
Compiler Paralization Design

and Implementation using OpenMP
Tongjai Yampaka

Report in Digital Systems: 1st semester 2016

Abstract—Compilation is a process that translates a source code

in one language (the source language) into another language (the

object or target language). The specification design in language is

important for building the compiler. Recently, many applications

tried to find methods to improve the execution time. The

compiler parallelization design is introduce. In this report shows

two designs (the specification design and the parallel

implementation design). The result shows that the compiler

design approaches to compile the case study source code to the

target code (S-code) and some compiler phases can be done in

parallel execution.

Keywords; formatting; compiler design; parallel compiler;

parallel programming

I. INTRODUCTION (HEADING 1)

The computer system is made of hardware and software
[1]. The hardware understands a language, which humans
cannot understand. The programs in high-level language,
which is easier for the programmer to understand. Language
Processing System are a series of tools and OS components to
get the code that can be used by the machine. A compiler is a
program that converts high-level language to intermediate
language such as assembly language. Similarly, an assembler is
a program that converts the assembly language to machine-
level language. A compiler reads the whole source code at
once, creates tokens, checks semantics, generates intermediate
code, executes the whole program and may involve many
passes. In contrast, an interpreter reads a statement from the
input, converts it to an intermediate code, executes it, then
takes the next statement in sequence. The procedure to build
the compiler starts with the specification design such as the
regular expression design, and context-free grammar.

Recently, multicore processors have been proposed as a
solution to provide both performance and scalability. Many
application tried to use this advantage. This report introduces
the compiler parallelization design in case study instruction.
This work divides in two design. The first, the specification of
compiler language design. The second, the parallel compiler
implementation design.

This paper is organized as follows. Section 2 introduces
general background on compiler design. Section 3 the
background on basic parallelization techniques in openMP.
Section 4 shows the methodology. Section 5 shows the
experimental result and Section 6 conclusion.

II. COMPILER DESIGN

A. Bsic compiler design.

Nowadays, the program is written in a high-level
programming language [2] such as JAVA, C, or Python. The
compiler translates the high-level to the low-level language
what is called machine language. In another mean, compilation
is a process that translates a program in one language (the
source language) into another language (the object or target
language) [3].

B. The phases of compiler.

The work of compiler split into several phases. These
phases operate in sequence.

 Lexical analysis: This is the initial part of reading and
analyzing the program text. The text is read and split
into tokens.

 Syntax analysis: This phase takes the list of tokens
produced by the lexical analysis and assign these in a
syntax tree. This phase is often called parsing.

 Semantic Analysis: This phase takes its input from the
syntax analysis phase (the form of a parse tree) and
determines if the input has a well-defined meaning.

 Intermediate code generation: The program is
translated to a simple machine-independent
intermediate language.

 Register allocation: The symbolic variable names used
in the intermediate code are translated to numbers,
each of which corresponds to a register in the target
machine code.

 Machine code generation: The intermediate language is
translated to assembly language (a textual
representation of machine code) for a specific machine
architecture.

 Assembly and linking: The assembly-language code is
translated into binary representation and addresses of
variables, functions are determined.

The first three phases are called the frontend of the
compiler and the last three phases are called the backend. The
intermediate code generation are called the middle. In this
report shows the interpreter design (the frontend and the middle
design).

III. PARALLEL PROGRMMING CONCEPT

Parallelization is another optimization technique. The goal
is to reduce the execution time. Parallel computing uses the
multiple compute resources to solve a computational problem.
A problem is broken into discrete parts that can be solved
concurrently. Each part is further broken down into a series of
instructions. Instructions from each part execute on different
processors [4].

A. Parallel programming with OpenMP API.

The OpenMP API covers only user-directed parallelization,
wherein the programmer explicitly specifies the actions to be
taken by the compiler and runtime system in order to execute
the program in parallel [4]. The OpenMP API uses the fork-
join model of parallel execution. Multiple threads of execution
perform tasks defined implicitly or explicitly by OpenMP
directives. In C/C++, OpenMP directives are specified by using
the #pragma mechanism provided by the C and C++ standards.
The syntax of an OpenMP directive is as follows:

#pragma omp directive-name [clause[[,] clause] ...] new-line

structured-block

The directives allow the user to mark areas of the code,
such as do, while or for loops, which are suitable for parallel
processing. OpenMP allows the program to request any
number of threads of execution. If your system has four
processors available, maybe 4 threads is what you want.

