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Evolutionary algorithms (EAs) have been applied with success to many numerical and
combinatorial optimization problems in recent years. However, they often lose their effec-
tiveness and advantages when applied to large and complex problems, e.g., those with high
dimensions. Although cooperative coevolution has been proposed as a promising frame-
work for tackling high-dimensional optimization problems, only limited studies were
reported by decomposing a high-dimensional problem into single variables (dimensions).
Such methods of decomposition often failed to solve nonseparable problems, for which
tight interactions exist among different decision variables. In this paper, we propose a
new cooperative coevolution framework that is capable of optimizing large scale nonsep-
arable problems. A random grouping scheme and adaptive weighting are introduced in
problem decomposition and coevolution. Instead of conventional evolutionary algorithms,
a novel differential evolution algorithm is adopted. Theoretical analysis is presented in this
paper to show why and how the new framework can be effective for optimizing large non-
separable problems. Extensive computational studies are also carried out to evaluate the
performance of newly proposed algorithm on a large number of benchmark functions with
up to 1000 dimensions. The results show clearly that our framework and algorithm are
effective as well as efficient for large scale evolutionary optimisation problems. We are
unaware of any other evolutionary algorithms that can optimize 1000-dimension nonsep-
arable problems as effectively and efficiently as we have done.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Evolutionary optimization has achieved great success on many numerical and combinatorial optimization problems in
recent years [14]. However, most evolutionary algorithms (EAs) still suffer from the ‘‘curse of dimensionality”, which implies
that their performance deteriorates rapidly as the dimensionality of the search space increases [22]. EAs that perform well on
low-dimension problems often fail to find good near optimal solutions to high-dimensional problems. Some initial efforts in
tackling large high-dimensional problems made unrealistic assumptions that the problem is separable. This paper will focus
on nonseparable functions since separable functions can easily be decomposed into small subproblems and are not as high-
dimensional as they appear.
. All rights reserved.
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Cooperative coevolution [9,6] has been proposed to solve large and complex problems through problem decomposition. It
can be regarded as an automatic approach to implementing the divide-and-conquer strategy. The original framework of
cooperative coevolution (CC) [10] for optimisation can be summarised as follows:

Problem decomposition: Decompose a high-dimensional objective vector into smaller subcomponents that can be han-
dled by conventional EAs.
Subcomponent optimization: Evolve each subcomponent separately using a certain EA.
Subcomponents coadaptation: Since interdependencies may exist between subcomponents, coadaptation (i.e., coevolu-
tion) is essential in capturing such interdependencies during optimization.

A critical step in the above framework is problem decomposition [11]. An ideal CC algorithm should decompose a large
problem into subcomponents where the interdependencies among different subcomponents are minimal. Existing algo-
rithms [6,10,15,16] originated from the above CC framework used two simple problem decomposition methods, i.e., the
one-dimensional based and splitting-in-half strategies. The one-dimensional based strategy decomposes a high-dimen-
sional vector into single variables. In other words, an n-dimensional problem would be decomposed into n one-dimensional
problems. While this strategy is very simple and effective for separable functions, it did not consider interdependencies
among variables for nonseparable problems. As a result, it is unable to tackle nonseparable problems satisfactorily. The
splitting-in-half strategy always decompose a high-dimensional vector into two equal halves and thus reducing an n-
dimensional problem into two n

2-dimensional problems. If n is large, the n
2-dimensional problems would still be very large

and challenging to solve. Although one might be able to apply the splitting-in-half strategy recursively, no work has been
reported so far. It is unclear when and how interdependencies among different variables can be captured for nonseparable
problems.

In addition to the lack of explicit consideration of variable interdependencies for nonseparable problems, existing CC-
based algorithms still use outdated EAs as the subcomponent optimizers, while more effective EAs have been proposed in
recent years. The performance of CC optimization algorithms on high-dimensional problems can be enhanced significantly
by adopting more advanced EAs.

With the exception of FEPCC [6], the existing CC-based algorithms were applied to problems with only up to 100 dimen-
sions, which are still relatively small for many real-world problems. No work has been reported in the literature for any EAs
to tackle nonseparable problems of up to 1000 dimensions.

This paper introduces a new problem decomposition strategy, i.e., the grouping based strategy, in order to better capture
the variable interdependencies for nonseparable problems [25]. A simple yet effective decomposition methods using this
strategy is presented. An adaptive weighting strategy is also introduced in order to strengthen further coadaptation among
decomposed subcomponents when they are interdependent. The idea behind our new algorithm is to optimize a group of
interacting variables together (as a subcomponent), rather than splitting them into different subcomponents. Ideally, each
subcomponent should consist of tightly interacting variables while the interaction among subcomponents should be weak.
Our grouping and adaptive weighting strategies are attempts towards this direction.

