
European Journal of Operational Research 222 (2012) 31–43
Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization

Local search methods for the flowshop scheduling problem
with flowtime minimization

Quan-Ke Pan a,b, Rubén Ruiz c,⇑
a State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, PR China
b College of Computer Science, Liaocheng University, Liaocheng 252059, PR China
c Grupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática, Universitat Politècnica de València, Ciudad Politécnica de la Innovación,
Edificio 8G, Acc. B. Camino de Vera S/N, 46021 Valencia, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 23 October 2011
Accepted 25 April 2012
Available online 3 May 2012

Keywords:
Scheduling
Flowshop
Flowtime
Local search
Metaheuristics
0377-2217/$ - see front matter � 2012 Elsevier B.V. A
http://dx.doi.org/10.1016/j.ejor.2012.04.034

⇑ Corresponding author.
E-mail address: rruiz@eio.upv.es (R. Ruiz).
Flowshop scheduling is a very active research area. This problem still attracts a considerable amount of
interest despite the sheer amount of available results. Total flowtime minimization of a flowshop has
been actively studied and many effective algorithms have been proposed in the last few years. New best
solutions have been found for common benchmarks at a rapid pace. However, these improvements many
times come at the cost of sophisticated algorithms. Complex methods hinder potential applications and
are difficult to extend to small problem variations. Replicability of results is also a challenge. In this paper,
we examine simple and easy to implement methods that at the same time result in state-of-the-art per-
formance. The first two proposed methods are based on the well known Iterated Local Search (ILS) and
Iterated Greedy (IG) frameworks, which have been applied with great success to other flowshop prob-
lems. Additionally, we present extensions of these methods that work over populations, something that
we refer to as population-based ILS (pILS) and population-based IG (pIGA), respectively. We calibrate the
presented algorithms by means of the Design of Experiments (DOE) approach. Extensive comparative
evaluations are carried out against the most recent techniques for the considered problem in the litera-
ture. The results of a comprehensive computational and statistical analysis show that the presented algo-
rithms are very effective. Furthermore, we show that, despite their simplicity, the presented methods are
able to improve 12 out of 120 best known solutions of Taillard’s flowshop benchmark with total flowtime
criterion.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction for processing or being processed by exactly one machine. Simi-
Finite capacity scheduling entails the determination of the
processing order of a series of jobs that have to be processed on
the available machines in a production shop. A first classification
of scheduling problems can be derived according to the way ma-
chines are distributed in the factory. When several machines are
arranged in series and jobs must visit all these machines in the
same order we have what is called a flowshop. These problems
have been subjected to detailed studies since the pioneering work
of Johnson (1954). More specifically, a flowshop problem com-
prises a set N of n jobs that must be processed on a set M of m ma-
chines. These m machines are arranged in series and each job j 2 N
is broken down into m tasks, one per machine. A job models a given
production lot of a product or client order that must be manufac-
tured. All jobs visit machines in the same order and pij denotes
the known, non-negative and deterministic amount of time that
job j needs at machine i. At any given time, a job is either waiting
ll rights reserved.
larly, machines are either idle or occupied by a job. Baker (1974,
Chapter 6, pp. 136–137) further details all restrictions that apply:
All jobs are independent and available for processing at time 0. Ma-
chines never break down and are always ready. Once started at a
machine, jobs are processed until completion with no preemption
allowed, etc. A schedule is obtained after devising a permutation of
the jobs for every machine, resulting in (n!)m possible solutions.
The setting is usually simplified and only permutation schedules
are examined, resulting in the permutation flowshop scheduling
problem (PFSP) where job passing is not allowed, i.e., all jobs visit
the machines in the same order. This reduces the number of solu-
tions to n! The objective in the PFSP is to find a permutation such
that a given criterion is optimized. Most studied criteria are based
on the completion times of the jobs at machines. More specifically,
let p = {p(1), p(2), . . . , p(n)} be a possible permutation or solution
to the problem. The completion time of job j at position p(j) at ma-
chine i is denoted by Ci,p(j) and it is computed as follows:

Ci;pðjÞ ¼maxfCi�1;pðjÞ;Ci;pðj�1Þg þ pi;pðjÞ ð1Þ

where j = 1, . . . , n, i = 1, . . . , m, Ci, p(0) = 0, and C0,p(j) = 0.

http://dx.doi.org/10.1016/j.ejor.2012.04.034
mailto:rruiz@eio.upv.es
http://dx.doi.org/10.1016/j.ejor.2012.04.034
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

32 Q.-K. Pan, R. Ruiz / European Journal of Operational Research 222 (2012) 31–43
The completion time of a job j in the shop is then Cm,j or Cj for
short. With completion times, many different objectives are de-
fined. The most studied criterion is the minimization of the make-
span or Cmax, where Cmax = maxj=1,. . .,nCj. This paper studies the total
flowtime minimization, which has also been studied intensively.
Total flowtime is defined as:
TFT ¼
Xn

j¼1

Cj ð2Þ

When there are no release dates, total flowtime and total com-
pletion time are equivalent objectives. Total flowtime minimiza-
tion reduces the work in progress or WIP and results in a stable
utilization of resources. Jobs ‘‘stay’’ in the shop a reduced amount
of time (Framinan et al., 2005). This is of particular importance
to industries where reducing inventory or holding costs is of para-
mount importance.

The PFSP with total flowtime criterion is denoted as n=m=P=P
Cj or as F=prmu=

P
Cj according to the well known existing

scheduling notations (Pinedo, 2009, and many others). F=prmu=P
Cj has been proved to be NP-hard in the strong case for m P 2

after the results of Gonzalez and Sahni (1978). Although some
exact methods have been reported in the literature (Ignall and
Schrage, 1965; Bansal, 1977; Stafford, 1988 and others), they are
limited to small problem instances as solving times quickly be-
come impractical for realistically-sized cases. As a result, research
has focused on the development of heuristics that produce reason-
able solutions with low time and memory requirements. Some
heuristics have been presented by Rajendran (1993), Rajendran
and Ziegler (1997) and Li and Wu (2005), to name just a few. With
the advent of powerful desktop computers, and now for more than
two decades, special emphasis has been given to the study of meta-
heuristics, capable of producing near optimal solutions, albeit nor-
mally at the cost of longer calculations. Some examples are the
genetic algorithm of Tang and Liu (2002), ant colony optimization
(ACO) of Rajendran and Ziegler (2004) and the differential evolu-
tion of Pan et al. (2008), among many others.

Metaheuristics provide excellent results and constitute the
state-of-the-art methods available for the PFSP with total flowtime
criterion. However, many metaheuristics are fairly sophisticated
and depend on several parameters and settings that might be prob-
lem and even instance dependent. Most of the time, the presented
methods are so specifically tailored for the problem at hand that
slight variations of the scheduling setting require extensive
changes in the algorithms or even render them inapplicable. In
some cases, published algorithms are so intricate that an indepen-
dent coding is unlikely to obtain the same reported effectiveness or
efficiency without contacting the authors to obtain detailed infor-
mation and/or source codes. All this severely hinders potential
practical applications. Therefore, simple, general and easily adapt-
able algorithms are highly desirable. However, such simplistic
methods might produce lower quality solutions and a difficult
compromise arises between simplicity and performance.

The Iterated Local Search (ILS) and Iterated Greedy (IG) frame-
works, described by Lourenço et al. (2010) and Ruiz and Stützle
(2007), respectively, constitute two simple templates for combina-
torial optimization. They have resulted in state-of-the-art results
for several problems, including the permutation flowshop. Follow-
ing the successful application of the above two local search based
frameworks, this paper presents four algorithms: an IGA, an ILS,
and two population-based extensions, dubbed as population-based
IGA (pIGA), and population-based ILS (pILS), respectively. The main
focus is on simplicity, extensibility and ease of coding and replica-
tion of results. The presented methods employ some powerful, yet
simple operators in order to improve performance. The results of
the presented algorithms are compared to those of recently pub-
lished metaheuristics. The computational results and statistical
analyses show, as we will detail, that the presented algorithms
are new state-of-the-art methods for the problem under
consideration.

The rest of the paper is organized as follows. Section 2 reviews
the literature of the PFSP with total flowtime minimization crite-
rion. Section 3 presents the four local search based algorithms in
detail. The proposed algorithms are calibrated in section 4. A com-
prehensive comparison of the presented algorithms is shown,
along with statistical analyses, in Section 5. Finally, we conclude
the paper in Section 6.

