
S2 Instruction Set

S2 is a simple 32-bit processor for teaching purpose. The choice of the 3-address instruction
format is suitable to map to a typical "a = b op c" in a high level language. The instruction set is
modelled after modern processors. It includes full integer arithmetic and logic to enable
compiling a realistic program into this ISA. Three addressing modes are introduced:
displacement, index and immediate. These mode enables a realistic access to data structure such
as a local variable in an activation record and array indexing. S2 ISA represents a realistic ISA
for a typical 32-bit processor without excess details. This is not "optimal" design. There are
plenty of room for improvement.

Instruction format

L-format op:5 rd1:5 ads:22
D-format op:5 rd1:5 rs2:5 disp:17
X-format op:5 rd1:5 rs2:5 rs3:5 xop:12

(rd dest, rs source, disp sign extended)
Instructions are fixed length at 32-bit. Register set is 32, with R[0] always return zero. The
address space is 32-bit, addressing is word. Flags are: Z zero, S sign, C carry, O
overflow/underflow.

ISA and opcode encoding

mode: a - absolute, d -displacement, x - index, i - immediate, r - register, r2 - register 2 operands,
s - special 1 operand
jump conditional coding in r1: 0 always, 1 eq, 2 neq, 3 lt, 4 le, 5 ge, 6 gt

opcode op mode format

0 ld a L
1 ld d D
2 ld i L
3 st a L
4 st d D
5 jmp a L r1 as cond
6 jal a L
7 add i D
8 sub i D
9 mul i D
10 div i D
11 and i D
12 or i D
13 xor i D
14..30 undefined
31 xop - X

xop

0 add r X
1 sub r X
2 mul r X
3 div r X
4 and r X
5 or r X
6 xor r X
7 shl r2 X
8 shr r2 X
9 ld x X
10 st x X
11 jr s X use r1
12 trap s X use r1 as
trap number
13..4095 undefined

Meaning

format: op dest, source1, source2, r0 always returns zero

ld r1 ads R[r1] = M[ads]
ld r1 #n R[r1] = n
ld r1 @d r2 R[r1] = M[d + R[r2]]
ld r1 +r2 r3 R[r1] = M[R[r2] + R[r3]]
st ads r1 M[ads] = R[r1]
st @d r2 r1 M[d + R[r2]] = R[r1]
st +r2 r3 r1 M[R[r2] + R[r3]] = R[r1]

jmp cond ads if cond true PC = ads
jal r1 ads R[r1] = PC; PC = ads
jr r1 PC = R[r1]

jal r1 ads is jump and link, or call to subroutine, saving next pc in r1
jr r1 is jump with register, or return from subroutine

add r1 r2 r3 R[r1] = R[r2] + R[r3]
add r1 r2 #n R[r1] = R[r2] + sign extended n

arithmetic: two-complement integer arithmetic
add, sub affect Z,C -- C indicates carry (add) or borrow (sub)
mul, div affect Z,O -- O indicates overflow (mul) or underflow (div) and divide by zero
logic (bitwise) affect Z,S bits

and r1 r2 r3 R[r1] = R[r2] bitand R[r3]
and r1 r2 #n R[r1] = R[r2] bitand sign extended n
or xor . . .
shl r1 r2 R[r1] = R[r2] shift left one bit
shr r1 r2 R[r1] = R[r2] shift right one bit

trap n r2

special instruction, n is in r1-field. Trap is a call to OS functions or to simulator supported
functions. The opcode format and assembly language format for S2 follow the tradition dest =
source1 op source2 from PDP, VAX and IBM S360. As r0 always is zero, many instructions can
be synthesis using r0.

or r1 r2 r0 move r1 <- r2
or r1 r0 r0 clear r1
sub r0 r1 r2 compare r1 r2 affects flags

To complement a register, xor with 0xFFFFFFFF (-1) can be used.

xor r1 r2 #-1 r1 = complement r2

7 Feb 2005
Prabhas Chongstitvatana
end