In addition to the decomposition strategies, this paper also introduces a new differential evolution (DE) variant, SaNSDE,
as the base optimizer for subcomponents. The key feature of SaNSDE is incorporation of self-adaptive neighbourhood search
into DE. SaNSDE has been shown to perform very well, without any coevolution, on a large number of benchmark functions.
The results in this paper shows further that SaNSDE can also help coevolutionary optimization significantly. In fact, our new
algorithm is able to tackle nonseparable problems with up to 1000 dimensions.

Although our new algorithms have shown superior performance on many benchmark functions, our decomposition strat-
egies are still rather simple and can be improved further. Extensive analyses and computational studies have been carried
out and reported in this paper, which explain why, how and when our new algorithms work well.

The rest of this paper is organized as follows. Section 2 gives a brief review of cooperative coevolution. Section 3 presents
our new CC framework and analyzes its effectiveness. Our grouping and adaptive weighting strategies will be described. The-
oretical analysis is given to explain why and how such simple strategies can work well. Section 4 introduces the DE with self-
adaptive neighbourhood search — SaNSDE. Section 5 describes our computational studies and presents the experimental re-
sults on a diverse set of nonseparable functions with up to 1000 dimensions. Finally, Section 6 concludes this paper with
some remarks and future research directions.
2. Cooperative coevolution

‘‘As evolutionary algorithms are applied to the solution of increasingly complex systems, explicit notions of modularity
must be introduced to provide reasonable opportunities for solutions to evolve in the form of interacting coadapted subcom-
ponents” [9]. Examples of this show up in the need for rule hierarchies in classifier systems and subroutines in genetic pro-
gramming [10]. CC is a general framework for applying EAs to large and complex problems using a divide-and-conquer
strategy. In CC, the objective system (such as a vector) is decomposed into smaller modules and each of them is assigned
to a species (i.e. subpopulation). The species are evolved mostly separately with the only cooperation happening during fit-
ness evaluation.
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The original cooperative coevolution (CC) framework for high-dimensional optimization can be summarized as follows
[6,10,15,16]:

(1) Decompose an objective vector into m low-dimensional subcomponents.
(2) Set i ¼ 1 to start a new cycle.
(3) Optimize the ith subcomponent with a certain EA for a predefined number of fitness evaluations (FEs).
(4) If i < m then iþþ, and go to Step 3.
(5) Stop if halting criteria are satisfied; otherwise go to Step 2 for the next cycle.

Here a cycle consists of one complete evolution of all subcomponents. The main idea is to decompose a high-dimensional
problem into some low-dimensional subcomponents and evolve these subcomponents cooperatively for a predefined num-
ber of cycles. The cooperation occurs only during fitness evaluation. The size of each subcomponent should be within the
optimization ability of the EA used.

Potter applied CC to concept learning and neural network construction [9]. García-Pedrajas et al. proposed COVNET,
which is a new CC model for evolving artificial neural networks [4]. In the domain of learning multiagent behaviors, CC rep-
resents a natural approach to applying traditional evolutionary computation [7,8]. Besides, CC has also been employed in
real-world applications, e.g. Cao et al. adopt a CC-based approach in their pedestrian detection system [2]. High-dimensional
optimization is another appropriate application of CC. Several CC EAs have been proposed to optimize high-dimensional
problems [6,10,15,16]. These algorithms were very successful in optimizing problems with independent variables. These
ability in dealing with nonseparable problems were somewhat limited.

As pointed out in Section 1, existing CC algorithms for optimization suffer from three major shortcomings. First, the
decomposition strategies did not take into account variable interdependencies for nonseparable problems. Second, the base
optimizer (e.g., an EA) was out of date. Third, the CC algorithms were able to deal with problems with only up to 100
dimensions.
3. The new framework with grouping and adaptive weighting

We propose a new CC framework with a group-based problem decomposition strategy. In addition, the new CC frame-
work is designed to change grouping structures dynamically, which will increase the chance of optimizing interacting vari-
ables together (and thus more effectively). Moreover, we maintain coadaptation among different groups for overall
controlling. More details are given below.

