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Abstract—Multiobjective evolutionary algorithms (EAs)
that use nondominated sorting and sharing have been criti-
cized mainly for their: 1) ( 3) computational complexity
(where is the number of objectives and is the population
size); 2) nonelitism approach; and 3) the need for specifying a
sharing parameter. In this paper, we suggest a nondominated
sorting-based multiobjective EA (MOEA), called nondominated
sorting genetic algorithm II (NSGA-II), which alleviates all
the above three difficulties. Specifically, a fast nondominated
sorting approach with ( 2) computational complexity is
presented. Also, a selection operator is presented that creates a
mating pool by combining the parent and offspring populations
and selecting the best (with respect to fitness and spread)
solutions. Simulation results on difficult test problems show that
the proposed NSGA-II, in most problems, is able to find much
better spread of solutions and better convergence near the true
Pareto-optimal front compared to Pareto-archived evolution
strategy and strength-Pareto EA—two other elitist MOEAs that
pay special attention to creating a diverse Pareto-optimal front.
Moreover, we modify the definition of dominance in order to
solve constrained multiobjective problems efficiently. Simulation
results of the constrained NSGA-II on a number of test problems,
including a five-objective seven-constraint nonlinear problem, are
compared with another constrained multiobjective optimizer and
much better performance of NSGA-II is observed.

Index Terms—Constraint handling, elitism, genetic algorithms,
multicriterion decision making, multiobjective optimization,
Pareto-optimal solutions.

I. INTRODUCTION

T HE PRESENCE of multiple objectives in a problem, in
principle, gives rise to a set of optimal solutions (largely

known as Pareto-optimal solutions), instead of a single optimal
solution. In the absence of any further information, one of these
Pareto-optimal solutions cannot be said to be better than the
other. This demands a user to find as many Pareto-optimal solu-
tions as possible. Classical optimization methods (including the
multicriterion decision-making methods) suggest converting the
multiobjective optimization problem to a single-objective opti-
mization problem by emphasizing one particular Pareto-optimal
solution at a time. When such a method is to be used for finding
multiple solutions, it has to be applied many times, hopefully
finding a different solution at each simulation run.

Over the past decade, a number of multiobjective evolu-
tionary algorithms (MOEAs) have been suggested [1], [7], [13],
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[20], [26]. The primary reason for this is their ability to find
multiple Pareto-optimal solutions in one single simulation run.
Since evolutionary algorithms (EAs) work with a population of
solutions, a simple EA can be extended to maintain a diverse
set of solutions. With an emphasis for moving toward the true
Pareto-optimal region, an EA can be used to find multiple
Pareto-optimal solutions in one single simulation run.

The nondominated sorting genetic algorithm (NSGA) pro-
posed in [20] was one of the first such EAs. Over the years, the
main criticisms of the NSGA approach have been as follows.

1) High computational complexity of nondominated sorting:
The currently-used nondominated sorting algorithm has a
computational complexity of (where is the
number of objectives and is the population size). This
makes NSGA computationally expensive for large popu-
lation sizes. This large complexity arises because of the
complexity involved in the nondominated sorting proce-
dure in every generation.

2) Lack of elitism:Recent results [25], [18] show that elitism
can speed up the performance of the GA significantly,
which also can help preventing the loss of good solutions
once they are found.

3) Need for specifying the sharing parameter : Tradi-
tional mechanisms of ensuring diversity in a population so
as to get a wide variety of equivalent solutions have relied
mostly on the concept of sharing. The main problem with
sharing is that it requires the specification of a sharing
parameter ( ). Though there has been some work on
dynamic sizing of the sharing parameter [10], a param-
eter-less diversity-preservation mechanism is desirable.

In this paper, we address all of these issues and propose an
improved version of NSGA, which we call NSGA-II. From the
simulation results on a number of difficult test problems, we find
that NSGA-II outperforms two other contemporary MOEAs:
Pareto-archived evolution strategy (PAES) [14] and strength-
Pareto EA (SPEA) [24] in terms of finding a diverse set of so-
lutions and in converging near the true Pareto-optimal set.