2. Literature review

The PFSP with total flowtime criterion was first studied by Ign-
all and Schrage (1965) and by Gupta (1972). This is more than a
decade later than the pioneering work of Johnson (1954) for make-
span minimization in the PFSP. Due to the difficulty faced by exact
methods to solve medium size or large instances, efforts have been
mainly dedicated to finding high quality solutions in a reasonable
computational time by using heuristic or metaheuristic optimiza-
tion techniques. Framinan et al. (2005) provide a comprehensive
review and evaluation of heuristics for the PFSP with total flow-
time criterion. Here we mention just the most cited heuristics.
Rajendran (1993), Rajendran and Ziegler (1997), Liu and Reeves
(2001), Li and Wu (2005) and, more recently, Laha and Sarin
(2009) present high performing simple heuristics. Other more
elaborated methods are those of Allahverdi and Aldowaisan
(2002), Framinan et al. (2005), and Li et al. (2009). In any case, in
order to attain a better solution quality for the problem under con-
sideration, modern metaheuristics have been increasingly applied
in recent years. One of the earliest known applications of genetic
algorithms (GA) is due to Vempati et al. (1993). In this case, a sim-
ple GA was presented but only applied to small instances of size
25 � 10 (25 jobs and 10 machines) maximum. Later, Yamada and
Reeves (1998) presented a genetic local search algorithm (GALS)
providing good quality solutions for five sets of Taillard (1993) in-
stances (20 � 5, 20 � 10, 20 � 20, 50 � 5 and 50 � 10) but needing
large computational times. Gupta et al. (2000) designed a tabu
search (TS) based approach that was compared against the heuris-
tics of Rajendran (1993) obtaining better results for the tested in-
stances. Rajendran and Ziegler (2004) proposed two ant colony
optimization (ACO) algorithms, called M-MMAS and PACO, respec-
tively, for makespan and total flowtime minimization. PACO
showed better performance than M-MMAS and the best heuristic
proposed by Liu and Reeves (2001). Later, Rajendran and Ziegler
(2005) have introduced a new ACO algorithm based on similar con-
cepts to those of M-MMAS and PACO with slightly better perfor-
mance in some scenarios. Tasgetiren et al. (2007) extended a
continuous particle swarm optimization (PSO) method to the PFSP
with both makespan and total flowtime criteria. With this method,
57 out of 90 best known solutions reported by Liu and Reeves
(2001) and Rajendran and Ziegler (2004) for Taillard (1993) bench-
marks were improved. However, the PSO was soon surpassed by
the combinatorial PSO (CPSO) of Jarboui et al. (2008) and also by
the discrete differential evolution (DDERLS) and iterated greedy
algorithms (IGRLS) of Pan et al. (2008).

Quite recently, it seems that there has been an intensified inter-
est in this problem as quite a number of new metaheuristics have
been published. Tseng and Lin (2009) proposed a hybrid genetic lo-
cal search algorithm (denoted as HGAT1) by employing GA to do
the global search and two methods, Insertion Search and Insertion
Search with Cut-and-Repair, to do the local search. The authors
demonstrated improved performance of their proposed HGAT1 over
the PSO of Tasgetiren et al. (2007), GALS of Yamada and Reeves

Q.-K. Pan, R. Ruiz / European Journal of Operational Research 222 (2012) 31–43 33
(1998), and also M-MMAS and PACO of Rajendran and Ziegler
(2004). Later, the same authors (Tseng and Lin, 2010) presented a
similar genetic local search algorithm (denoted as HGAT2) by using
TS to do the local search. Zhang et al. (2009) proposed a hybrid ge-
netic algorithm (HGAZ for short) that employs a local search con-
sisting of the RZ improvement procedure in Rajendran and
Ziegler (1997) and the forward pairwise exchange (FPE) method
in (Liu and Reeves, 2001). In this study, a new crossover operator
is introduced by using an artificial chromosome generated from a
weighted simple mining gene structure. The authors’ experimental
results proved that the proposed HGAZ is a new state-of-the-art
method for the problem considered. The same year, Dong et al.
(2009) developed a simple ILS algorithm (denoted as ILSD) that im-
proves over M-MMAS, PACO (Rajendran and Ziegler, 2004) and the
PSO of Tasgetiren et al. (2007) by a considerable margin. Jarboui
et al. (2009) presented an estimation of distribution algorithm
(EDAJ), where a variable neighborhood search (VNSJ) is used as
an improvement procedure. Based on the experimental results,
the authors claimed that their EDAJ outperformed all the existing
techniques to minimize total flowtime for the PFSP. More recently,
Zhang and Li (2011) have presented another estimation of distribu-
tion algorithm (EDAZ) with a longest common subsequence opera-
tor being incorporated into the probability distribution model to
mine good ‘‘genes’’. Different from more common EDAs, EDAZ pro-
duces each offspring from a seed, which is selected from the pop-
ulation by the roulette method. The authors’ experiments showed
that EDAZ produces better results than the EDAJ, DDERLS, HGAT1,
and ILSD algorithms for the first nine set benchmarks of Taillard
(1993). Zheng and Yamashiro (2010) have developed a quantum
differential evolutionary algorithm (QDEA) based on the basic
quantum-inspired evolutionary algorithm to minimize makespan,
total flowtime, and maximum lateness of jobs for permutation
flowshops, respectively. QDEA adopts differential evolution to per-
form the update of quantum gate and variable neighborhood
search as a local search. The comparison of QDEA with M-MMAS,
PACO, and the best heuristic of Liu and Reeves (2001) demon-
strated its effectiveness. Tasgetiren et al. (2011) presented a dis-
crete artificial bee colony algorithm (DBAC) and a hybrid
differential evolution algorithm (hDDE) by hybridizing a variable
neighborhood search procedure based on swap and insertion
neighborhood structures. According to the experiments conducted
by the authors, both algorithms provided better results than EDAJ

and HGAT1. Xu et al. (2011) presented an asynchronous genetic lo-
cal search algorithm (AGA for short), where all pairs of individuals
perform asynchronous evolutions with different local search meth-
ods. The computational results show that AGA outperforms several
state-of-the-art methods including HGAZ, EDAJ and VNSJ. Algo-
rithms designed for parallel architectures have also been devel-
oped for total flowtime criterion. For example, Czapiński (2010)
proposed a parallel simulated annealing with genetic enhancement
algorithm providing better results than HGAZ and HGAT1. Addition-
ally, Dubois-Lacoste et al. (2011) presented an Iterated Greedy
Algorithm for the bi-objective flowshop.

As we can see, there is quite a number of high performing meth-
ods claiming state-of-the-art performance that have appeared in
years 2009–2011. From the short review, it is also clear that some
of these methods are intricate and are based on complex algorith-
mic templates. It is worth mentioning that there does not exist a
comprehensive computational evaluation and comparison of these
recent techniques. Therefore, from the existing isolated computa-
tional evaluations with different computers, programming lan-
guages, stopping criteria, and in some cases, even benchmarks, it
is very difficult to ascertain which algorithm gives the best overall
performance for the problem considered. In this paper, we recode
twelve recently presented metaheuristics: DDERLS and IGRLS of Pan
et al. (2008), HGAT1 of Tseng and Lin (2009), HGAT2 of Tseng and
Lin (2010), HGAZ of Zhang et al. (2009), ILSD of Dong et al.
(2009), EDAJ and VNSJ of Jarboui et al. (2009), AGA of Xu et al.
(2011), DABC and hDDE of Tasgetiren et al. (2011) and SLS of
Dubois-Lacoste et al. (2011). We also present four simple local
search based algorithms. A comparison among the algorithms is gi-
ven based on the well known benchmark suite of Taillard (1993).
In our opinion, finding such comprehensive and extensive tests
among so many recent methods is not common in the scheduling
literature and constitutes a main contribution of the present paper.
3. Proposed local search based algorithms

Iterated Local Search (ILS), presented by Lourenço et al. (2010)
and iterated greedy (IG, Ruiz and Stützle, 2007), are two simple lo-
cal search based metaheuristics that have resulted in top perfor-
mance despite of their simplicity. In recent years, both ILS and IG
have attracted much attention from researchers precisely due to
their simplicity, effectiveness and efficiency. For example, ILS has
already been successfully applied for solving the permutation
flowshop problem with makespan criterion (Stützle, 1998b), the
quadratic assignment problem (Stützle, 2006) and multiple depot
vehicle scheduling (Laurent and Hao, 2009), among many other
problems. For an updated review on ILS see Lourenço et al.
(2010). IG has shown state-of-the-art performance for the PFSP
with makespan criterion (Ruiz and Stützle, 2007), sequence depen-
dent setup times PFSP with makespan and tardiness objectives
(Ruiz and Stützle, 2008), unrelated parallel machines scheduling
(Fanjul-Peyro and Ruiz, 2010), PFSP with blocking constraints
(Ribas et al., 2011) and even multiobjective PFSP problems in
Minella et al. (2011) or in Dubois-Lacoste et al. (2011). It is possible
to find other recent applications of IG to other fields and more
complex scheduling problems. For example, Urlings et al. (2010)
have recently applied IG methods to solve complex hybrid flexible
flowline scheduling problems with many additional constraints. In
view of all these state-of-the-art results, we propose the applica-
tion of the ILS and IG frameworks to the PFSP with total flowtime
criterion. ILS and IG always deal with only one incumbent solution.
Given the previous literature review, where many population-
based genetic algorithms have been proposed, we also extend the
ILS and IG frameworks to work with populations. Population-based
ILS methods have been presented by Stützle (1998, 2006) as well
as by many others. IG extensions are less studied (Ballestı́n et al.,
2007). The research question is therefore if ILS and IG benefit from
a pool or population of solutions. The details of the presented algo-
rithms are given in the following sections.
3.1. Iterated Local Search algorithm

ILS is a simple and generally applicable stochastic local search
method presented by Lourenço et al. (2010) for solving optimiza-
tion problems. The essential idea of ILS is to perform a randomized
walk in the space of local optima. ILS starts from a heuristically
constructed solution to which a local search is applied. Generally,
a local optimum is obtained. In order to escape from this local opti-
mum, a perturbation in the solution is carried out and a new local
optimum is found after applying local search again. Finally, an
acceptance criterion is used in order to decide if the new local opti-
mum should replace the first. The above process is repeated until a
termination criterion is met. An outline of the ILS procedure is gi-
ven in Fig. 1.