Figure 1. Example of C parallel code in OpenMP

Figure 1 the code print “Hello World” from the number of

thread. The execution can be done not using loop. In this

report, the parallel threads are used in parallel compiler.

The parallel run time is defined as the time that elapses

from the moment that a parallel computation starts to the

moment that the last processor finishes execution.

Notation: Serial run time Ts, parallel run time Tp

Speedup = Ts / Tp

The speedup is defined as the ratio of the serial runtime of

the best sequential algorithm for solving a problem to the time

taken by the parallel algorithm to solve the same problem on p

processors.

IV. METHODOLOGY

The proposed method comprised of (1) the design of
compiler (2) build the parallel compiler using OpenMP (3)
report the experimental results.

A. The design of compiler.

1) Lexical analysis: The word “lexical” in the compiler

means “split the words”[3]. The lexical analyzer or scanner is

the sequences of characters into lexemes, and outputs (to the

syntax analyser) a sequence of tokens. Here:

TABLE I. LEXICAL PATTERNS

Lexeme Token Token no. Pattern

def def 10 d, e, f

ifelse ifelse 20 i, f, e, l, s, e

main main 12 m, a, i, n

print print 0 p, r, i, n, t

  |  | + | == oper 32, 31, 30, 11  or  or + or ==

a-z A-Z identifier 40 a-z A-Z

0…9 digit 50 0…9

In terms of programming languages, words are objects

like variable names, numbers, keywords etc. Such words are

traditionally called tokens. For lexical analysis or scanner,

specifications are written using regular expressions.

progrm = def fun-name identifier expression

def = \bdef?\b

fun-name = [a-zA-Z]+

identifier = [a-zA-Z]+

digit = [0-9]+

expression =  |  | + | == | identifier | digit | ifesle

2) Syntax analysis: Where lexical analysis splits the

input into tokens, the purpose of syntax analysis (also known

as parsing) is to recombine these tokens. It is the sequence of

tokens that are passed as output to the syntax analyzer. The

notation use for manipulation is context-free grammars.

progrm = def fun-name | identifier | (expression)

 | main (expression)

 expression = (ifelse (expression)) | (expression)

 = ( |  | + |) expression

 = fun-name (expression)

 = identifier | digit

 = print (expression)

 = (= identifier digit | identifier identifier)

 = (== identifier identifier | digit)

fun-name = identifier

identifier = [a-zA-Z]+

digit = [0-9]+

Parse Trees and Syntax Trees. The structure is a parse

tree or a syntax tree. A parse tree is tree that represents the

tokens into phrases[3]. A syntax tree the operators appear the

interior nodes. The construction of a parse tree is a basic

activity in compiler-writing.

For example: def fac n

 def

fun-name identifier

identifier n

 fac

Figure 2. Example of Parse Tree

3) Semantic analysis: A semantic analyser determine the

input has a well-defined meaning. Semantic analysers are

mainly concerned with type checking and type coercion

basedon type rules. For example (= a b) is expression based

on rule (= identifier digit | identifier identifier) that means

assignmet type (a = b).

