Introduction to Algorithms $6.046 \mathrm{~J} / 18.401 \mathrm{~J} /$ SMA5503

Lecture 17

Prof. Erik Demaine

Paths in graphs

Consider a digraph $G=(V, E)$ with edge-weight function $w: E \rightarrow \mathbb{R}$. The weight of path $p=v_{1} \rightarrow$ $v_{2} \rightarrow \cdots \rightarrow v_{k}$ is defined to be

$$
w(p)=\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right)
$$

Example:

Shortest paths

A shortest path from u to v is a path of minimum weight from u to v. The shortestpath weight from u to v is defined as
$\delta(u, v)=\min \{w(p): p$ is a path from u to $v\}$.
Note: $\delta(u, v)=\infty$ if no path from u to v exists.

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Triangle inequality

Theorem. For all $u, v, x \in V$, we have
 $$
\delta(u, v) \leq \delta(u, x)+\delta(x, v) .
$$

Proof.

\square

Well-definedness of shortest paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.

Example:

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.
If all edge weights $w(u, v)$ are nonnegative, all shortest-path weights must exist.
Idea: Greedy.

1. Maintain a set S of vertices whose shortestpath distances from s are known.
2. At each step add to S the vertex $v \in V-S$ whose distance estimate from s is minimal.
3. Update the distance estimates of vertices adjacent to v.

Dijkstra's algorithm

```
d[s]}\leftarrow
for each }v\inV-{s
    do d[v]}\leftarrow
S\leftarrow\varnothing
Q\leftarrowV \triangleright Q is a priority queue maintaining V-S
while }Q\not=
    do }u\leftarrow\mathrm{ Extract-Min(Q)
    S\leftarrowS\cup{u}
    for each v}\in\operatorname{Adj}[u
        do if }d[v]>d[u]+w(u,v
            then }d[v]\leftarrowd[u]+w(u,v) step
Implicit Decrease-KEY
```


Example of Dijkstra's algorithm

Graph with nonnegative edge weights:

Example of Dijkstra's algorithm

Initialize:

$$
Q: \begin{array}{lllll}
A & B & C & D & E \\
\hline \hline 0 & \infty & \infty & \infty & \infty
\end{array}
$$

$$
S:\{ \}
$$

Example of Dijkstra's algorithm

Example of Dijkstra's algorithm

$S:\{A\}$

Example of Dijkstra's algorithm

$$
S:\{A, C\}
$$

Example of Dijkstra's algorithm

Relax all edges leaving C :

Q:

A	B	C	D	E
0	∞	∞	∞	∞
	10	3	-	-
	7		11	5

$$
S:\{A, C\}
$$

Example of Dijkstra's algorithm

Example of Dijkstra's algorithm

Relax all edges leaving E :

A	B	C	D	E
0	∞	∞	∞	∞
	10	3	∞	∞
	7		11	5
	7		11	

11

$$
S:\{A, C, E\}
$$

Example of Dijkstra's algorithm

Example of Dijkstra's algorithm

Relax all edges leaving B :

A	B	C	D	E
0	∞	∞	∞	∞
	10	3	∞	∞
	7		11	5
	7		11	

11

$$
S:\{A, C, E, B\}
$$

9

Example of Dijkstra's algorithm

Correctness - Part I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V-\{s\}$ establishes $d[v] \geq \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.
Proof. Suppose not. Let v be the first vertex for which $d[v]<\delta(s, v)$, and let u be the vertex that caused $d[v]$ to change: $d[v]=d[u]+w(u, v)$. Then,

$$
\begin{aligned}
d[v] & <\delta(s, v) & & \text { supposition } \\
& \leq \delta(s, u)+\delta(u, v) & & \text { triangle inequality } \\
& \leq \delta(s, u)+w(u, v) & & \text { sh. path } \leq \text { specific path } \\
& \leq d[u]+w(u, v) & & v \text { is first violation }
\end{aligned}
$$

Contradiction.
© 2001 by Charles E. Leiserson

Correctness - Part II

Theorem. Dijkstra's algorithm terminates with $d[v]=\delta(s, v)$ for all $v \in V$.
Proof. It suffices to show that $d[v]=\delta(s, v)$ for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u] \neq \delta(s, u)$. Let y be the first vertex in $V-S$ along a shortest path from s to u, and let x be its predecessor:

S, just before adding u.

Correctness - Part II (continued)

Since u is the first vertex violating the claimed invariant, we have $d[x]=\delta(s, x)$. Since subpaths of shortest paths are shortest paths, it follows that $d[y]$ was set to $\delta(s, x)+$ $w(x, y)=\delta(s, y)$ when (x, y) was relaxed just after x was added to S. Consequently, we have $d[y]=\delta(s, y) \leq \delta(s, u)$ $\leq d[u]$. But, $d[u] \leq d[y]$ by our choice of u, and hence $d[y]$ $=\delta(s, y)=\delta(s, u)=d[u]$. Contradiction. \square

Analysis of Dijkstra

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's. Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$
Note: Same formula as in the analysis of Prim's minimum spanning tree algorithm.
© 2001 by Charles E. Leiserson

Analysis of Dijkstra (continued)

Time $=\Theta(V) \cdot T_{\text {Extract-Min }}+\Theta(E) \cdot T_{\text {Decrease-Key }}$

$Q \quad T_{\text {Extract-Min }} T_{\text {Decrease-Key }}$ Total

array
$O(V)$
$O(1)$
$O\left(V^{2}\right)$
binary
heap
$O(\lg V)$
$O(\lg V)$
$O(E \lg V)$
Fibonacci $\quad O(\lg V)$
heap amortized amortized worst case

Unweighted graphs

Suppose $w(u, v)=1$ for all $(u, v) \in E$. Can the code for Dijkstra be improved?

- Use a simple FIFO queue instead of a priority queue.
- Breadth-first search
while $Q \neq \varnothing$
do $u \leftarrow \operatorname{Dequeve}(Q)$
for each $v \in \operatorname{Adj}[u]$
do if $d[v]=\infty$
then $d[v] \leftarrow d[u]+1$
Enqueue $(2, v)$
Analysis: Time $=O(V+E)$.

Example of breadth-first search

Q:

Example of breadth-first search

Correctness of BFS

while $Q \neq \varnothing$
do $u \leftarrow \operatorname{Dequeve}(Q)$
for each $v \in \operatorname{Adj}[u]$ do if $d[v]=\infty$

then $d[v] \leftarrow d[u]+1$
Enqueue (Q, v)

Key idea:

The FIFO Q in breadth-first search mimics the priority queue Q in Dijkstra.

- Invariant: v comes after u in Q implies that $d[\nu]=d[u]$ or $d[\nu]=d[u]+1$.