As we can see, ILS is extremely simple and general. All that
is needed is a way of representing the solution (in our case a
permutation of jobs), a heuristic to initialize the method, a local
search procedure, a perturbation process and an acceptance crite-
rion. Note that the most complex part is the local search, which is

Fig. 1. Iterated Local Search (ILS) pseudo-code.

34 Q.-K. Pan, R. Ruiz / European Journal of Operational Research 222 (2012) 31–43
also needed for most other well known state-of-the-art methods.
We now detail all these components.

3.1.1. Initialization method
It is common to initialize metaheuristics with high performing

heuristics. According to Liu and Reeves (2001), Dong et al.
(2009), Zhang et al. (2009), and Li et al. (2009), among others,
the LR (x) heuristic developed by Liu and Reeves (2001) is a very
effective method for the PFSP with total flowtime. LR (x) constructs
x different sequences by appending jobs one by one using an index
function and the sequence with the minimum flowtime is selected
as the final solution. The index functions employed are weighted
total machine idle time, artificial flowtime and a combined index.
The procedure of LR (x) is briefly described as follows:

Step 1: Rank the jobs according to ascending order of the index
function value and break ties according to an ascending
order of the weighted total machine idle time value.

Step 2: Use each of the first x ranked jobs as the first job of the n
resulting sequences. Complete the sequences by selecting
jobs one by one according to the index function.

Step 3: Select the sequence with the minimum total flow time as
the final solution.

LR(x) does not fix the number of sequences to be generated, as it
can be adjusted to the requirements of the problem. So the heuris-
tic is flexible in the computational effort required. Following Li
et al. (2009) and Zhang et al. (2009), we use LR(n/m) to generate
an initial solution for the proposed ILS algorithm.

3.1.2. Local Search procedure
The improvement procedure presented by Rajendran and

Ziegler (1997) (denoted as RZ) is a typical local search method
based on an insertion neighborhood, which is used in the
Fig. 2. The RZ local search procedure
composite heuristics of Li and Wu (2005) and Li et al. (2009), the
ILSD algorithm of Dong et al. (2009), and the HGAZ of Zhang et al.
(2009). The RZ procedure sequentially inserts each job in the seed
sequence at all possible positions. The improvement scheme iden-
tifies the best position of the insertion for a given job and the
resulting sequence is used to replace the current one if there is
an improvement in the total flowtime value. Let ps =
(ps(1), ps(2), . . . , ps(n)) be a seed sequence, and p be the sequence
returned by RZ. The procedure of RZ is outlined in Fig. 2.

The above RZ procedure is a single pass local search. If the start-
ing solution is improved, there is the possibility of calling RZ again
to improve the solution even further. Obviously, this increases the
computational cost. Therefore, there is a trade-off between the
algorithm’s effectiveness (in terms of solution quality) and effi-
ciency (in terms of computational time). Our tests indicate that
RZ can be iteratively applied until a local optima is obtained, i.e.,
we stop the local search when the provided solution p does not
change after calling RZ. We denote this iterated RZ procedure as
iRZ in short. It is important to remark that our implemented RZ
method implements Taillard (1990) accelerations, albeit only half
of it, as one does not need to re-evaluate the part of the solution
that has not changed. These accelerations basically speed up the
procedure by about 45%.
3.1.3. Perturbation procedure and acceptance criterion
In order to escape from a local optimum and to explore new re-

gions in the solution space, ILS applies a perturbation procedure to
generate new starting points for the local search by modifying the
current solution. The perturbation procedure in the presented ILS
algorithm consists of a number c of random insertion moves. Each
one randomly selects a job from the permutation and inserts it into
a different, randomly selected position. The number of insertions
or Perturbation length c is a key parameter, which has an impor-
tant effect on the performance of ILS. A small c value favors local
of Rajendran and Ziegler (1997).

Q.-K. Pan, R. Ruiz / European Journal of Operational Research 222 (2012) 31–43 35
exploration or intensification but may lead to a stagnation of the
search due to a lower chance of escaping strong local optima. A lar-
ger c value benefits global exploration but if c is too high, the algo-
rithm may behave like a random restart local search with a very
low probability of finding better solutions. Therefore, a suitable c
value should be determined for the presented ILS algorithm. We
calibrate the c value by means of a Design of Experiments (DOE)
approach later in section 4.

After a new local optimum is obtained, we have to decide if this
new local optimum replaces the current incumbent solution. Three
simple acceptance criteria are presented in Stützle (2006) includ-
ing random walk, better, and simulated annealing type. Random walk
accepts new solutions irrespective of its objective value resulting
in a random walk over local optimum solutions. Better accepts
new solutions only if they are better. This usually results in a pre-
mature convergence in the search due to insufficient diversifica-
tion. Simulated annealing type is a compromise between the
random walk and better criteria, and can be achieved by accepting
worse solutions with a certain probability. Therefore, we consider
this later criterion. As in Osman and Potts (1989), Stützle (1998b)
and Ruiz and Stützle (2007, 2008), we adopt a constant tempera-
ture, which depends on the particular instance and it is computed
as follows:

Temperature ¼ k �
Pn

j¼1

Pm
i¼1pij

10 mn
ð3Þ

where k is another parameter that needs to be adjusted. However,
and as noted in Ruiz and Stützle (2007, 2008), this parameter has
been shown to be very robust.

3.1.4. The procedure of the presented ILS algorithm
The proposed ILS algorithm for minimizing total flowtime in the

PFSP is summarized in Fig. 3. Note that rand(�) is a function that re-
turns a random number uniformly distributed in the range [0, 1].

Note that the proposed ILS is not the first one presented in the
literature for the total flowtime minimization in the PFSP. As
Fig. 3. Pseudo-code of the p
reviewed, Dong et al. (2009) developed a simple ILS algorithm,
denoted as ILSD. The main differences between the presented ILS
method and ILSD are the following: On the one hand, different
acceptance criteria are used. ILSD uses the ‘‘better’’ version which
accepts new solutions only if they are better, whereas the pre-
sented ILS utilizes the simulated annealing type acceptance with
a certain probability to accept worse solutions. On the other hand,
we adopt the perturbation procedure consisting of several random
insertion moves in the presented ILS, while several random adja-
cent pairwise interchanges are employed in ILSD. Both the simu-
lated annealing type acceptance and insertion moves help to
escape from local optima and result in the presented ILS algorithm
with better exploration than the ILSD algorithm. Lastly, ILSD

employs a different local search scheme.

3.2. Population variant: the pILS algorithm

As shown, ILS works over an incumbent solution p and returns
the best solution p⁄ after the optimization run. One possible weak
spot is that this imposes a single search direction. Population-
based metaheuristics, such as, for example, genetic algorithms,
have been widely employed in flowshop scheduling. Therefore,
we also propose a population ILS, referred to as pILS, that main-
tains a population of solutions during the search. However, we
are concerned about keeping the proposed methods simple. Our
presented pILS uses LR (x) to generate a population of x initial solu-
tions. Instead of just using the best solution returned by LR(n/m),
we keep all the constructed x sequences to form the initial popula-
tion (so x is the population size). After initialization, pILS picks a
solution from the population using a selection operator and applies
the perturbation procedure presented in section 3.1.3. Then pILS
performs the iRZ local search to the perturbed solution to generate
a local optimum.

Two important issues arise when dealing with a population ILS
method. First, at each iteration, a selection operator has to be ap-
plied in order to select promising solutions. Selecting just the best
resented ILS algorithm.

36 Q.-K. Pan, R. Ruiz / European Journal of Operational Research 222 (2012) 31–43
solution basically nullifies the population advantage. Randomly
selecting individuals results in a slow converging method. Second,
once an ILS iteration has been finished, we have to decide if the
new solution is accepted into the population or discarded. Diversi-
fication and intensification are two key issues in the optimization
process of population-based methods. Diversification aims to
maintain sufficient diversity within the population so that individ-
uals are spread out widely within the search space (Yao et al.,
2010). Ideally, a diverse population is more likely to evolve. How-
ever, as the population evolves after a number of generations, its
diversity diminishes and the individuals in the population become
very similar. This results in search stagnation and the best solution
in the population ceases to improve. To overcome these issues, we
present two enhancements. These come in the form of a bi-selec-
tion method and a diversity control mechanism.

For selection operators, tournament is widely used in evolution-
ary algorithm applications for PFSPs due to its simplicity. We con-
sider a tournament selection with size two in the presented pILS.
That is, two solutions are picked randomly from the current popu-
lation, and the one with the lower total flowtime value is chosen.
However, if only the value of total flowtime is used as the measure
for selection, some promising individuals with larger total flow-
time values will be eliminated soon. These individuals may lead
to much better solutions after a number of iterations. Therefore,
it is important to increase the probability that these individuals
have in the selection. We use the ‘‘age’’ to represent the number
of iterations an individual survives. Younger individuals undergo
less iterations. The search areas around them are not well explored.
We increase the chance of selection for these individuals, and con-
sider another tournament selection using the age of individuals as
a measure. That is, we randomly pick two individuals from the
population, and the younger one is chosen for reproduction. In
our pILS, the presented two selection schemes are applied ran-
domly with equal probability (50%:50%) in the search.