The crucial idea of our new group-based framework is to split an objective vector into m s-dimensional subcomponents
(assuming n ¼ m�s), and then evolve each of them with an EA. For coadaptation, we propose an adaptive weighting strategy,
which applies a weight to each of these subcomponents after each cycle, and evolves the weight vector with a certain
optimizer. The key steps of the framework can be summarized as follows:

(1) Set i ¼ 1 to start a new cycle.
(2) Split an n-dimensional object vector into m subcomponents (s-dimensional) randomly, i.e. n ¼ m�s. Here ‘‘randomly”

means that each variable has the same chance to be assigned into any of the subcomponents.
(3) Optimize the ith subcomponent with a certain EA for a predefined number of FEs.
(4) If i < m then iþþ, and go to Step 3.
(5) Apply a weight to each of the subcomponents. Evolve the weight vectors for the best, the worst and a random mem-

bers of current population.
(6) Stop if halting criteria are satisfied; otherwise go to Step 1 for the next cycle.

The main differences between our proposed approach and the existing ones (e.g., [10,6]) are: (1) our new framework evolves
a group of variables together, and the grouping structure will be changed dynamically; (2) the new framework uses adaptive
weighting for coadaptation among subcomponents after each cycle. This scheme of algorithm will be denoted as EACC-G in
our paper.

The motivation behind the adaptive weighting strategy is to provide coadaptation over all subcomponents when they are
interdependent. After each cycle, we apply a weight to each of these subcomponents. These weights will build up a weight
vector. For any member of a population, there exists an optimal weight vector. The determination of the optimal weight vec-
tor is an optimization problem itself. Fortunately, this optimization problem has a much lower dimensionality than the ori-
ginal one, and thus can usually be handled by existing EAs. Why and how the adaptive weighting strategy works is further
demonstrated as follows:

(1) For any individual, x ¼ ðx1; x2; . . . ; xnÞ, of a population, it is true that:
f ðxÞ � f ðwc � xÞ
where wc ¼ ð1;1; . . . ;1Þ indicates a constant weight vector.
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(2) To obtain better fitness value, we can apply a weight wi to each component of x, and then optimize the weight vector.
So we achieve:
min
w

f ðw � xÞ 6 f ðwc � xÞ � f ðxÞ
where w ¼ ðw1;w2; . . . ;wnÞ is the weight vector over the individual x.
(3) However, optimizing the weight vector w is as hard as to optimize the original individual x, since they are in the same

dimension. But DECC-G splits the n-dimensional vector x into m (m� n) subcomponents. So we can alternatively
apply a weight to each of these subcomponents, and thus we only need to optimize a much lower dimensional vector
~w ¼ ð ~w1; ~w2; . . . ; ~wmÞ:
min
w

f ðw � xÞ 6 min
w0

f ðw0 � xÞ 6 f ðxÞ
where w0 ¼ ð~w1; . . . ; ~w1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
s

; ~w2; . . . ; ~w2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
s

; . . . ; ~wm; . . . ; ~wm|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
s

Þ, with s denotes the dimension of each subcomponent and m de-

notes the number of subcomponents (assuming n ¼ m�s).

So the adaptive weighting strategy works like a trade off between optimizing high-dimensional vector w and no weighting at
all. Further, since the variables of a subcomponent is controlled integrally by changing the weight of it, the process of opti-
mizing the weight vector can also be viewed as a coarse coadaptation over all subcomponents.

3.1. Why and How well EACC-G works

In spite of many discussions of separable and nonseparable functions in the literature, there is no clear definition to dis-
tinguish between separable and nonseparable problems. Based on the description in a recent suite of benchmark functions
[19], we provide the following definition in this paper.

Definition 1. f ðxÞ is called a separable function if 8k 2 f1;ng and
x 2 S; x ¼ ðx1; . . . ;xk; . . . ;xnÞ
x0 2 S; x0 ¼ ðx1; . . . ;x0k; . . . ;xnÞ

�
) f ðxÞ < f ðx0Þ ð1Þ
imply
8y 2 S; y ¼ ðy1; . . . ; xk; . . . ; ynÞ
8y0 2 S; y0 ¼ ðy1; . . . ;x0k; . . . ; ynÞ

�
) f ðyÞ < f ðy0Þ ð2Þ
Otherwise, f ðxÞ is called a nonseparable function.

Basically, non-separability means that the objective vector consists of interacting variables, while separability means that
the influence of a variable on the fitness value depends only on itself, i.e., independent of any other variables.

