking Lemma: $\sum_{v \in V}=2|\mathrm{E}|$ for undirected graphs \Rightarrow adjacency lists use $\Theta(V+E)$ storage a sparse representation (for either type of graph).
© 2001 by Charles E. Leiserson

Minimum spanning trees

Input: A connected, undirected graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbb{R}$.

- For simplicity, assume that all edge weights are distinct. (CLRS covers the general case.)

Output: A spanning tree T - a tree that connects all vertices - of minimum weight:

$$
w(T)=\sum_{(u, v) \in T} w(u, v) .
$$

Example of MST

Optimal substructure

 MST T :(Other edges of G are not shown.)

Remove any edge $(u, v) \in T$. Then, T is partitioned into two subtrees T_{1} and T_{2}. Theorem. The subtree T_{1} is an MST of $G_{1}=\left(V_{1}, E_{1}\right)$, the subgraph of G induced by the vertices of T_{1} :

$$
\begin{aligned}
& V_{1}=\text { vertices of } T_{1}, \\
& E_{1}=\left\{(x, y) \in E: x, y \in V_{1}\right\} .
\end{aligned}
$$

Similarly for T_{2}.
© 2001 by Charles E. Leiserson

Proof of optimal substructure

Proof. Cut and paste:

$$
w(T)=w(u, v)+w\left(T_{1}\right)+w\left(T_{2}\right)
$$

If $T_{1}{ }^{\prime}$ were a lower-weight spanning tree than T_{1} for G_{1}, then $T^{\prime}=\{(u, v)\} \cup T_{1}^{\prime} \cup T_{2}$ would be a lower-weight spanning tree than T for G. \square
Do we also have overlapping subproblems?

- Yes.

Great, then dynamic programming may work!

- Yes, but MST exhibits another powerful property which leads to an even more efficient algorithm.

Hallmark for "greedy" algorithms

Theorem. Let T be the MST of $G=(V, E)$, and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting A to $V-A$. Then, $(u, v) \in T$.

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.
 T :
 - $\in A$
 - $\in V-A$

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.
T :

- $\in A$
- $\in V-A$
$(u, v)=$ least-weight edge connecting A to $V-A$
Consider the unique simple path from u to v in T.

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.
T :

- $\in A$

- $\in V-A$
$(u, v)=$ least-weight edge connecting A to $V-A$
Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in $V-A$.

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.
T^{\prime} :

- $\in A$
- $\in V-A$
$(u, v)=$ least-weight edge connecting A to $V-A$
Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in $V-A$.
A lighter-weight spanning tree than T results. \square

Prim's algorithm

Idea: Maintain $V-A$ as a priority queue Q. Key each vertex in Q with the weight of the leastweight edge connecting it to a vertex in A.
$Q \leftarrow V$
$k e y[\nu] \leftarrow \infty$ for all $v \in V$
$k e y[s] \leftarrow 0$ for some arbitrary $s \in V$
while $Q \neq \varnothing$
do $u \leftarrow \operatorname{ExtRACT}-\operatorname{MiN}(Q)$
for each $v \in \operatorname{Adj}[u]$
do if $v \in Q$ and $w(u, v)<k e y[v]$ then $k e y[v] \leftarrow w(u, v) \quad \triangleright$ Decrease-Key

$$
\pi[v] \leftarrow u
$$

At the end, $\{(v, \pi[v])\}$ forms the MST.

Example of Prim's algorithm

Analysis of Prim

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's. Time $=\Theta(V) \cdot T_{\text {EXtract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

Analysis of Prim (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$
Q $\quad T_{\text {Extract-Min }} \quad T_{\text {Decrease-Key }} \quad$ Total
array
$O(V)$
$O(1)$
$O\left(V^{2}\right)$
binary
heap
$O(\lg V)$
$O(\lg V)$
$O(E \lg V)$
Fibonacci $\quad O(\lg V)$
heap amortized
$O(1)$
$O(E+V \lg V)$
amortized worst case

MST algorithms

Kruskal's algorithm (see CLRS):

- Uses the disjoint-set data structure (Lecture 20).
- Running time $=O(E \lg V)$.

Best to date:

- Karger, Klein, and Tarjan [1993].
- Randomized algorithm.
- $O(V+E)$ expected time.