We also consider the diversification of the population in the
generational scheme, the process by which offspring replace old
members from the previous generation. If the generated local opti-
mum is better than the worst solution in the population, and if
there is no other identical solution in the population, the obtained
solution replaces the worst solution and becomes a new member
of the population. This population management with clone avoid-
ance is known as steady state and was first used for flowshop
scheduling problems by Ruiz et al. (2006). However, note that
two solutions might slightly differ in their respective permutations
so this steady state generational scheme still suffers from popula-
tion convergence. We also consider a diversity measure for the
Fig. 4. Pseudo-code of the popula
population. With this, the new solution in only included into the
population if also the average diversity measure of the population
does not decrease. An aspiration criterion is utilized. If the gener-
ated local optimum is strictly better than every individual of the
population, the worst solution is replaced by the generated local
optimum, regardless of the deterioration in the average diversity
measure.

We use the diversity measure recently presented by Pan and
Ruiz (2012). The measure is based on both the job order and on
similar blocks of jobs in the sequences of the current population.
It is now briefly explained as follows:

Step 1. Calculate the job order matrix [/i,j]n�n as

½/i;j�n�n ¼

/1;1 /1;2 � � � /1;n
/2;1 /2;2 � � � /2;n

� � � � � � . .
.

� � �
/n;1 /n;2 � � � /n;n

2
6664

3
7775, where /i,j is the

number of times that job j appears at position i after con-
sidering all individuals of the population.

Step 2: Calculate the block matrix ½kj0 ;j�n�n as follows:

½kj0 ;j�n�n ¼

� k1;2 � � � k1;n

k2;1 � � � � k2;n

� � � � � � . .
.

� � �
kn;1 kn;2 � � � �

2
6664

3
7775, where kj0 ;j represents

the number of times that job j appears immediately after
job j0.

Step 3: Count the number of elements that are larger than zero in
[/i,j]n�n, and denote it as a.

Step 4: Count the number of elements that are larger than zero in
½kj;j0 �n�n, and denote it as b.

Step 5. The diversity value of the population div is then computed
as follows:
tion ext
div ¼ a� n
n�minðn; x� 1Þ þ

b� ðn� 1Þ
ðn� 1Þ �minðn� 1; x� 1Þ

� ��
2;
where x is the population size. The above process is repeated until a
termination condition is reached. pILS is outlined in Fig. 4.

3.3. Iterated Greedy methods: IGA and pIGA

IG was introduced by Ruiz and Stützle (2007) for solving the
permutation flowshop with makespan criterion. IG starts from an
initial solution generated by a heuristic and iterates over a main
loop consisting of two phases: destruction and construction.
ension of ILS or pILS.

Q.-K. Pan, R. Ruiz / European Journal of Operational Research 222 (2012) 31–43 37
During the destruction phase, some jobs are randomly removed
from the current solution. Afterwards, the construction procedure
applies a greedy constructive algorithm to reconstruct a complete
solution by reinserting the previously removed jobs. Before contin-
uing with the next iteration, an acceptance criterion decides
whether the newly constructed solution replaces the incumbent
Fig. 5. Pseudo-code of the Iterated Greedy Alg

Fig. 6. The destruction and construction p

Fig. 7. Pseudo-algorithm
solution. A local search is optionally applied to the initial solution
and to the constructed solution. The procedure of the presented IG,
referred to as IGA, is outlined in Fig. 5.

As can be seen, IGA can be considered as a variation of the basic
ILS algorithm. The main difference is that ILS randomly perturbs a
solution and in the IGA, this perturbation is carried out by a
orithm (IGA) of Ruiz and Stützle (2007).

rocedure of Ruiz and Stützle (2007).

of the presented IGA.

38 Q.-K. Pan, R. Ruiz / European Journal of Operational Research 222 (2012) 31–43
destruction of the solution followed by a greedy reconstruction. If
the greedy method is effective, IGA can outperform ILS, as shown in
Ruiz and Stützle (2007) and others. The presented IGA adopts LR
(n/m) to generate an initial solution, and employs iRZ as the local
search procedure. Additionally, the same Destruction_Construction
procedure as presented in Ruiz and Stützle (2007) is employed,
where d jobs are randomly selected and removed and they are later
inserted in all possible positions, one by one, in the construction
procedure. The parameter d needs careful calibration. Finally, we
employ the same simulated annealing type acceptance criterion as
in the proposed ILS. The Destruction_Construction procedure is de-
tailed in Fig. 6 (Ruiz and Stützle, 2007). The complete procedure
of the presented IGA is described in Fig. 7.

Note that Pan et al. (2008) also proposed an IGA method for the
PFSP and total flowtime minimization, denoted in this paper as
IGRLS. However, the authors employed a complex referenced local
search method as well as some other added complexities. In com-
parison, our presented IGA is simpler and easier to code. As done
with the pILS algorithm, the proposed IGA is extended in an iden-
tical way to form what we have denoted as pIGA. The same bi-
tournament selection and generational scheme operators are
employed.

4. Calibration of the proposed algorithms

ILS, pILS, IGA and pIGA have relatively few parameters, espe-
cially when compared to recently published metaheuristics. Still,
these have to be properly calibrated. We employ a Design of Exper-
iments (DOE, Montgomery, 2009) approach. DOE is an advanced
statistical technique that helps in understanding the effect that
some factors have over a given response variable. In our case, the
factors are the parameters that need calibration and the response
variable is the performance of the different algorithm configura-
tions. Factors are tested at some levels or variants and therefore,
some initial runs are required in order to pick a suitable set of lev-
els to test. After a series of preliminary experiments, we consider
the following levels for the parameters. For the ILS algorithm: per-
turbation length (c) is tested at three levels: 2, 3 and 4; tempera-
ture factor (k) is tested at four levels: 1.0, 2.0, 3.0 and 4.0. For the
pILS algorithm, perturbation length (c) is tested at three levels: 2,
3 and 4 and population size (x) is tested at four levels: 3, 5, 7
and 9. For IGA, destruction size (d) is tested at three levels: 6, 8
and 10 and the temperature factor (k) is tested at four levels: 1.0,
2.0, 3.0 and 4.0. For pIGA, destruction size (d) is tested at three lev-
els: 6, 8 and 10; population size (x) is tested at four levels: 3, 5, 7
and 9. We obtain a total of 3 � 4 = 12 different combinations, i.e.,
12 different configurations for each of the proposed algorithms
after combining all possible values of the tested factor levels. All
the configurations of each algorithm are tested independently in
a full factorial experimental design with a termination criterion
set to a maximum elapsed CPU time t = 10nm milliseconds. Note
that this termination criterion increases with the size of the in-
stance. This is needed in order to decouple the effect of the running
time from the size of the instances, i.e., worse results could be
wrongly attributed to the size of the instance instead of insufficient
CPU time.

Each algorithm is tested with a set of 28 randomly generated in-
stances. It is of paramount importance to separate the calibration
benchmark from the final testing benchmark. Calibrating algo-
rithms with the same benchmark results in over calibration and
in too optimistic results, where those excellent results might not
be transferrable to real instances or to other benchmarks. The
number of jobs and machines for each calibration instance is
randomly chosen from the following sets n 2 {50, 75, 100, 125,
150, 175, 200} and m 2 {5, 10, 15, 20}. The processing times for
each instance are obtained from discrete uniform distribution in
the interval [1, 99]. For each instance, five independent replications
are carried out in the experiments (i.e., each algorithm is run five
times for each instance). Therefore, the total number of results is
12 � 28 � 5 = 1680 for each one of the four presented algorithms.
All the presented algorithms are coded in Visual C++ 6.0 and all
the configurations are run on a cluster of 30 blade servers each
one with two Intel XEON 5254 processors running at 2.5 GHz with
16 GB of RAM memory. There is no parallel computing. The 30
blade servers are just used in order to divide the workload and
experimentations. As a response variable for the experiments, we
calculate the relative percentage deviation (RPD) from a reference
solution as follows:

RPDðciÞ ¼ ðci � c�Þ=c� � 100 ð4Þ

where ci is the total flowtime value generated in the ith replication
by a given algorithm configuration, and c⁄ is the minimum total
flowtime value found by any of the algorithm configurations. All
the results are analyzed by means of a multi-factor Analysis of Var-
iance (ANOVA) statistical technique where n and m are considered
as non-controllable factors. This method has been used in Ballestı́n
et al. (2007), Ruiz and Stützle (2007), Vallada and Ruiz (2010), and
many others. ANOVA is a very powerful statistical approach that
allows setting the different parameters at statistically significant
values among the tested ones. ANOVA is a parametric test and it
is needed to check its three main hypotheses, i.e., normality, homo-
geneity of variance (or homoscedasticity) and independence of the
residuals. Given the large number of treatments and replicates, the
residual analysis showed no indication of severe violation of any of
the hypotheses.