Constrained multiobjective optimization is important from the
pointof viewofpracticalproblemsolving,butnotmuchattention
has been paid so far in this respect among the EA researchers.
In this paper, we suggest a simple constraint-handling strategy
with NSGA-II that suits well for any EA. On four problems
chosen from the literature, NSGA-II has been compared with
another recently suggested constraint-handling strategy. These
results encourage the application of NSGA-II to more complex
and real-world multiobjective optimization problems.

In the remainder of the paper, we briefly mention a number of
existing elitist MOEAs in Section II. Thereafter, in Section III,
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we describe the proposed NSGA-II algorithm in details. Sec-
tion IV presents simulation results of NSGA-II and compares
them with two other elitist MOEAs (PAES and SPEA). In Sec-
tion V, we highlight the issue of parameter interactions, a matter
that is important in evolutionary computation research. The next
section extends NSGA-II for handling constraints and compares
the results with another recently proposed constraint-handling
method. Finally, we outline the conclusions of this paper.

II. ELITIST MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS

During 1993–1995, a number of different EAs were sug-
gested to solve multiobjective optimization problems. Of them,
Fonseca and Fleming’s MOGA [7], Srinivas and Deb’s NSGA
[20], and Hornet al.’s NPGA [13] enjoyed more attention.
These algorithms demonstrated the necessary additional oper-
ators for converting a simple EA to a MOEA. Two common
features on all three operators were the following: i) assigning
fitness to population members based on nondominated sorting
and ii) preserving diversity among solutions of the same
nondominated front. Although they have been shown to find
multiple nondominated solutions on many test problems and a
number of engineering design problems, researchers realized
the need of introducing more useful operators (which have
been found useful in single-objective EA’s) so as to solve
multiobjective optimization problems better. Particularly,
the interest has been to introduce elitism to enhance the
convergence properties of a MOEA. Reference [25] showed
that elitism helps in achieving better convergence in MOEAs.
Among the existing elitist MOEAs, Zitzler and Thiele’s SPEA
[26], Knowles and Corne’s Pareto-archived PAES [14], and
Rudolph’s elitist GA [18] are well studied. We describe these
approaches in brief. For details, readers are encouraged to refer
to the original studies.

Zitzler and Thiele [26] suggested an elitist multicriterion EA
with the concept of nondomination in their SPEA. They sug-
gested maintaining an external population at every generation
storing all nondominated solutions discovered so far beginning
from the initial population. This external population partici-
pates in all genetic operations. At each generation, a combined
population with the external and the current population is first
constructed. All nondominated solutions in the combined pop-
ulation are assigned a fitness based on the number of solutions
they dominate and dominated solutions are assigned fitness
worse than the worst fitness of any nondominated solution.
This assignment of fitness makes sure that the search is directed
toward the nondominated solutions. A deterministic clustering
technique is used to ensure diversity among nondominated
solutions. Although the implementation suggested in [26] is

, with proper bookkeeping the complexity of SPEA
can be reduced to .

Knowles and Corne [14] suggested a simple MOEA using
a single-parent single-offspring EA similar to (11)-evolution
strategy. Instead of using real parameters, binary strings were
used and bitwise mutations were employed to create offsprings.
In their PAES, with one parent and one offspring, the offspring
is compared with respect to the parent. If the offspring domi-
nates the parent, the offspring is accepted as the next parent and

the iteration continues. On the other hand, if the parent dom-
inates the offspring, the offspring is discarded and a new mu-
tated solution (a new offspring) is found. However, if the off-
spring and the parent do not dominate each other, the choice be-
tween the offspring and the parent is made by comparing them
with an archive of best solutions found so far. The offspring is
compared with the archive to check if it dominates any member
of the archive. If it does, the offspring is accepted as the new
parent and all the dominated solutions are eliminated from the
archive. If the offspring does not dominate any member of the
archive, both parent and offspring are checked for theirnear-
nesswith the solutions of the archive. If the offspring resides in
a least crowded region in the objective space among the mem-
bers of the archive, it is accepted as a parent and a copy of added
to the archive. Crowding is maintained by dividing the entire
search space deterministically in subspaces, whereis the
depth parameter andis the number of decision variables, and
by updating the subspaces dynamically. Investigators have cal-
culated the worst case complexity of PAES forevaluations
as , where is the archive length. Since the archive
size is usually chosen proportional to the population size, the
overall complexity of the algorithm is .