Given a nonseparable function, if all of its variables are highly interdependent of each other, no CC algorithms would per-
form well on such an extreme case. For many real-world problems, interdependencies often occur among subsets, but not all,
of variables. For such problems, our grouping based strategies can be an effective approach to decompose a high-dimensional
vector into smaller low-dimensional subcomponents. Within each subcomponent, variables will be highly interdependent.
Between subcomponents, the interdependencies (if any) will be weak. The proposed EACC-G has been designed to decom-
pose a nonseparable problem following the above principle. It optimizes a group of tightly interdependent variables (a sub-
component) together, rather than individually as it was done by other existing algorithms. To gain a better understanding of
how such a grouping strategy used by EACC-G can help to increase the chance of capturing the interdependencies of vari-
ables, the following theorem shows a simple case of the probability to optimize two interacting variables together in
EACC-G.

Theorem 1. The probability of EACC-G to assign two interacting variables xi and xj into a single subcomponent for at least k cycles
is:
Pk ¼
XN

r¼k

N
r

� �
1
m

� �r

1� 1
m

� �N�r

ð3Þ
where N is the total number of cycles and m is the number of subcomponents.

Proof 1. Firstly, in each separate cycle, the probability of EACC-G to assign xi and xj into the same subcomponent is:
p ¼

m

1

� �

m2 ¼ 1
m
:
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In all N cycles, EACC-G will decompose the objective vector for N times, and these decomposition operations are independent
of each other. Let pr be the probability of EACC-G to assign xi and xj into a single subcomponent for exactly r cycles. Obvi-
ously, pr satisfies the binomial distribution, so it is easy to get:
pr ¼
N

r

� �
prð1� pÞN�r ¼

N

r

� �
1
m

� �r

1� 1
m

� �N�r
Thus,
Pk ¼
XN

r¼k

pr ¼
XN

r¼k

N
r

� �
1
m

� �r

1� 1
m

� �N�r

:

The theorem is proved. h

Given n ¼ 1000; s ¼ 100, we know that the number of subcomponents would be m ¼ n=s ¼ 10. If the number of cycles
N ¼ 50 [6], we have:
P1 ¼
XN

r¼1

pr ¼ 1� p0 ¼ 1� 1� 1
m

� �N

¼ 1� 1� 1
10

� �50

¼ 0:9948;

P2 ¼
XN

r¼2

pr ¼ 1� p0 � p1 ¼ 0:9662:
P1 and P2 show that EACC-G has relatively high probabilities to optimize interacting variables for at least one or two cycles.
In other words, the simple grouping strategies used by EACC-G is quite effective in capturing variable interdependencies
with little domain knowledge.

4. Self-adaptive differential evolution with neighbourhood search

Differential evolution (DE) [12,18] is a simple yet effective algorithm for global optimization. It has shown superior per-
formance on benchmark functions [23] as well as real-world problems [17,21]. The primary driving force behind DE is muta-
tion. DE executes its mutation by adding a weighted difference vector between two individuals to a third individual. Then the
mutated individuals will be subject to discrete crossover and greedy selection with corresponding individuals of the last gen-
eration to produce offspring. Much work has been done to study the settings of DE’s control parameters (e.g., population size
NP, crossover rate CR and scaling factor F) [3,28]. Self-adaptive strategy has also been investigated to adapt these parameters
[1] as well as different schemes [13]. DE has been combined with other algorithms to produce various hybrid algorithms
[20,29]. In this section we will introduce one of the most recent DE variants as the base optimizer for subcomponents in
our new CC algorithm.

4.1. Differential evolution

4.1.1. Classical differential evolution
Individuals in DE are represented by n-dimensional vectors xi; 8i 2 f1; . . . ;NPg;where NP is the population size. According

to the description by Storn and Price [18], the main operations of classical DE can be summarized as follows:

(1) Mutation:
vi ¼ xi1 þ F � ðxi2 � xi3 Þ ð4Þ
where i; i1; i2; i3 2 ½1;NP�, are integers and mutually different, and F > 0, is a constant coefficient used to control the
differential variation di ¼ xi2 � xi3 .

(2) Crossover:
uiðjÞ ¼
viðjÞ; if Ujð0;1Þ < CR or j ¼ jrand

xiðjÞ; otherwise:

�
ð5Þ
where Ujð0;1Þ is an uniformly distributed random number between 0 and 1, and jrand is a randomly chosen index to
ensure that the trial vector ui does not duplicate xi. CR 2 ð0;1Þ is the crossover rate, which is often set to 0.9.

(3) Selection:
x0i ¼
ui; if f ðuiÞ < f ðxiÞ
xi; otherwise:

�
ð6Þ
where x0i is the offspring of xi for the next generation.
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Although there are several variants of classical DE, the above one, which can be classified using notation DE=rand=1=bin, is
the most often used in practice [18,13].

