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GA for Multiobjective Optimization

Example: A machine is characterized by power and torque. A
machine is better if � at equal torque � its power is higher.

Combination of �tness functions
f (x) = |f1 (x)|α + |f2 (x)|α
f (x) = αf1 (x) + (1− α) f2 (x)
How to set α?

If α is not implied by the
problem, any value in between
the two maxima is equally good.

If a comparison between the two quantities is not possible, a set of
solutions should be considered as optimal (Pareto-optimal).

How to optimise one criterion without loosing on other criteria?

C. M. Fonseca & P. J. Fleming (1995) An Overview of Evolutionary Algorithms
in Multiobjective Optimization. Evolutionary Computation 3:1, 1-16.
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Multiobjective Optimization

x∗ is Pareto optimal for a class of
�tness functions {fi} if there exists
no x 6= x∗ with fi (x) ≥ fi (x

∗) for all i

or, equivalently, x∗ is not dominated

by any other x : ∼∃x � x∗

(more speci�cally ∼∃x �{fi} x∗)

Example with three �tness
functions

Same example: Pareto area spanned by
maxima in a shape-dependent way
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GA for Multiobjective Optimization

Bene�ts: Problems:

Collective search required
for sampling the Pareto set

Non-connected Pareto sets
are OK

Incorporation of constraints
in �tness function

Selection of �t
individuals?

Elitism?

Pareto-optimal diversity?

Speed? (Pareto set can
be high-dimensional)
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GA for Multiobjective Optimization

f1 (x) = x1, f2 (x) = x2 minimisation with constraints

g1 (x) : x21 + x22 − 1
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NSGA-II
(nondominated sorting GA)

conventional algorithm
(also GA-style)

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal and T. Meyarivan (2000) A Fast Elitist Multi-Objective
Genetic Algorithm: NSGA-II, IEEE Transact. Evolutionary Computation 6,182-197.
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How does it work?

Non-dominated-sorting genetic algorithm (NSGA)

Selection by non-dominated sorting (M �tness functions)

Preserving diversity along the non-dominated front

Use two populations P and P' (each with N individuals)

�being dominated by�, denotes a partial order induced by a set
of �tness functions

P ′=�nd-nondomminated front(P)

P ′ = {1} include �rst member into P ′

for each p ∈ P ∧ p /∈ P ′ take on solution at a time
P ′ = P ′ ∪ {p} temporarily include p into P ′

for each q ∈ P ′ ∧ q 6= p compare p to other members of P ′

if q ≺ p then P ′ = p′\ {q} if p dominates a member q of P ′

then delete q
else if p ≺ q then

P ′ = p′\ {p}
if p is dominated by another mem-
ber then do not include p in P'

Complexity per step: O(MN2)
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Ranking

F=fast-nondominated-sort(P); returns a set of nondominated fronts

i = 1 i is the front counter
until P 6= ∅ temporarily include p into P ′

Fi=�nd-nondominated-front (P) �nd the non-dominated front
P = P\Fi remove nondominated

solutions from P

i = i + 1 increment the front counter
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Reserving density

New distance measure: �rst rank,
then lowest density:

i �n j if
(
irank < jrank

)
or((

irank = jrank
)
and idist > jdist

)
crowding-distance-assignment(I)
l = {I} number of solutions in I
for each i set I [i ]dist = 0 initialise distance

for each objective m temporarily include p into P ′

I = sort (I,m) sort using each objective value
I [1]dist = I [l ]dist =∞ so that boundary points are

always selected
for i = 2 to l − 1 for all non-boundary points:

I [i ]dist = I [i ]dist + (I [i + 1]m − I [i − 1]m)2
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NSGA-II: Main Loop
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NSGA-II: Main Loop

Rt = Pt ∪ Qt combine parents and children
F=fast-nondominated-sort(Rt) F = (F1,F2, . . . ), all

nondominated fronts of Rt

Pt+1 = ∅ and i = 1
until |Pt+1|+ |Fi | ≤ N till the parent population is �lled
crowding-distance-
assignment(Fi )

calculated crowing distance in Fi

Pt+1 = Pt+1 ∪ Fi include the ith front into parent
population

i = i + 1 check next front for inclusion
sort(Fi ,≺n) take part of the following front
Pt+1 =
Pt+1 ∪ Fi [1 : (N − |Pt+1|)]

choose the �rst (N − |Pt+1|)
elements of Fi

Qt+1 =make-new-pop(Pt+1) use selection, crossover and
mutation to create a new
population Qt+1 (standard GA)

t = t + 1 increment the generation counter
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Performance

f1 (x) = x2

f2 (x) = (x − 2)2
f1 (x) = x2

f2 (x) = g (x)
“
1−

p
x1/g (x)