Rudolph [18] suggested, but did not simulate, a simple elitist
MOEA based on a systematic comparison of individuals from
parent and offspring populations. The nondominated solutions
of the offspring population are compared with that of parent so-
lutions to form an overall nondominated set of solutions, which
becomes the parent population of the next iteration. If the size
of this set is not greater than the desired population size, other
individuals from the offspring population are included. With
this strategy, he proved the convergence of this algorithm to the
Pareto-optimal front. Although this is an important achievement
in its own right, the algorithm lacks motivation for the second
task of maintaining diversity of Pareto-optimal solutions. An ex-
plicit diversity-preserving mechanism must be added to make it
more practical. Since the determinism of the first nondominated
front is , the overall complexity of Rudolph’s algo-
rithm is also .

In the following, we present the proposed nondominated
sorting GA approach, which uses a fast nondominated sorting
procedure, an elitist-preserving approach, and a parameterless
niching operator.

III. ELITIST NONDOMINATED SORTING GENETIC ALGORITHM

A. Fast Nondominated Sorting Approach

For the sake of clarity, we first describe a naive and slow
procedure of sorting a population into different nondomination
levels. Thereafter, we describe a fast approach.

In a naive approach, in order to identify solutions of the first
nondominated front in a population of size, each solution
can be compared with every other solution in the population to
find if it is dominated. This requires comparisons for
each solution, where is the number of objectives. When this
process is continued to find all members of the first nondomi-
nated level in the population, the total complexity is .
At this stage, all individuals in the first nondominated front are
found. In order to find the individuals in the next nondominated
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front, the solutions of the first front are discounted temporarily
and the above procedure is repeated. In the worst case, the task
of finding the second front also requires computa-
tions, particularly when number of solutions belong to
the second and higher nondominated levels. This argument is
true for finding third and higher levels of nondomination. Thus,
the worst case is when there arefronts and there exists only
one solution in each front. This requires an overall
computations. Note that storage is required for this pro-
cedure. In the following paragraph and equation shown at the
bottom of the page, we describe a fast nondominated sorting
approach which will require computations.

First, for each solution we calculate two entities: 1) domi-
nation count , the number of solutions which dominate the
solution , and 2) , a set of solutions that the solutiondom-
inates. This requires comparisons.

All solutions in the first nondominated front will have their
domination count as zero. Now, for each solutionwith ,
we visit each member () of its set and reduce its domina-
tion count by one. In doing so, if for any memberthe domi-
nation count becomes zero, we put it in a separate list. These
members belong to the second nondominated front. Now, the
above procedure is continued with each member ofand the
third front is identified. This process continues until all fronts
are identified.

For each solution in the second or higher level of nondom-
ination, the domination count can be at most . Thus,
each solution will be visited at most times before its
domination count becomes zero. At this point, the solution is
assigned a nondomination level and will never be visited again.
Since there are at most such solutions, the total com-

plexity is . Thus, the overall complexity of the procedure
is . Another way to calculate this complexity is to re-
alize that the body of the first inner loop (for each ) is
executed exactly times as each individual can be the member
of at most one front and the second inner loop (for each )
can be executed at maximum times for each individual
[each individual dominates individuals at maximum and
each domination check requires at mostcomparisons] results
in the overall computations. It is important to note
that although the time complexity has reduced to , the
storage requirement has increased to .

B. Diversity Preservation

We mentioned earlier that, along with convergence to the
Pareto-optimal set, it is also desired that an EA maintains a good
spread of solutions in the obtained set of solutions. The original
NSGA used the well-known sharing function approach, which
has been found to maintain sustainable diversity in a popula-
tion with appropriate setting of its associated parameters. The
sharing function method involves a sharing parameter ,
which sets the extent of sharing desired in a problem. This pa-
rameter is related to the distance metric chosen to calculate the
proximity measure between two population members. The pa-
rameter denotes the largest value of that distance metric
within which any two solutions share each other’s fitness. This
parameter is usually set by the user, although there exist some
guidelines [4]. There are two difficulties with this sharing func-
tion approach.