Due to reasons of space, we briefly comment the results of the
ANOVA analysis and calibration. For the ILS algorithm, the pertur-
bation length (c) results in statistically significant differences in
the response variable at a 95% confidence level, whereas the tem-
perature factor (k) does not yield significant differences (this is
consistent with the results of Stützle, 2006 and Ruiz and Stützle,
2007). This suggests that the ILS algorithm is robust with respect
to the temperature factor, at least with the tested values
(k 2 {1, 2, 3, 4}). For the pILS algorithm, both factors (c and x) are
statistically significant. For IGA, the destruction size (d) is signifi-
cant while the temperature factor (k) is not (again, this is consis-
tent with the calibrations given in Ruiz and Stützle, 2007). For
pIGA, population size (x) results in significant differences, while
the destruction size (d) does not. After the calibration experiments,
we set the parameters as follows. For the ILS algorithm, c = 2 and
k = 4.0. For the pILS algorithm, c = 2 and x = 3. IGA: d = 8 and
k = 2.0 and pIGA, d = 8 and x = 3. All experimental results, tables
and plots are available upon request from the authors.
5. Computational and statistical evaluation

We now compare the four proposed methods against the best
algorithms from the literature. For the evaluation we employ the
well known benchmark of Taillard (1993). This test bed has been
used in Liu and Reeves (2001), Tasgetiren et al. (2007), Tseng and
Lin (2009), and almost in every PFSP paper. There are a total of
120 instances where n 2 {20, 50, 100, 200, 500} and m 2 {5, 10,
20}. These instances are divided into 12 subsets, resulting from
the combinations of values for n and m. There are 10 replicates
in each subset. Not all combinations are present and the sets avail-
able are 20 � 5, 20 � 10, 20 � 20, 50 � 5, 50 � 10, 50 � 20, 100 � 5,
100 � 10, 100 � 20, 200 � 10, 200 � 20 and 500 � 20. To maintain
the orthogonality in the experiment, we generate the three missing
additional subsets of instances: 200 � 5, 500 � 5 and 500 � 10.
These are extracted from instances 200 � 10 and 500 � 20. We
take the processing times of the first five machines of instances

Q.-K. Pan, R. Ruiz / European Journal of Operational Research 222 (2012) 31–43 39
in subset 200 � 10 to create instances of the subset 200 � 5, and
extract the processing times of the first five or 10 machines of in-
stances in subset 500 � 20 to generate the instances of the subsets
500 � 5 or 500 � 10, respectively. In total, we use 150 instances for
each algorithm.

We re-implemented 12 powerful metaheuristics presented in
recent years, and compare them with the algorithms of this paper.
The algorithms implemented are: DDERLS and IGRLS of Pan et al.
(2008), HGAT1 of Tseng and Lin (2009), HGAT2 of Tseng and Lin
(2010), HGAZ of Zhang et al. (2009), ILSD of Dong et al. (2009), EDAJ

and VNSJ of Jarboui et al. (2009), AGA of Xu et al. (2011), DABC and
hDDE of Tasgetiren et al. (2011) and SLS of Dubois-Lacoste et al.
(2011). Dubois-Lacoste et al. (2011), presented an Iterated Greedy
Algorithm for the bi-objective flowshop. However, and although
not tested in the original paper, a simpler method is proposed for
the total flowtime flowshop. Therefore, we also test it in this paper.

All algorithms have been coded in Visual C++ 6.0. We strictly
follow all original explanations and details given in the original pa-
pers in order to closely reproduce published results. All methods
are run on a cluster of 30 blade severs each one with two Intel
XEON 5254 quad core processors running at 2.5 GHz with 16 GB
of RAM memory. The experiments are carried out in virtualized
Windows XP machines, each one with one virtualized processor
and 2 GB of RAM memory. To make a fair comparison, all the algo-
rithms adopt the same maximum elapsed CPU time limit of
Table 2
Computational results of the algorithms (q = 60). Best and worst values in b

Instances IGRLS DDERLS EDAJ VNSJ ILSD HGAT1 HGAZ H

20 � 5 0.01 0.01 1.23 2.92 0.01 0.12 0.01 0
20 � 10 0.00 0.00 1.59 2.90 0.00 0.21 0.02 0
20 � 20 0.00 0.00 1.03 2.15 0.00 0.10 0.00 0
50 � 5 0.35 0.34 2.67 3.14 0.85 1.19 0.18 0
50 � 10 0.44 0.47 3.90 4.47 0.90 1.85 0.38 0
50 � 20 0.48 0.51 3.93 4.57 0.67 1.76 0.40 0
100 � 5 0.33 0.29 5.02 2.70 0.68 2.01 0.42 2
100 � 10 0.48 0.49 6.23 4.20 0.94 2.75 1.14 2
100 � 20 0.65 0.71 5.93 4.43 1.00 3.02 1.58 2
200 � 5 0.24 0.26 10.87 3.19 0.32 2.35 0.44 6
200 � 10 0.42 0.38 10.97 5.02 0.51 2.97 1.19 8
200 � 20 0.59 0.57 10.42 5.57 0.63 3.26 2.02 7
500 � 5 0.22 0.22 15.16 5.95 0.11 3.10 0.19 13
500 � 10 0.51 0.49 13.67 7.16 0.20 3.64 0.41 11
500 � 20 0.70 0.64 12.71 7.41 0.49 3.57 1.05 9

Average 0.36 0.36 7.02 4.39 0.49 2.13 0.63 4

Table 1
Computational results of the algorithms (q = 30). Best and worst values in b

Instances IGRLS DDERLS EDAJ VNSJ ILSD HGAT1 HGAZ H

20 � 5 0.01 0.01 1.32 2.92 0.01 0.15 0.01 0
20 � 10 0.00 0.00 1.73 2.90 0.00 0.24 0.02 0
20 � 20 0.00 0.00 1.06 2.15 0.00 0.13 0.00 0
50 � 5 0.35 0.35 3.06 3.08 0.90 1.42 0.29 0
50 � 10 0.45 0.48 4.19 4.38 0.93 2.02 0.58 0
50 � 20 0.52 0.52 4.11 4.53 0.77 1.93 0.62 1
100 � 5 0.35 0.33 6.65 3.01 0.62 2.13 0.56 3
100 � 10 0.50 0.52 7.82 4.54 0.98 2.77 1.49 5
100 � 20 0.69 0.67 7.02 4.72 1.02 2.98 2.05 4
200 � 5 0.28 0.31 12.18 4.01 0.24 2.33 0.48 8
200 � 10 0.46 0.45 12.06 5.79 0.46 3.01 1.29 9
200 � 20 0.67 0.66 11.41 6.35 0.67 3.22 2.21 8
500 � 5 0.24 0.26 15.96 7.77 0.09 3.32 0.16 13
500 � 10 0.55 0.56 14.15 8.49 0.17 3.92 0.37 12
500 � 20 0.75 0.69 13.14 8.48 0.48 3.84 0.93 10

Average 0.39 0.39 7.72 4.88 0.49 2.23 0.74 5
t = qmn milliseconds as a termination criterion, where q has been
tested at three values: 30, 60 and 90. The choice of this stopping
criterion is motivated by the fact that all algorithms are coded in
the same programming language, share most library functions
and data structures, and are executed on the same computer envi-
ronment. Then we can safely say that all algorithms have the same
CPU power and time available and that results are fully compara-
ble. This termination criterion has been increasingly used in the re-
cent literature on scheduling Ruiz et al. (2006), Ruiz and Stützle
(2007, 2008), Vallada and Ruiz (2010), Ribas et al. (2011) and sev-
eral others. Additionally, with the three termination criteria, we
can test how the different algorithms perform with different CPU
times. q = 30 turns into three seconds for the smallest instances
of 20 � 5 whereas q = 90 translates into 900 s for the largest in-
stances of 500 � 20. Therefore, in the tests we run all methods
from small to large CPU times. For each of the 150 instances, five
independent runs are carried out for each algorithm. We calculate
the average relative percentage deviation from the best known
solution for each instance. The computed results, averaged across
the five replications for each instance and grouped for each subset,
are reported in Tables 1–3.

From the computational results all of the presented algorithms
yield solutions that are most of the time better than those of the
other methods. From Table 1 where q = 30, we can see that the
largest overall average RPD (AVRPD) value generated by the
old and italics, respectively.

GAT2 AGA hDDE DABC SLS IGA pIGA ILS pILS

.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01

.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

.78 0.61 0.39 0.58 0.72 0.35 0.36 0.36 0.39

.80 1.06 0.61 0.66 0.36 0.43 0.41 0.42 0.39

.72 1.05 0.63 0.64 0.24 0.47 0.41 0.45 0.42

.25 0.63 0.41 0.90 0.80 0.25 0.26 0.33 0.33

.78 1.46 0.88 1.57 0.57 0.41 0.37 0.50 0.40

.60 1.86 0.99 1.52 0.49 0.62 0.51 0.51 0.53

.69 0.43 0.38 0.45 0.69 0.15 0.15 0.19 0.25

.10 1.10 1.02 1.22 0.51 0.23 0.35 0.27 0.45

.51 2.15 1.52 1.94 0.45 0.37 0.50 0.34 0.47

.39 0.16 0.36 0.32 0.49 0.07 0.09 0.08 0.14

.86 0.34 0.74 0.65 0.48 0.08 0.16 0.10 0.23

.96 0.87 1.02 1.00 0.29 0.19 0.47 0.22 0.48

.50 0.78 0.60 0.76 0.41 0.24 0.27 0.25 0.30

old and italics, respectively.