4.1.2. Differential evolution with neighbourhood search (NSDE)
Neighbourhood search (NS) has been shown to play a crucial role in improving evolutionary programming (EP) algo-

rithm’s performance [27]. Characteristics of several NS operators have been studied in EP [5,27]. Although DE might be sim-
ilar to the evolutionary process in EP, it lacks a relevant concept of neighbourhood search. Based on a generalization of NS
strategies, a neighbourhood search differential evolution (NSDE) has been proposed [24]. NSDE is the same as the DE de-
scribed in Section 4.1.1 except for Eq. (4), which is replaced by the following:
vi ¼ xi1 þ
di � Nð0:5;0:5Þ; if Uð0;1Þ < 0:5
di � d; otherwise:

�
ð7Þ
where di ¼ xi2 � xi3 is the differential variation, Nð0:5;0:5Þ denotes a Gaussian random number with mean 0.5 and standard
deviation 0.5, and d denotes a Cauchy random variable with scale parameter t ¼ 1.

The advantages of NSDE had been studied in depth [24]. Experimental results have shown that NSDE has significant
advantages over classical DE on a broad range of different benchmark functions [24]. The NS operators in NSDE can improve
the diversity of NSDE’s search step size and population significantly without relying on any prior knowledge about the search
space.

4.1.3. Self-adaptive NSDE (SaNSDE) [26]
It has been pointed out that the control parameters and learning strategies involved in DE are highly problem dependent

[3,13]. It is very time-consuming to tune parameters manually for different problems. A self-adaptive DE algorithm (SaDE)
[13] was recently proposed to tune parameters automatically through evolution. In SaDE, DE’s two learning strategies were
selected as candidates due to their good performance. Two out of three critical parameters, i.e., crossover rate CR and scaling
factor F, are adaptively tuned by SaDE during evolution. The performance of SaDE was shown to be very good on the set of 25
benchmark functions provided by CEC2005 Special Session [19].

Comparing to NSDE, SaDE has a quite different emphasis on improving classical DE’s performance. SaDE pays special
attention to self-adaption of control parameters, while NSDE tries to mix search biases of different NS operators adaptively.
A new algorithm, the self-adaptive NSDE (SaNSDE), combines the advantages of NSDE and SaDE together in a single algo-
rithm [26]. SaNSDE is same as NSDE except for the following:

(1) Introducing the self-adaptive mechanism from SaDE.
(2) Following the strategy in SaDE to dynamically adapt the value of CR.
(3) Using the same self-adaptive strategy as that in SaDE to adapt the balance between Gaussian and Cauchy operators.

SaNSDE has been shown to perform significantly better than other existing algorithms on a wide range of benchmark func-
tions [26].

4.2. SaNSDE under the new CC framework

Given SaNSDE as the base optimizer for subcomponents, it is straightforward to design the corresponding SaNSDE with
cooperative coevolution, called DECC-G, by following the steps of EACC-G in Section 3. In addition, we need to specify an-
other optimizer for the weighting strategy of DECC-G. Although SaNSDE could be used for this purpose as well, we will
use the classical DE here because we want to evaluate the effectiveness of SaNSDE as a subcomponent optimizer. It will
be less complex to evaluate its contribution if we apply it only in one place in the new CC framework. The pseudocode of
DECC-G is given in Fig. 1.

5. Experimental studies

5.1. Experimental setup

We have chosen the well-studied domain of function optimization as the test bed for our new CC framework in order to
facilitate comparisons with other work. The performance of the proposed DECC-G algorithm will be evaluated on both clas-
sical benchmark functions [27] and the new suite of test functions provided by CEC2005 Special Session [19]. The algorithms
used for comparison include not only conventional EAs and SaNSDE, but also other CC optimization algorithms (e.g., FEPCC
[6] and DECC-O [15]). In order to make the comparisons as fair as possible, the same number of fitness evaluations (FEs) will
be used for all algorithms as the stopping criterion, which is set to grow in the order of OðnÞ [6], where n is the number of
dimensions (variables) of the function. Table 1 summarises different numbers of FEs for different problem sizes.

For all experiments, we set SaNSDE’s population size NP ¼ 100, subcomponent dimensions s ¼ 100, and the number of
cycles in DECC-G to be 50.



Fig. 1. The pseudocode of DECC-G.

Table 1
The number of fitness evaluations for our experimental studies

# of Dim’s 100 250 500 750 1000
# of FEs 5.00e+5 1.25e+06 2.50e+06 3.75e+06 5.00e+06
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5.2. Results on classical benchmark functions

We first test DECC-G’s performance on a set of widely used benchmark functions for numerical optimization [27]. Func-
tions f1—f13 of the set are scalable and applicable to high-dimensional optimization evaluation. Among the 13 functions,
functions f1—f7 are unimodal functions and functions f8—f13 are multimodal functions where the number of local minima
increases exponentially as the problem dimension increases [5,27]. Functions f4 and f 5 are nonseparable, while others are
separable. Details of these functions can be found in appendix of [27].