1) The performance of the sharing function method in
maintaining a spread of solutions depends largely on the
chosen value.

- - -
for each

for each
if then If dominates

Add to the set of solutions dominated by
else if then

Increment the domination counter of
if then belongs to the first front

Initialize the front counter
while

Used to store the members of the next front
for each

for each

if then belongs to the next front
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Fig. 1. Crowding-distance calculation. Points marked in filled circles are
solutions of the same nondominated front.

2) Since each solution must be compared with all other so-
lutions in the population, the overall complexity of the
sharing function approach is .

In the proposed NSGA-II, we replace the sharing function
approach with a crowded-comparison approach that eliminates
both the above difficulties to some extent. The new approach
does not requireany user-defined parameter for maintaining
diversity among population members. Also, the suggested ap-
proach has a better computational complexity. To describe this
approach, we first define a density-estimation metric and then
present the crowded-comparison operator.

1) Density Estimation:To get an estimate of the density of
solutions surrounding a particular solution in the population, we
calculate the average distance of two points on either side of
this point along each of the objectives. This quantity
serves as an estimate of the perimeter of the cuboid formed by
using the nearest neighbors as the vertices (call this thecrowding
distance). In Fig. 1, the crowding distance of theth solution in
its front (marked with solid circles) is the average side length of
the cuboid (shown with a dashed box).

The crowding-distance computation requires sorting the pop-
ulation according to each objective function value in ascending
order of magnitude. Thereafter, for each objective function, the
boundary solutions (solutions with smallest and largest function
values) are assigned an infinite distance value. All other inter-
mediate solutions are assigned a distance value equal to the ab-
solute normalized difference in the function values of two adja-
cent solutions. This calculation is continued with other objective
functions. The overall crowding-distance value is calculated as
the sum of individual distance values corresponding to each ob-
jective. Each objective function is normalized before calculating
the crowding distance. The algorithm as shown at the bottom of
the page outlines the crowding-distance computation procedure
of all solutions in an nondominated set.

Here, refers to the th objective function value of the
th individual in the set and the parameters and are

the maximum and minimum values of theth objective func-
tion. The complexity of this procedure is governed by the sorting
algorithm. Since independent sortings of at most solu-
tions (when all population members are in one front) are in-
volved, the above algorithm has computational
complexity.

After all population members in the set are assigned a
distance metric, we can compare two solutions for their extent
of proximity with other solutions. A solution with a smaller
value of this distance measure is, in some sense, more crowded
by other solutions. This is exactly what we compare in the
proposed crowded-comparison operator, described below.
Although Fig. 1 illustrates the crowding-distance computation
for two objectives, the procedure is applicable to more than two
objectives as well.

2) Crowded-Comparison Operator:The crowded-compar-
ison operator ( ) guides the selection process at the various
stages of the algorithm toward a uniformly spread-out Pareto-
optimal front. Assume that every individualin the population
has two attributes:

1) nondomination rank ( );
2) crowding distance ( ).
We now define a partial order as

if
or
and

That is, between two solutions with differing nondomination
ranks, we prefer the solution with the lower (better) rank. Other-
wise, if both solutions belong to the same front, then we prefer
the solution that is located in a lesser crowded region.

With these three new innovations—a fast nondominated
sorting procedure, a fast crowded distance estimation proce-
dure, and a simple crowded comparison operator, we are now
ready to describe the NSGA-II algorithm.

C. Main Loop

Initially, a random parent population is created. The pop-
ulation is sorted based on the nondomination. Each solution is
assigned a fitness (or rank) equal to its nondomination level (1
is the best level, 2 is the next-best level, and so on). Thus, mini-
mization of fitness is assumed. At first, the usual binary tourna-
ment selection, recombination, and mutation operators are used
to create a offspring population of size . Since elitism

- -
number of solutions in

for each set initialize distance
for each objective

sort sort using each objective value
so that boundary points are always selected

for to for all other points
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is introduced by comparing current population with previously
found best nondominated solutions, the procedure is different
after the initial generation. We first describe theth generation
of the proposed algorithm as shown at the bottom of the page.