GAT2 AGA hDDE DABC SLS IGA pIGA ILS pILS

.02 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.01

.04 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.01

.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

.92 0.85 0.40 0.71 0.73 0.34 0.38 0.38 0.42

.97 1.33 0.68 0.82 0.40 0.40 0.37 0.42 0.39

.00 1.34 0.73 0.81 0.34 0.50 0.46 0.47 0.44

.69 0.68 0.44 0.93 0.74 0.24 0.26 0.31 0.33

.01 1.66 1.04 1.69 0.52 0.46 0.38 0.50 0.42

.88 2.16 1.10 1.68 0.49 0.60 0.56 0.52 0.59

.74 0.40 0.48 0.67 0.64 0.11 0.12 0.16 0.22

.56 1.09 1.12 1.24 0.53 0.27 0.37 0.27 0.50

.44 2.24 1.62 1.89 0.43 0.37 0.63 0.40 0.53

.74 0.16 0.34 0.32 0.47 0.13 0.09 0.13 0.14

.17 0.31 0.73 0.68 0.51 0.07 0.16 0.08 0.24

.12 0.77 0.94 0.99 0.37 0.14 0.42 0.16 0.45

.29 0.87 0.64 0.83 0.41 0.24 0.28 0.25 0.31

Table 3
Computational results of the algorithms (q = 90). Best and worst values in bold and italics, respectively.

Instances IGRLS DDERLS EDAJ VNSJ ILSD HGAT1 HGAZ HGAT2 AGA hDDE DABC SLS IGA pIGA ILS pILS

20 � 5 0.01 0.01 1.20 2.92 0.01 0.09 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01
20 � 10 0.00 0.00 1.56 2.90 0.00 0.15 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 � 20 0.00 0.00 0.97 2.15 0.00 0.06 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50 � 5 0.34 0.32 2.58 3.16 0.85 1.07 0.17 0.68 0.49 0.37 0.49 0.70 0.31 0.33 0.31 0.34
50 � 10 0.47 0.47 3.87 4.53 0.86 1.76 0.39 0.73 0.90 0.60 0.62 0.36 0.44 0.41 0.42 0.40
50 � 20 0.51 0.53 3.91 4.64 0.69 1.68 0.42 0.69 0.92 0.63 0.64 0.24 0.50 0.43 0.46 0.44
100 � 5 0.29 0.26 4.18 2.63 0.71 1.93 0.31 1.66 0.52 0.37 0.83 0.80 0.23 0.24 0.33 0.31
100 � 10 0.54 0.52 5.57 4.20 1.01 2.79 0.96 2.23 1.34 0.87 1.50 0.63 0.45 0.41 0.53 0.44
100 � 20 0.63 0.68 5.46 4.42 1.01 2.98 1.35 1.99 1.70 0.94 1.37 0.47 0.59 0.52 0.48 0.48
200 � 5 0.20 0.23 10.12 2.75 0.36 2.31 0.40 5.72 0.41 0.33 0.44 0.72 0.14 0.15 0.20 0.26
200 � 10 0.39 0.37 10.16 4.63 0.57 2.99 1.13 7.24 1.10 0.98 1.22 0.51 0.24 0.31 0.29 0.44
200 � 20 0.53 0.53 9.63 5.13 0.63 3.30 1.91 6.52 1.97 1.46 1.94 0.41 0.35 0.45 0.33 0.40
500 � 5 0.21 0.21 14.69 5.17 0.12 3.08 0.20 12.71 0.17 0.36 0.31 0.50 0.08 0.10 0.09 0.14
500 � 10 0.43 0.43 13.26 6.47 0.21 3.59 0.42 11.44 0.34 0.72 0.70 0.45 0.08 0.16 0.11 0.23
500 � 20 0.65 0.61 12.45 6.83 0.49 3.58 1.12 9.77 0.93 1.05 1.08 0.27 0.22 0.48 0.25 0.47

Average 0.35 0.34 6.64 4.17 0.50 2.09 0.59 4.09 0.72 0.58 0.74 0.40 0.24 0.27 0.25 0.29

40 Q.-K. Pan, R. Ruiz / European Journal of Operational Research 222 (2012) 31–43
presented algorithms is 0.31%, which is much smaller than those of
the competing methods, being IGRLS and DDERLS the closest com-
petitors with average deviations of 0.39%. IGA is the best performer
with an AVRPD value equal to 0.24%, followed by ILS (0.25%), pIGA
(0.28%) and pILS (0.31%). Of special interest is comparing ILSD with
the proposed ILS, as both methods are based on the ILS framework.
We can see that our proposed ILS gives results that are lower on
average than ILSD. Also, when comparing IGRLS with our proposed
IGA we see that the results of IGA are, on average, lower than those
of IGRLS. Other methods, such as SLS, provide the best solutions for
some specific instance sizes (50 � 20 and 100 � 20). As we can see,
pIGA does not manage to outperform the simpler IGA. The same
can be said about pILS when compared to ILS. However, for some
specific instance groups (100 � 10), it seems that the population
methods achieve a slightly better performance. This better perfor-
mance is later shown to be statistically significant. In any case, the
added complexity of pILS and pIGA does not seem worth given the
marginally worse results. It has to be noted that earlier versions of
pILS and pIGA without the bi-selection scheme and diversity con-
trol mechanism were clearly worse than ILS and IGA. Therefore, it
seems clear that simple methods like ILS and IGA that iterate over a
single solution, work best.

For q = 60 and q = 90, we again find from Tables 2 and 3 that the
results of the proposed algorithms are much lower than those of
the others and IGA is again the best performing method in terms
of AVRPD. We also see how the four proposed methods barely im-
prove from one table to the other, meaning that all four converge
rapidly and additional CPU time does not translate into much bet-
ter solutions. The same can be said about the best performing com-
peting methods such as IGRLS, DDERLS, SLS and ILSD, i.e., results
improve only slightly with double and triple allowed CPU time.
However, for the other methods, larger improvements are seen
with additional CPU time but these are not enough to compete
with the best methods. Hence, it can be concluded that the pro-
posed local search based algorithms perform better than the 12
compared competing methods for the problem considered and un-
der our experimental settings.

It is worth insisting that there are many similarities in the eight
best performing algorithms with AVRPD values of less than 0.5%.
Namely, the LR heuristic is used most of the times to generate ini-
tial solutions, and the RZ improvement procedure is used as a local
search phase also in most of these high performing algorithms.
This evidences the effectiveness of taking advantage of the LR heu-
ristic and the RZ-improvement procedure for solving the PFSP with
total flowtime criterion. In other words, the relatively worse per-
formance of EDAJ, HGAT1, HGAT2 and others might be mainly due
to their relatively worse initialization and due to the less effective
local search methods. In any case, our proposed methods are argu-
ably simpler than most others and still attain the best perfor-
mance. The superiority of the presented algorithms and the ILSD

of Dong et al. (2009) demonstrates the effectiveness of simple local
search frameworks. Together with the fact that local search also
plays a significant role in most high performing methods, we con-
clude that a well designed local search based algorithm is all that is
needed in order to obtain state-of-the-art results for the problem
considered without turning into more complex methods such as
genetic or estimation of distribution algorithms.

To check whether the observed differences from the above Ta-
bles 1–3 are indeed statistically significant, we carry out a multi-
factor statistical ANOVA test where n, m, replication, CPU time
parameter q and the type of algorithm are considered as factors.
We compare the twelve best performing algorithms only: IGA,
pIGA, ILS, pILS, DDERLS, IGRLS, SLS, ILSD, hDDE, HGAZ, DABC and
AGA. The remaining four algorithms (HGAT1, HGAT2, EDAJ and
VNSJ) were ruled out since it was not needed to test for signifi-
cance, since their results were clearly worse than the rest. The AN-
OVA results (not shown in detail due to reasons of space) indicate
that n, m, q and the type of algorithm result in statistically signifi-
cant differences in the response variable RPD at a 95% confidence
level, whereas the replication does not show significant differences
(replicate is not expected to be significant, so this outcome vali-
dates the statistical test. These factors are often referred to as wit-
ness factors). Fig. 8 reports the means plot together with 95% Tukey
honest significant differences (HSD) confidence intervals of the
interaction between the type of algorithms and CPU time parame-
ter q. Note that overlapping intervals denote statistically insignif-
icant differences between the plotted overlapped means. Each
plotted average corresponds to the average of 150 instances run
five times (750 results). HSD confidence intervals are conservative
and counter the bias in the type I statistical error of multiple pair-
wise comparisons. The figure depicts the overall mean, without
separating each instance size, ‘‘zoomed-in’’ figures for each in-
stance size show slightly different results and in some occasions,
not so wide intervals. From the figure it is clear that the results
of IGA and ILS are statistically better than those of competing
methods. pIGA and pILS are, on average, statistically equivalent
to DDERLS and IGRLS. They are, however, statistically better than
the next best competing method (SLS). In the figure we can see that
the better the method, the smaller the difference in the means as
CPU time increases. For q = 60 and q = 90, i.e., double or triple
the CPU time, IGA shows a complete overlap of the three intervals.
However, pILS shows a slight improvement as CPU time increases

Interactions and 95.0 Percent Tukey HSD Intervals

0.15

0.35

0.55

0.75

0.95

AV
R

PD

IGA
ILS

pIGA
pILS

DDERLS

IG RLS

SLS
ILSD

hDDE
HGA Z

DABC
AGA

30

60

90

ρ

Fig. 8. Means and confidence intervals of the interaction between the best tested
algorithms and the allowed CPU time in the ANOVA experiment.