The average results over 25 independent runs of our experiments are summarized in Tables 2 and 3. The results of FEPCC
were taken from [6]. Symbol ‘‘–” means that the result was not given, while ‘‘INF” means that no reasonable result was found.
The best mean values among all algorithms are marked in bold face. The t-test values between DECC-G and DECC-O are also
given in the last column of these tables. Figs. 2 and 3 show the evolutionary processes of representative benchmark
functions.

Comparing to SaNSDE, it is clear that DECC-G performed significantly better. SaNSDE’s performance deteriorated rapidly
as the problem dimension increased. In contrast, DECC-G was not so sensitive to the increase of problem dimensions. DECC-
G gained much better results than the non-CC algorithm on high-dimensional functions, which confirmed the advantages of
CC algorithms over non-CC ones for large optimization problems.



Table 2
Comparison between DECC-G and SaNSDE, FEPCC, and DECC-O on functions f1—f7, with dimension D ¼ 500 and 1000. All results have been averaged over 25
independent runs

Test function # of Dim’s SaNSDE mean FEPCC mean DECC-O mean DECC-G mean DECC-G/O t-test

f1 500 2.41e�11 4.90e�08 2.28e�21 6.33e�27 �2.06e+01a

1000 6.97e+00 5.40e�08 1.77e�20 2.17e�25 �3.56e+01a

f2 500 5.27e�02 1.30e�03 3.77e�10 5.95e�15 �4.73e+01a

1000 1.24e+00 2.60e�03 INF 5.37e�14 –

f3 500 2.03e�08 – 2.93e�19 6.17e�25 �2.15e+01a

1000 6.43e+01 – 8.69e�18 3.71e�23 �2.87e+01a

f4 500 4.07e+01 9.00e�05 6.01e+01 4.58e�05 �1.60e+02a

1000 4.99e+01 8.50e�05 7.92e+01 1.01e�01 �4.85e+02a

f5 500 1.33e+03 – 6.64e+02 4.92e+02 �5.23e+00a

1000 3.31e+03 – 1.48e+03 9.87e+02 �9.51e+00a

f6 500 3.12e+02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
1000 3.93e+03 0.00e+00 0.00e+00 0.00e+00 0.00e+00

f7 500 1.28e+00 – 1.04e+01 1.50e�03 �6.88e+01a

1000 1.18e+01 – 2.21e+01 8.40e�03 �1.39e+02a

a The value of t with 24� of freedom is significant at a ¼ 0:05 by a two-tailed test.

Table 3
Comparison between DECC-G and DE, SaNSDE, FEPCC, and DECC-O on functions f8—f13, with dimension D ¼ 500 and 1000. All results have been averaged over
25 independent runs

Test function # of Dim’s SaNSDE mean FEPCC mean DECC-O mean DECC-G Mean DECC-G/O t-test

f8 500 �201796.5 �209316.4 �209491 �209491 0.00e+00
1000 �372991 �418622.6 �418983 �418983 0.00e+00

f9 500 2.84e+02 1.43e�01 1.76e+01 0.00e+00 �2.30e+01a

1000 8.69e+02 3.13e�01 3.12e+01 3.55e�16 �7.13e+01a

f10 500 7.88e+00 5.70e�04 1.86e�11 9.13e�14 �3.88e+01a

1000 1.12e+01 9.50e�04 4.39e�11 2.22e�13 �4.14e+01a

f11 500 1.82e�01 2.90e�02 5.02e�16 4.40e�16 �3.93e+00a

1000 4.80e�01 2.50e�02 2.04e�15 1.01e�15 �4.37e+01 (a)

f12 500 2.96e+00 – 2.17e�25 4.29e�21 1.75e+01a

1000 8.97e+00 – 1.08e�24 6.89e�25 �8.45e+00a

f13 500 1.89e+02 – 5.04e�23 5.34e�18 1.40e+01a

1000 7.41e+02 – 4.82e�22 2.55e�21 1.05e+01a

a The value of t with 24 degrees of freedom is significant at a ¼ 0:05 by a two-tailed test.
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Comparing to FEPCC, DECC-G performed significantly better on most benchmark functions. Since most of these functions
are separable, these results show that DECC-G is a far more effective algorithm than FEPCC in discovering and exploiting
problem structures inherent in these functions although no prior knowledge was available to the algorithms. An interesting
exception is the nonseparable function f4 with 1000 dimension, for which FEPCC performed significantly better than DECC-G.
Function f4 is the step function that is characterized by plateaus and discontinuity. The main reason why FEPCC performs
better is that it adopts a greedy fitness evaluation method [6]. The method makes FEPCC move quickly from one plateau
to a lower one. Without such characteristics, FEPCC would not be expected to outperform DECC-G.