The step-by-step procedure shows that NSGA-II algorithm is
simple and straightforward. First, a combined population

is formed. The population is of size . Then, the
population is sorted according to nondomination. Since all
previous and current population members are included in,
elitism is ensured. Now, solutions belonging to the best non-
dominated set are of best solutions in the combined popu-
lation and must be emphasized more than any other solution in
the combined population. If the size of is smaller then ,
we definitely choose all members of the setfor the new pop-
ulation . The remaining members of the population
are chosen from subsequent nondominated fronts in the order of
their ranking. Thus, solutions from the set are chosen next,
followed by solutions from the set , and so on. This procedure
is continued until no more sets can be accommodated. Say that
the set is the last nondominated set beyond which no other
set can be accommodated. In general, the count of solutions in
all sets from to would be larger than the population size.
To choose exactly population members, we sort the solutions
of the last front using the crowded-comparison operator
in descending order and choose the best solutions needed to fill
all population slots. The NSGA-II procedure is also shown in
Fig. 2. The new population of size is now used for se-
lection, crossover, and mutation to create a new population
of size . It is important to note that we use a binary tournament
selection operator but the selection criterion is now based on the
crowded-comparison operator . Since this operator requires
both the rank and crowded distance of each solution in the pop-
ulation, we calculate these quantities while forming the popula-
tion , as shown in the above algorithm.

Consider the complexity of one iteration of the entire algo-
rithm. The basic operations and their worst-case complexities
are as follows:

1) nondominated sorting is ;
2) crowding-distance assignment is ;
3) sorting on is .

The overall complexity of the algorithm is , which is
governed by the nondominated sorting part of the algorithm. If

Fig. 2. NSGA-II procedure.

performed carefully, the complete population of size need
not be sorted according to nondomination. As soon as the sorting
procedure has found enough number of fronts to havemem-
bers in , there is no reason to continue with the sorting pro-
cedure.

The diversity among nondominated solutions is introduced
by using the crowding comparison procedure, which is used in
the tournament selection and during the population reduction
phase. Since solutions compete with their crowding-distance (a
measure of density of solutions in the neighborhood), no extra
niching parameter (such as needed in the NSGA) is re-
quired. Although the crowding distance is calculated in the ob-
jective function space, it can also be implemented in the param-
eter space, if so desired [3]. However, in all simulations per-
formed in this study, we have used the objective-function space
niching.

IV. SIMULATION RESULTS

In this section, we first describe the test problems used to
compare the performance of NSGA-II with PAES and SPEA.
For PAES and SPEA, we have identical parameter settings
as suggested in the original studies. For NSGA-II, we have
chosen a reasonable set of values and have not made any effort
in finding the best parameter setting. We leave this task for a
future study.

combine parent and offspring population
- - - all nondominated fronts of
and

until until the parent population is filled
- - calculate crowding-distance in

include th nondominated front in the parent pop
check the next front for inclusion

Sort sort in descending order using
choose the first elements of

- - use selection, crossover and mutation to create
a new population

increment the generation counter
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TABLE I
TEST PROBLEMS USED IN THIS STUDY

All objective functions are to be minimized.

A. Test Problems

We first describe the test problems used to compare different
MOEAs. Test problems are chosen from a number of signifi-
cant past studies in this area. Veldhuizen [22] cited a number
of test problems that have been used in the past. Of them, we
choose four problems: Schaffer’s study (SCH) [19], Fonseca
and Fleming’s study (FON) [10], Poloni’s study (POL) [16], and
Kursawe’s study (KUR) [15]. In 1999, the first author suggested
a systematic way of developing test problems for multiobjec-
tive optimization [3]. Zitzleret al. [25] followed those guide-
lines and suggested six test problems. We choose five of those
six problems here and call them ZDT1, ZDT2, ZDT3, ZDT4,
and ZDT6. All problems have two objective functions. None
of these problems have any constraint. We describe these prob-
lems in Table I. The table also shows the number of variables,
their bounds, the Pareto-optimal solutions, and the nature of the
Pareto-optimal front for each problem.