Q.-K. Pan, R. Ruiz / European Journal of Operational Research 222 (2012) 31–43 41
but this improvement is far from being statistically significant.
Only the last three methods, HGAZ, DABC and AGA, show statisti-
cally better results as q increases. This means that the algorithms
have not converged and that they might need a substantial addi-
tional CPU time to reach the results of the other methods. As a final
conclusion, we can safely state that the proposed algorithms are
the best performers for the permutation flowshop scheduling
problem with the objective of minimizing total flowtime. Arguably,
we can also state that IGA and ILS are markedly simple and easier
to implement than some of the other methods.

In order to facilitate follow up research, we report the best
known solutions found so far in Table 4. This was already done
in Jarboui et al. (2009) and Xu et al. (2011), among others.
Table 4
Best known total flowtime values for Taillard benchmark instances.

Instance No. Best solution Instance No. Best solution Instance No. B

TA01 14033 TA11 20911 TA21
TA02 15151 TA12 22440 TA22
TA03 13301 TA13 19833 TA23
TA04 15447 TA14 18710 TA24
TA05 13529 TA15 18641 TA25
TA06 13123 TA16 19245 TA26
TA07 13548 TA17 18363 TA27
TA08 13948 TA18 20241 TA28
TA09 14295 TA19 20330 TA29
TA10 12943 TA20 21320 TA30

TA51 125831 TA61 253266 TA71 2
TA52 119247 TA62 242281 TA72 2
TA53 116459 TA63 237832 TA73 2
TA54 120261 TA64 227738 TA74 3
TA55 118184 TA65 240301 TA75 2
TA56 120586 TA66 232342 TA76 2
TA57 122880 TA67 240366 TA77 2
TA58 122489 TA68 230945 TA78 2
TA59 121872 TA69 247921 TA79 3
TA60 123954 TA70 242933 TA80 2

TA101 1227733 TA111 6698656 TA915 9
TA102 1245271 TA112 6770735 TA925 8
TA103 1269673 TA113 6739645 TA935 9
TA104 1238349 TA114 6785991 TA945 9
TA105 1227214 TA115 6729468 TA955 9
TA106 1227604 TA116 6724085 TA965 8
TA107 1243707 TA117 6691468 TA975 9
TA108 1246123 TA118 6783916 TA985 9
TA109 1234936 TA119 6711305 TA995 9
TA110 1250596 TA120 6755722 TA1005 9

Bold values represent the new best known solutions found by the proposed algorithms
We run our algorithms for a maximum elapsed CPU time t =
400mn milliseconds. We compare the best solution found by our
algorithms with the solutions reported by Pan et al. (2008), Tseng
and Lin (2009), Zhang et al. (2009), Dong et al. (2009), Jarboui et al.
(2009) and Tseng and Lin (2010), Czapiński (2010), Zheng and
Yamashiro (2010), Zhang and Li (2011), Tasgetiren et al. (2011),
Xu et al. (2011). The best solution for each of the 120 Taillard
(1993) instances is calculated by closely examining all existing re-
sults. For the new 30 instances generated from Taillard’s instances,
we show the best solution found by all the compared algorithms in
this paper. We use TA915 to represent the instance obtained from
TA91 by considering the processing times from the first five ma-
chines. It is interesting to see from Table 4 that the proposed algo-
rithms in this paper have further improved 12 out of 120 instances.
Note that these new 12 best solutions have been obtained for the
largest and therefore presumably hardest instances of Taillard.
6. Conclusions

The permutation flowshop scheduling problem with total flow-
time minimization has been subject of intense research in the last
years. Complex and high performing metaheuristic algorithms
have been introduced. In this paper, we have proposed four simple
methods, including an iterated greedy algorithm (IGA), an Iterated
Local Search (ILS), a population-based IGA (pIGA), and a popula-
tion-based ILS (pILS). These algorithms perform an extensive
search in the space of local optima. They are very simple, easy to
implement and to replicate but at the same time they provide
state-of-the-art results.

The best combination of parameters for each algorithm was ob-
tained by means of a Design of Experiments approach that involves
the evaluation of different alternatives. The evaluation of the pro-
posed methods was carried out against the 12 best performing
est solution Instance No. Best solution Instance No. Best solution

33623 TA31 64802 TA41 87114
31587 TA32 68051 TA42 82820
33920 TA33 63162 TA43 79931
31661 TA34 68226 TA44 86446
34557 TA35 69351 TA45 86377
32564 TA36 66841 TA46 86587
32922 TA37 66253 TA47 88750
32412 TA38 64332 TA48 86727
33600 TA39 62981 TA49 85441
32262 TA40 68770 TA50 87998

98385 TA81 365463 TA91 1046314
74384 TA82 372449 TA92 1034195
88114 TA83 370027 TA93 1046902
01044 TA84 372393 TA94 1030481
84681 TA85 368915 TA95 1034027
69686 TA86 370908 TA96 1006195
79463 TA87 373408 TA97 1053051
90908 TA88 384525 TA98 1044875
01970 TA89 374423 TA99 1026137
91283 TA90 379296 TA100 1030299

37273 TA1115 5539387 TA11110 5997531
96936 TA1125 5608131 TA11210 6106675
36905 TA1135 5605732 TA11310 6073492
02818 TA1145 5526960 TA11410 6062847
20723 TA1155 5588103 TA11510 5986526
90028 TA1165 5497811 TA11610 6006542
30040 TA1175 5483350 TA11710 5966581
14638 TA1185 5572833 TA11810 6080320
10726 TA1195 5554145 TA11910 5994142
03188 TA1205 5509152 TA12010 6013461

in this paper.

42 Q.-K. Pan, R. Ruiz / European Journal of Operational Research 222 (2012) 31–43
methods from the literature. According to the extensive experi-
mental and statistical analyses, the proposed IGA and ILS methods
performed better than pIGA and pILS, and they outperform the
existing methods for the problem considered. The fact that simple
methods perform better than complex existing approaches, and
also that for our proposed heuristics using populations did not im-
prove results, reinforces the idea that simple local search based
methods are enough to solve the PFSP with total flowtime
criterion.

After comparing the best solutions produced by the presented
algorithms and those reported in the literature, we found that 12
out of 120 best known solutions for Taillard’s benchmark suite
were further improved by the presented algorithms.

Future research directions involve the consideration of more
complex scheduling problems and objectives. It seems worthwhile
to apply the presented algorithms to more realistic scheduling
problems like those with setup times, parallel machines, buffer size
constraints, no-idle and no-wait considerations. There have been
already many studies in this regard and it is possible that simple
methods also perform equally well in those settings.

Acknowledgements

This research is partially supported by National Science Founda-
tion of China under Grants 61174187, 60874075, and Basic scien-
tific research foundation of Northeast University under Grant
N110208001, and Science Foundation of Shandong Province, China
(BS2010DX005). Rubén Ruiz is partially funded by the Spanish
Ministry of Science and Innovation, under the project ‘‘SMPA – Ad-
vanced Parallel Multiobjective Sequencing: Practical and Theoreti-
cal Advances’’ with reference DPI2008-03511/DPI, by the Small and
Medium Industry of the Generalitat Valenciana (IMPIVA) and by
the European Union through the European Regional Development
Fund (FEDER) inside the R + D program ‘‘Programa de I + D para
Institutos Tecnológicos de la Red IMPIVA’’ during the year 2010, with
Project Number IMDEEA/2011/142.

References

Allahverdi, A., Aldowaisan, T., 2002. New heuristics to minimize total completion
time in m-machine flowshops. International Journal of Production Economics
77 (1), 71–83.

Baker, K.R., 1974. Introduction to Sequencing and Scheduling. John Wiley & Sons,
New York.

Ballestı́n, F., Schwindt, C., Zimmermann, J., 2007. Resource leveling in make-to-
order production: modeling and heuristic solution method. International
Journal of Operations Research 4 (1), 50–62.

Bansal, S.P., 1977. Minimizing the sum of completion times of n jobs over m
machines in a flowshop: a branch and bound approach. IIE Transactions 9 (3),
306–311.

Czapiński, M., 2010. Parallel simulated annealing with genetic enhancement for
flowshop problem with Csum. Computers & Industrial Engineering 59 (4), 778–
785.

Dong, X.Y., Huang, H.K., Chen, P., 2009. An iterated local search algorithm for the
permutation flowshop problem with total flowtime criterion. Computers &
Operations Research 36 (5), 1664–1669.

Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T., 2011. A hybrid TP + PLS algorithm
for bi-objective flow-shop scheduling problems. Computers & Operations
Research 38 (8), 1219–1236.

Fanjul-Peyro, L., Ruiz, R., 2010. Iterated greedy local search methods for unrelated
parallel machine scheduling. European Journal of Operational Research 207 (1),
55–69.

Framinan, J.M., Leisten, R., Ruiz-Usano, R., 2005. Comparison of heuristics for
flowtime minimisation in permutation flowshops. Computers & Operations
Research 32 (5), 1237–1254.

Gonzalez, T., Sahni, S., 1978. Flowshop and jobshop schedules: complexity and
approximation. Operations Research 26 (1), 36–52.

Gupta, J.N.D., 1972. Heuristic algorithms for multistage flowshop scheduling
problem. AIIE Transactions 4 (1), 11–18.

Gupta, J.N.D., Chen, C.L., Yap, L.Y., Deshmukh, H., 2000. Designing a tabu search
algorithm to minimize total flow time in a flow shop. Arabian Journal for
Science and Engineering 25 (1C), 79–94.