”
g (x) = 1 + 10 (n − 1) +

P
n

i=2

“
x2
i
− 10 cos (4πxi )

”
Left: Performance similar, NSGA-II has better distribution. Right:
Even spread of the solution is a further goal that may compromise
Pareto optimality of NSGA-II. (optimality is towards down and left)

For comparison: (1 parent, 1 child) Pareto-Archived Evolution
Strategy (PAES) by Knowles and Corne (1999)
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Evolution Strategies
Evolution with continuous representations

Natural problem-dependent representation for search and
optimisation (without �genetic� encoding)

Individuals are vectors of real numbers which describe current
solutions of the problem

Recombination by exchange or averaging of components (but
is often not used in ES)

Mutation in continuous steps with adaptation of the mutation
rate to account for di�erent scales and correlations of the
components

Selection by �tness from various parent sets

Variations of the algorithm: Elitism, islands, adaptation of
parameters, ...

1964: Ingo Rechenberg; Hans-Paul Schwefel
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Multidimensional Mutations in ES

Generation of o�spring: y = x +N (0,C ′)

x stands for the vector (x1, . . . , xL)
> describing a parent

C ′ is the covariance matrix C after mutation of the sv values where

C = diag(sv, ...,sv) for homogeneous uncorreleted mutations,
C = diag(sv1, ...,svL) for scaled axes or
C = (Cij) for correlated mutations

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing, 2008.
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Multidimensional Mutations in ES

O�-spring vectors for parent m: xi := m + zi , zi ∼ N (0,C )

Select l best [i.e. (1, l) - ES, see below]

Correlations among successful o�spring: Z := 1

l
Siziz

>
i

Update correlations: C := (1− e)C + eZ

New state vector by averaging: m := m + 1

l
Sizi

Smoothes �tness �uctuations; or: m =best

Heuristic 1/5 rule: If less than 1/5 of the children are better than
their parents then decrease size of mutations

NAT07 11/10/2011 J. M. Herrmann



Nested Evolution Strategy

Hills are not independently distributed (hills of hills)

Find a local maximum as a start state

Generate 3 o�spring populations (founder populations) that
then evolve in isolation

Local hill-climbing (if convergent: increase diversity of
o�spring populations)

Select only highest
population

Walking process from
peak to peak within an
�ordered hill scenery�
named Meta-Evolution

Takes the role of crossover
in GA

http://www.bionik.tu-berlin.de/intseit2/xs2mulmo.html
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Evolution strategies
Naming convention for variants

(m, l): From m parents l children (mutants) are generated.
Selection only from the set of the l children

(m + l): Same as above, but selection from the set of m
parents plus l children

(m′, l′(m, l)g): Hierarchical (nested) variant: From m′ parent
sub-populations, l′ child-populations are generated. Then the
children are isolated for g generations where each time l
children are created (total population is ll′) and m are
selected. Then the best m′ subpopulations are selected and
become parents for the new cycle of again g generations

Analogous: (m′ + l′(m, l)g), (m′ + l′(m + l)g), (m′, l′(m + l)g)
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From Genetic Algorithms to Genetic Programming

GA and GP are closely related �elds

Many of the empirical results discovered in one �eld apply to
the other �eld, e.g. maintaining high diversity in a population
improves performance

GAs use a �xed-length linear representation GP uses a variable-
size tree representation (variable size up to some bounds)

Representations and genetic operators of GA and GP appear
di�erent (ultimately they are populations of bit strings in the
computer's memory)

An important di�erence lies in the interpretation of the
representation: 1-to-1 mapping between the description of an
object and the object itself (GA) or a many-to-1 mapping (GP)

No-Free-Lunch theorem is valid for 1-to-1 mappings but not
for many-to-1 mappings

Woodward (2003)
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No-Free-Lunch Theorems

Statement:

Averaged over all problems
for any performance metric related to number of distinct data
points
all black-box algorithms will display the same performance

Implications

If a new black box algorithm is good for one problem � it is
probably poor for another one
There are as many deceptive as easy �tness functions (in large
problems)
Makes sense not to use �black-box algorithms�

Ongoing work showing counterexamples (given speci�c
constraints or universes of problems or in co-evolutionary
algorithms with self-play)
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