In order to compare with conventional one-dimensional based CC framework, we also implemented DECC-O, which opti-
mizes only one variable at a time. That is, each subcomponent consists of a single variable. It is clear from the results in the
tables and figures that DECC-G performed significantly better than DECC-O on nonseparable functions f4 and f 5, which is
consistent with our theoretical analysis in Section 3. Even for separable functions, DECC-G still performed better than
DECC-O for all but functions f12 and f 13. On closer examination, it can be seen that functions f12 and f 13 are quite easy to
optimize for both DECC-G and DECC-O because both algorithms could find solutions that were extremely closer to the exact
optima. This characteristic weakens the effectiveness of the adaptive weighting strategy of DECC-G, because the weighting
strategy adjusts a group of variables at one time, which acts like a coarse tuning. The coarse tuning is effective only when the
global optimum is sufficiently far away from the current search point [27].

To evaluate the effectiveness of the proposed weighting strategy, we have compared DECC-G against DECC-G without the
weighting strategy, called DECC-G-NW. The results are summarized in Table 4. The best mean values of them are marked in
bold face. The t-test values between them are given in the last column of the table. It is clear from the table that DECC-G’s
performance is either significantly better than or comparable to DECC-G-NW’s, except for a single case of f1 with 1000
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Fig. 2. The evolution process of the mean best values found for f1; f 3; f 4; f 5; f 8 and f 9 with dimension n ¼ 500. The results were averaged over 25 runs.
The vertical axis is the function value and the horizontal axis is the number of generations.
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dimensions. In this case, DECC-G-NW’s mean performance was 2.17e�25 while DECC-G’s was 2.55e�26. While there is a
statistically significant difference between the two algorithms in this case, such a difference would certainly be negligible
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for any practical optimisation problems since both were so close to 0. In general, there is overwhelming evidence to support
the effectiveness of the adaptive weighting strategy in DECC-G, especially for nonseparable functions.



Table 4
Comparison between DECC-G and DECC-G-NW (without the weighting strategy), with dimension D ¼ 500 and 1000. All results have been averaged over 25
independent runs

Test function # of Dim’s DECC-O Mean DECC-G-NW Mean DECC-G Mean DECC-G/NW t-test

f1 500 2.28e�21 1.48e�26 6.33e�27 �8.19e+00a

1000 1.77e�20 2.55e�26 2.17e�25 1.65e+01a

f4 500 6.01e+01 5.28e+01 4.58e�05 �6.78e+01a

1000 7.92e+01 8.30e+01 1.01e�01 �1.69e+02a

f5 500 6.64e+02 1.27e+03 4.92e+02 �1.94e+01a

1000 1.48e+03 2.63e+03 9.87e+02 �3.05e+01a

f8 500 �209491 �209491 �209491 0.00e+00
1000 �418983 �418983 �418983 0.00e+00

f9 500 1.76e+01 2.21e+02 0.00e+00 �1.17e+02a

1000 3.12e+01 4.56e+02 3.55e�16 �1.17e+02a

a The value of t with 24 degrees of freedom is significant at a ¼ 0:05 by a two-tailed test.

Table 5
Comparison between DECC-G and SaNSDE and DECC-O on CEC2005 functions, with dimension D ¼ 500 and 1000. All results have been averaged over 25
independent runs

CEC’05 function # of Dim’s SaNSDE Mean DECC-O Mean DECC-G Mean DECC-G/O t-test

fcec1 500 2.61e�11 1.04e�12 3.71e�13 �2.87e+01a

1000 1.17e+00 3.66e�08 6.84e�13 �2.96e+01a

fcec3 500 6.88e+08 4.78e+08 3.06e+08 �1.13e+01a

1000 2.34e+09 1.08e+09 8.11e+08 �1.45e+01a

fcec5 500 4.96e+05 2.40e+05 1.15e+05 �7.72e+01a

1000 5.03e+05 3.73e+05 2.20e+05 �4.12e+01a

fcec6 500 2.71e+03 1.71e+03 1.56e+03 �2:74e� 01
1000 1.35e+04 3.13e+03 2.22e+03 �1.10e+01a