Ignall, E., Schrage, L.E., 1965. Application of the branch and bound technique to
some flow shop scheduling problems. Operations Research 13 (3), 400–412.
Jarboui, B., Ibrahim, S., Siarry, P., Rebai, A., 2008. A combinatorial particle swarm
optimization for solving permutation flowshop problems. Computers &
Industrial Engineering 54 (3), 526–538.

Jarboui, B., Eddaly, M., Siarry, P., 2009. An estimation of distribution algorithm for
minimizing the total flowtime in permutation flowshop scheduling problems.
Computers & Operations Research 36 (9), 2638–2646.

Johnson, S.M., 1954. Optimal two- and three-stage production schedules with setup
times included. Naval Research Logistics Quarterly 1 (1), 61–68.

Laha, D., Sarin, S.C., 2009. A heuristic to minimize total flow time in permutation
flow shop. OMEGA, The International Journal of Management Science 37 (3),
734–739.

Laurent, B., Hao, J.-K., 2009. Iterated local search for the multiple depot vehicle
scheduling problem. Computers & Industrial Engineering 57 (1), 277–286.

Li, X., Wang, Q., Wu, C., 2009. Efficient composite heuristics for total flowtime
minimization in permutation flow shops. OMEGA, The International Journal of
Management Science 37 (1), 155–164.

Li, X., Wu, C., 2005. An efficient constructive heuristic for permutation flow shops to
minimize total flowtime. Chinese Journal of Electronics 14 (2), 203–208.

Liu, J., Reeves, C.R., 2001. Constructive and composite heuristic solutions to the
P==

P
Cj scheduling problem. European Journal of Operational Research 132 (2),

439–452.
Lourenço, H.R., Martin, O.C., Stützle, T., 2010. Iterated local search: framework and

applications. In: Gendreau, M., Potvin, J.Y. (Eds.), Handbook of Metaheuristics, .
second ed., International Series in Operations Research & Management Science
second ed., vol. 14 Kluwer Academic Publishers, Norwell, MA, pp. 363–397
(Chapter 12).

Minella, G., Ruiz, R., Ciavotta, M., 2011. Restarted Iterated Pareto Greedy algorithm
for multi-objective flowshop scheduling problems. Computers & Operations
Research 38 (11), 1521–1533.

Montgomery, D., 2009. Design and Analysis of Experiments, seventh ed.. John Wiley
& Sons, New York.

Osman, I.H., Potts, C.N., 1989. Simulated annealing for permutation flow-shop
scheduling. OMEGA, The International Journal of Management Science 17 (6),
551–557.

Pan, Q.-K., Tasgetiren, M.F., Liang, Y.-C., 2008. A discrete differential evolution
algorithm for the permutation flowshop scheduling problem. Computers &
Industrial Engineering 55 (4), 795–816.

Pan, Q.-K., Ruiz, R., 2012. An estimation of distribution algorithm for lot-streaming
flow shop problems with setup times OMEGA. The International Journal of
Management Science 40 (2), 166–180.

Pinedo, M., 2009. Scheduling: Theory,, .. Algorithms and Systems, third ed. Springer,
New York.

Rajendran, C., 1993. Heuristic algorithm for scheduling in flowshop to minimize
total flowtime. International Journal of Production Economics 29 (1), 65–73.

Rajendran, C., Ziegler, H., 1997. An efficient heuristic for scheduling in a flowshop to
minimize total weighted flowtime of jobs. European Journal of Operational
Research 103 (1), 129–138.

Rajendran, C., Ziegler, H., 2004. Ant-colony algorithms for permutation flowhsop
scheduling to minimize makespan/total flowtime of jobs. European Journal of
Operational Research 155 (2), 426–438.

Rajendran, C., Ziegler, H., 2005. Two ant-colony algorithms for minimizing total
flowtime in permutation flowshops. Computers & Industrial Engineering 48 (4),
789–797.

Ribas, I., Companys, R., Tort-Martorell, X., 2011. An iterated greedy algorithm for the
flowshop scheduling problem with blocking. OMEGA, The International Journal
of Management Science 39 (3), 293–301.

Ruiz, R., Maroto, C., Alcaraz, J., 2006. Two new robutst genetic algorithms for the
flowshop scheduling problem. OMEGA, The International Journal of
Management Science 34 (5), 461–476.

Ruiz, R., Stützle, T., 2007. A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational
Research 177 (3), 2033–2049.

Ruiz, R., Stützle, T., 2008. An iterated greedy heuristic for the sequence
dependent setup times flowshop problem with makespan and weighted
tardiness objectives. European Journal of Operational Research 187 (3),
1143–1159.

Stafford, Jr. E.F., 1988. On the development of a mixed integer linear programming
model for the flowshop sequencing problem. Journal of the Operational
Research Society 39 (12), 1163–1174.

Stützle, T., 1998. Local Search Algorithms for Combinatorial Problems – Analysis,
Algorithms, and New Applications. PhD thesis. TU Darmstadt, Computer Science
Department. Darmstadt, Germany.

Stützle, T., 1998b. Applying Iterated Local Search to the Permutation Flowshop
Problem. Technical Report AIDA-98-04. FG Intellektik, TU Darmstadt.
Darmstadt, Germany.

Stützle, T., 2006. Iterated local search for the quadratic assignment problem.
European Journal of Operational Research 174 (3), 1519–1539.

Taillard, E., 1990. Some efficient heuristic methods for the flow shop sequencing
problem. European Journal of Operational Research 47 (1), 65–74.

Taillard, E., 1993. Benchmarks for basic scheduling problems. European Journal of
Operational Research 64 (2), 278–285.

Tang, L., Liu, J., 2002. A modified genetic algorithm for the flow shop sequencing
problem to minimize mean flow time. Journal of Intelligent Manufacturing 13
(1), 61–67.

Tasgetiren, M.F., Liang, Y.-C., Sevkli, M., Gencyilmaz, G., 2007. A particle swarm
optimization algorithm for makespan and total flowtime minimization in the

Q.-K. Pan, R. Ruiz / European Journal of Operational Research 222 (2012) 31–43 43
permutation flowshop sequencing problem. European Journal of Operational
Research 177 (3), 1930–1947.

Tasgetiren, M.F., Pan, Q.-K., Suganthan, P.N., Chen, A.H.-L., 2011. A discrete artificial
bee colony algorithm for the total flowtime minimization in permutation flow
Shops. Information Sciences 181 (16), 3459–3475.

Tseng, L.-Y., Lin, Y.-T., 2009. A hybrid genetic local search for the permutation
flowshop scheduling problem. European Journal of Operational Research 198
(1), 84–92.

Tseng, L.-Y., Lin, Y.-T., 2010. A genetic local search algorithm for minimizing total
flowtime in the permutation flowshop scheduling problem. International
Journal of Production Economics 127 (1), 121–128.

Urlings, T., Ruiz, R., Stützle, T., 2010. Shifting representation search for hybrid
flexible flowline problems. European Journal of Operational Research 207 (2),
1086–1095.

Vallada, E., Ruiz, R., 2010. Genetic algorithm with path relinking for the minimum
tardiness permutation flowshop problem. OMEGA, The International Journal of
Management Science 38 (1-2), 556–575.

Vempati, V.S., Chen, C.-L., Bullington, S.F., 1993. An effective heuristic for flow shop
problems with total flow time as criterion. Computers & Industrial Engineering
25 (1-4), 219–222.
Xu, X., Xu, Z., Gu, X., 2011. An asynchronous genetic local search algorithm for the
permutation flowshop scheduling problem with total flowtime minimization.
Expert systems with Applications 38 (7), 7970–7979.

Yamada, T., Reeves, C.R., 1998. Solving the Csum permutation flowshop scheduling
problem by genetic local search. In: Proceedings of the 1998 IEEE International
Conference on Evolutionary Computation, pp. 230–234.

Yao, J., Kharma, N., Grogono, P., 2010. Bi-objective Multipopulation genetic
algorithm for multimodal function optimization. IEEE Transactions on
Evolutionary Computation 14 (1), 80–102.

Zhang, Y., Li, X., Wang, Q., 2009. Hybrid genetic algorithm for permutation flowshop
scheduling problems with total flowtime minimization. European Journal of
Operational Research 196 (3), 869–876.

Zhang, Y., Li, X., 2011. Estimation of distribution algorithm for permutation flow
shops with total flowtime minimization. Computers & Industrial Engineering 60
(4), 706–718.

Zheng, T., Yamashiro, M., 2010. Solving flow shop scheduling problems by quantum
differential evolutionary algorithm. International Journal of Advanced
Manufacturing Technology 49 (5-8), 643–662.

	Local search methods for the flowshop scheduling problem with flowtime minimization
	1 Introduction
	2 Literature review
	3 Proposed local search based algorithms
	3.1 Iterated Local Search algorithm
	3.1.1 Initialization method
	3.1.2 Local Search procedure
	3.1.3 Perturbation procedure and acceptance criterion
	3.1.4 The procedure of the presented ILS algorithm

	3.2 Population variant: the pILS algorithm
	3.3 Iterated Greedy methods: IGA and pIGA

	4 Calibration of the proposed algorithms
	5 Computational and statistical evaluation
	6 Conclusions
	Acknowledgements
	References

