2110253 Comp Elec & Int Part 3 (assembly language)

Simple Machine Z0

This is a hypothetical machine. It is used to illustrate a structure of processor. We can define and
program this machine on paper. It has a minimal set of instructions that have simple form. First, we
define the machine itself. Z0 has fixed width instructions. Its natural size is 32 bits. It has 16 registers.

<picture of architecture of Z0>

Instruction Set
Z0 has what is called “single address” instruction format. That is, an instruction has only one argument.
An instruction is 32-bit, with opcode 8 bits and operand 24 bits.

Opcode: 8 Operand: 24
We define the first group of instruction <operator> or <op>
Assembly language: op reg
Where reg is the register r0..r15

op is add, sub, inc, dec

The result is mostly stored in a special register called “accumulator”. Most operators store results there.

add rl means ac = ac + rl
sub rl ac = ac — rl
inc rl rl = rl + 1
dec rl rl = rl - 1

Another group of instructions perform data movement between registers.

mov rl ac = rl
mvi n ac =n where n is a 24-bit constant, called immediate
put rl rl = ac that is a compliment operation of mov rl

The next group of instructions is the logic group. They are used for comparison of two values. They
affect “flag” in the machine. This flag is one bit storage (True/False) and it is used in the transfer of
control instruction (explain next).

<logicop> eq ne 1t le gt ge z equal, not equal, less that, less than or equal ... zero

eq rl flag = (ac == rl)
ne rl flag = (ac != rl)
1t ril flag = (ac < rl)
z rl flag = (rl == 0)

The next group of instructions affects the transfer of control of program (or jump).

jmp ads unconditional jump to ads, where ads is the location of the instruction
jt ads jump to ads if flag is True

Jf ads jump to ads if flag is False

stop this is a pseudo instruction to tell us that the program has ended.

Ill

Please note that Z0 as defined right now, does not have “external” memory (we will add that later). All

it has is the internal registers (16 of them). Each can hold a 32-bit value.

Now we have enough instructions to perform some computation. Let us try some simple program in the
assembly language of Z0.

Example 1 A simple arithmetic statement. B=C+D

We assignrl, r2, r3 to B, Cand D. (Notice that we preserve r0)

mvi O ; ac =0

add r2 ; ac = ac + r2
add r3 ; ac = ac + r3
put rl ; rl = ac

stop

Encoding of instruction
Each instruction has a 8-bit code. We assign them as follows:

1 add, 2 sub, 3 inc, 4 dec, 5 mov, 6 mvi, 7 -, 8 put, 9 eq,

10 ne, 11 1t, 12 1le, 13 gt, 14 ge, 15 z, 16 jmp, 17 jt, 18 3£,
19 stop

We can write the above program in “machine code” as follows. Assume we start the program at
location 0 and we write down each instruction as opcode,operand.

Address instruction

0 6,0 mvi O
1 1,2 add r2
2 1,3 add r3
3 8,1 put rl
4 19,0 stop

Let us try some other program that contains loop.

Example 2 Add 1..10
Pseudo code

i =1
s =0
while 1 <= 10
s = s + i

i=1+1

Z0 assembly language: Letrl bei, r2s,r3 10
mvi 10
put r3
mvi 1
put rl
mvi O
put r2
:loop
mov r2
le r3 ;1 <= 10
Jf exit
mov r2
add rl
put r2 ; s = s + 1
inc rl ; i=1+1
Jjmp loop
rexit
stop
Notice that we use “label” such as “loop” and “exit” to designate the location. We use the prefix “:” to

signify the labels but no prefix when they are used in the instructions. They are used with jump
instructions. Again we write down machine code here:

Address Instruction

0 6,10 mvi 10
1 8,3 put r3
2 6,1 mvi 1
3 8,1 put rl
4 6,0 mvi O
5 8,2 put r2
loop
6 5,2 mov r2
7 12,3 le r3 ;1 <= 10
8 18,14 3f exit
9 5,2 mov r2
10 1,1 add rl
11 8,2 put r2 ; s =s + 1
12 3,1 inc rl H i=1+4+1
13 16,6 Jjmp loop
rexit

14 19,0 stop

Note that the labels become the real address. “loop” is the address 6. “exit” is the address 14. The
“assembler” is the program that performs the translation of “assembly” language into machine codes.
The assembler can handle “label” automatically.