fcec8 500 2.15e+01 2.14e+01 2.16e+01 2.72e+01a

1000 2.16e+01 2.14e+01 2.16e+01 6.11e+01a

fcec9 500 6.60e+02 8.66e+00 4.50e+02 9.09e+01a

1000 3.20e+03 8.96e+01 6.32e+02 1.39e+02a

fcec10 500 6.97e+03 1.50e+04 5.33e+03 �5.95e+01a

1000 1.27e+04 3.18e+04 9.73e+03 �2.95e+01a

fcec13 500 2.53e+02 2.81e+01 2.09e+02 7.72e+01a

1000 6.61e+02 7.52e+01 3.56e+02 5.00e+01a

a The value of t with 24 degrees of freedom is significant at a ¼ 0:05 by a two-tailed test.
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5.3. Results on CEC2005 functions

To evaluate our new CC framework further, a new set of benchmark functions, which was provided by CEC2005 Special
Session [19], are used in this section. It includes 25 functions with varying complexity. Functions fcec1—fcec5 are unimodal
while the remaining 20 functions are multimodal. All these functions are scalable. The detailed descriptions of them can
be found in [19]. Many of them are the shifted, rotated, expanded and/or combined variants of the classical functions. Some
of these changes cause them to be more resistant to simple search tricks. Other changes, such as rotation, transfer separable
functions into nonseparable ones, which will be particularly challenging to the CC framework. Hence, this suite of bench-
mark functions are ideal for experimental evaluation of CC framework based algorithms.

Since fitness evaluation of high-dimensional functions is very time consuming and the values of some functions are too
big to be represented in a computer, we used only eight representative functions (out of 25) in our experimental studies,
including two separable functions (fcec1 and f cec9) and six nonseparable functions. The experimental results on these func-
tions are given in Table 5.

It is obvious from the table that DECC-G performed better than SaNSDE for all functions except for fcec8, where the per-
formance seems to be the same for both algorithms. It is worth noting that the difference between DECC-G and SaNSDE be-
comes larger when the dimension increased from 500 to 1000, which shows the better scalability of DECC-G.

In comparison with DECC-O, DECC-G performed significantly better on five out of eight problems, but was outperformed
by DECC-O on the remaining three Among the three functions where DECC-O performed better, fcec9 is what one would ex-
pect since it is a separable function. A closer look at the actual results for fcec8 from both algorithms revealed that they are
very close. For example, their mean values were 2.16e+01 and 2.14e+01, respectively. In fact, all algorithms have similar per-
formance on function fcec8. The fitness landscape of fcec8 in Fig. 4 shows that it is a strange deceptive problem. Although DECC-
O happened to find better local optima, they are still far way from the global optimum (with fitness value 0). Nonseparable
function fcec13 is, in essence, the only true exception for which DECC-G was outperformed by DECC-O unexpectedly. fcec13 is
composite function, which is composed of two kinds of different functions. This makes its characteristics hard to analyse. Our
future work will focus on the analysis of DECC-G’s evolutionary behaviors on functions like fcec13.

To gain a better understanding of the entire search process, Figs. 5 and 6 show the evolutionary processes of six functions.
(The remaining two functions were omitted to save spaces.) It can be seen from the two figures that except for function fcec13,
DECC-G not only obtained the best results, but also converged much faster. The effectiveness and efficiency of DECC-G is
especially prominent on nonseparable functions fcec5, fcec6 and f cec10.

6. Conclusions

This paper proposes a new CC framework for high-dimensional optimization problems. It is particularly good at dealing
with nonseparable problems. The key ideas behind our new CC framework include the grouping strategy and the adaptive
weighting strategy. A theoretical analysis was given in the paper to illustrate how such strategies can help to capture var-
iable interdependencies in nonseparable problems. Combined with a powerful DE algorithm—SaNSDE, we presented a novel
CC optimization algorithm, DECC-G, for large problems. Extensive computational studies were carried out to evaluate the
performance of DECC-G on a wide range of different benchmark functions. The results confirmed our analysis that DECC-
G is very effective and efficient in tackling large optimisation problems with dimensions up to 1000.

Although we used SaNSDE as the basic subcomponent optimizer, any other EA can be introduced into our CC framework
easily. Moreover, more than one kind of EAs could also be employed as the subcomponent optimizer to mix different search
biases. Our future work will focus on more in-depth analysis of DECC-G and its relation to different problem characteristics.
For example, it will be interesting to analyse why DECC-G did not perform as well as DECC-O on fcec13. Such analysis is ex-
pected to shed light on why and how DECC-G works.
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