4) Intermediate code generation: The final goal of a

compiler is to get programs written in a high-level language to

run on a computer[2]. This phase translate directly from the

high-level abstract syntax to machine code. Many compilers

use a medium-level language between the high-level language

and the very low-level machine code. In this report use S-code

instruction [5]. This design uses stack in translated table in

expression. For example instruction:

def fac n  def fac n

ifelse == n 0  ifelse == n 0

fac * n - n 1  1 n – n * fac

def main  def main

fac n print  print n fac

TABLE II. CODE GENERATION

Target Code Translator Intermediate

code

def fac labelled instruction :label

 n an assignment value mov r1 r2

ifelse loop instruction :loop

== n 0 loop condition eq r1 r1 0

 jt r1 main

 jf r1 trap 0

 jmp label

1 n – expression sub r2 r1 1

n * expression mul r1 r1 r2

fac call label jmp label

def main labelled instruction :main

print expression trap 1

n expression mv r1 r1 n

fac call label jmp label

B. Implementation in thread parallelisms.

In this report uses thread parallelisms in openMP. Only the
scanner and code generation were done by thread parallelisms.
The target code was read from text file to array before
calculation. Each thread calculations can be performed on
either the same or different sets of data.

thread-id[i] data[i] output token[i]

thread-id [0] def 10

thread-id [1] fac 40

thread-id [2] 6 50

. . .

. . .

thread-id [n] n n

#pragma omp for ordered schedule(dynamic, 10)
//use 10 threads
for (int n = 0; n < 10; ++n)
 {
//sorting thread id before run parallel
 #pragma omp ordered tid = n;
 ret[tid] = mylex2(tid, arrayc[tid]);
 mytoken[tid] = ret[tid];

}

Figure 3. Scanner result

The execution can be done not using loop. The code
generation concern about the sequence of token but it is can be
done by task parallelisms using dividing one line per thread.
Each thread match the source code to the intermediate code.

thread-id[i] data[i] output token[i]

thread-id [0] def fac 6 :label

 mov r1 r2

thread-id [1] ifelse == n 0 eq r1 r1 0

 jt r1 main

 jf r1 trap 0

 jmp label

. . .

. . .

thread-id [n] n n

Sometimes it is handy to indicate that "this and this can run
in parallel". The sections setting is just for that

#pragma omp parallel sections
// starts a new team
 {
 #pragma omp section
 { myparser(mytoken);}
 #pragma omp section
 {gen(mytoken); }

 }

The parallel can separate in section. This code indicates that
any of the tasks myparser and codegen may run in parallel.
Each work is done exactly once.

Figure 4. Code generator result

V. EXPERIMENTS.

1) Design: From the little target code in case study, this

report designs the compiler in four phases. The lexical

analyzer or scanner splits the word into the token using regular

expression design. The syntax analyzer assigns these tokens

into the syntax tree using grammar rules (context free

grammar) and the semantic analyzer determines the input has

a well-defined meaning. Then, the intermediat code generation

phase directly translates the target code into the intermediate

code (S-code).

2) Implementation: In experiment, the compiler processing

can be done in parallel. The two phases in scanner and code

generation can be done by thread parallelisms in openMP. The

syntax analysis concern about the ordering of words so the

grammar checked phase must execute in ordering. The

parallelisms can discard the loop instruction (for..loop,

while…loop) by using the thread parallelisms thus, the time

performance is reduced.

VI. CONCLUSION

This report presents compiler penalization design and

implementation in openMP. The design based on the case

study code in easy and small instruction. Not at all phase in

design are parallelism such as syntax analysis which phase

concern in ordering correctly instruction. Only two parallel

phases in compiler construction are introduced. However, the

target code was read from text file to array before parallel

execution. Therefore, it may be the case that the data access

time will dominate the total execution time if the task and the

data are not carefully divided.

REFERENCES

[1] "Tutorialspoint," 2014. [Online]. Available:

https://www.tutorialspoint.com/compiler_design/compiler_design_tutorial.pdf.

[Accessed 19 10 2016].

[2] C. W. Matt Poole, Compilers Course notes for module CS 218, 2007.

[3] T. Æ. Mogensen, Basics of Compiler Design, 2010.

[4] A. R. Board, "The OpenMP® API specification for parallel programming,"
November 2015. [Online]. Available: http://www.openmp.org/mp-

documents/openmp-4.5.pdf. [Accessed 19 10 2016].

[5] P. Chongstitvatana, "S-code," 2016. [Online]. Available:
https://www.cp.eng.chula.ac.th/~piak/project/som/s-code.htm. [Accessed 19

10 2016].