Example 3 Max of three numbers. We use comparisons that form a decision tree.
Let numbers be B, C, D
B > C
Y N
B >D B >D
Y N Y N
max is B max is D max is C max is D

Letrl be B, r2 C, r3 D, r4 max

mov rl

gt r2 ; B > C

Jf nol

mov rl

gt r3 ; B> D

Jf no2

mov rl

put r4 ; max = B
Jjmp exit

:no?2
mov r3
put r4 ; max = D
Jjmp exit
:nol
mov r2

gt r3 ; C >D
Jf no3
mov r2
put r4 ; max = C
Jjmp exit
:no3
mov r3
put r4 ; max = D
rexit
stop

You will probably notice by now that programming in machine language (assembly language) is simple
but it is tedious. In fact, machine language is the simplest computer language (you opinion may be
different from mine).

To extend the storage to main memory, we need additional instructions to move data between registers
and memory.

1d ads ; ac = Ml[ads]
st ads ; M[ads] = ac
ldd r1l ; ac = M[rl]
std rl ; M[rl] = ac

with these encoding

20 1d, 21 st, 22 1ldd, 23 std

Now it is time to talk about “addressing space”. The amount of memory that can be “directly” access by
an instruction depends on the number of bit of argument in the instruction. In our machine, it is 24 bits.
Therefore Z0 has 16 M words memory (each word is 32 bits). This is comparable to a 64 Mbytes of
conventional RAM we have in our present laptop machine. We have “direct” addressing and “indirect”
addressing. In direct address, the argument is used to locate the “address” directly, for example, |d 100
will access the memory at location 100. The indirect address, the value of a register is used as the
address (this is called an effective address). In fact, a register has 32-bit value so theoretically we can
use indirect address of our machine to address the main memory as large as 16G bytes.

Now let us program with some data structure. The most frequently used data structure is Array. Indirect
addressing is used to perform indexing of an array. We can access to the value of an element as follows.
Let ax[.] be an array. Anindexisinrl. The base address (the first location where ax resides) is in r2.

C = ax][i] can be writtenas ;letr2 be &ax, rl1 bei, r3 beC

mov r2 ; ac = 1

add rl ; ac = &ax + 1, compute effective address
put rl

1ldd rl ; get ax[i] into ac

put r3 ; C = ax[1i]

Using this access method, you can write a program to sum all elements in an array. Let us see one more
example of storing a value to an array. How to do this ax[i]=C

Let r2 be &ax, r1 bei, r3beC

mov r2 ; ac =1

add rl ; ac = &ax + 1, compute effective address
put rl

mov r3 ; get C

std rl ; ax[1i] = C

Creating function

In a high level language, we can write a modular program that reuses its component. This is achieved by
packaging the often use part into a “function” (or “procedure” or “method”). In order for a function to
return to its caller, we need to store the “return address” in a special data structure, usually
implemented as a “stack”. The Z0 has an implicit stack for this purpose (with the depth of 8). This stack
is not accessible to programmers. We need two more instructions to do a function call:

call ads ; next pc -> stack; jump to ads
ret ; stack -> pc

with encoding 24 call, 25 ret.

Example 4 Calling a function, passing parameters on registers.

double (x)
return x + X

main ()
a =3
b = double (a)

Let r2 x, r3 b, we pass a to x via r2 and keep return value in r0

:double
mov r2
add r2 ; result in rO
ret
rmain
mvi 3
put r2 ; pass 3 to x
call double
put r3 ; sStore result in Db
stop

Exercises
1) Write a program to sum all elements in an array
2) Write a program to multiply two numbers using “repeat” addition. Suppose you want to

multiply A by B. You can do that by adding A to itself B times, A+ A+ A

3) How can you “exchange” the values of two registers?
4) When you want loop for x times, you can do it two ways. One way is to count up to x. The other

way is to count down from x to 0. Write some loop in both ways. Which way is shorter?
Enjoy simple machine coding!
Prabhas Chongstitvatana 18 September 2014
(Scotland for independence?)

update 25 Sept 2014