All approaches are run for a maximum of 25 000 function
evaluations. We use the single-point crossover and bitwise

mutation for binary-coded GAs and the simulated binary
crossover (SBX) operator and polynomial mutation [6] for
real-coded GAs. The crossover probability of and
a mutation probability of or (where is the
number of decision variables for real-coded GAs andis the
string length for binary-coded GAs) are used. For real-coded
NSGA-II, we use distribution indexes [6] for crossover and
mutation operators as and , respectively.
The population obtained at the end of 250 generations (the
population after elite-preserving operator is applied) is used to
calculate a couple of performance metrics, which we discuss
in the next section. For PAES, we use a depth valueequal
to four and an archive size of 100. We use all population
members of the archive obtained at the end of 25 000 iterations
to calculate the performance metrics. For SPEA, we use a
population of size 80 and an external population of size 20 (this
4 : 1 ratio is suggested by the developers of SPEA to maintain
an adequate selection pressure for the elite solutions), so that
overall population size becomes 100. SPEA is also run until
25 000 function evaluations are done. For SPEA, we use the
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Fig. 3. Distance metric�.

nondominated solutions of the combined GA and external
populations at the final generation to calculate the performance
metrics used in this study. For PAES, SPEA, and binary-coded
NSGA-II, we have used 30 bits to code each decision variable.

B. Performance Measures

Unlike in single-objective optimization, there are two goals in
a multiobjective optimization: 1) convergence to the Pareto-op-
timal set and 2) maintenance of diversity in solutions of the
Pareto-optimal set. These two tasks cannot be measured ade-
quately with one performance metric. Many performance met-
rics have been suggested [1], [8], [24]. Here, we define two per-
formance metrics that are more direct in evaluating each of the
above two goals in a solution set obtained by a multiobjective
optimization algorithm.

The first metric measures the extent of convergence to a
known set of Pareto-optimal solutions. Since multiobjective al-
gorithms would be tested on problems having a known set of
Pareto-optimal solutions, the calculation of this metric is pos-
sible. We realize, however, that such a metric cannot be used
for any arbitrary problem. First, we find a set of uni-
formly spaced solutions from the true Pareto-optimal front in
the objective space. For each solution obtained with an algo-
rithm, we compute the minimum Euclidean distance of it from

chosen solutions on the Pareto-optimal front. The average
of these distances is used as the first metric(the conver-
gence metric). Fig. 3 shows the calculation procedure of this
metric. The shaded region is the feasible search region and the
solid curved lines specify the Pareto-optimal solutions. Solu-
tions with open circles are chosen solutions on the Pareto-op-
timal front for the calculation of the convergence metric and so-
lutions marked with dark circles are solutions obtained by an
algorithm. The smaller the value of this metric, the better the
convergence toward the Pareto-optimal front. When all obtained
solutions lie exactly on chosen solutions, this metric takes a
value of zero. In all simulations performed here, we present the
average and variance of this metric calculated for solution
sets obtained in multiple runs.

Even when all solutions converge to the Pareto-optimal front,
the above convergence metric does not have a value of zero. The
metric will yield zero only when each obtained solution lies ex-
actly on each of the chosen solutions. Although this metric alone

Fig. 4. Diversity metric�.

can provide some information about the spread in obtained so-
lutions, we define an different metric to measure the spread in
solutions obtained by an algorithm directly. The second metric

measures the extent of spread achieved among the obtained
solutions. Here, we are interested in getting a set of solutions
that spans the entire Pareto-optimal region. We calculate the
Euclidean distance between consecutive solutions in the ob-
tained nondominated set of solutions. We calculate the average

of these distances. Thereafter, from the obtained set of non-
dominated solutions, we first calculate theextremesolutions (in
the objective space) by fitting a curve parallel to that of the true
Pareto-optimal front. Then, we use the following metric to cal-
culate the nonuniformity in the distribution:

(1)

Here, the parameters and are the Euclidean distances be-
tween the extreme solutions and the boundary solutions of the
obtained nondominated set, as depicted in Fig. 4. The figure il-
lustrates all distances mentioned in the above equation. The pa-
rameter is the average of all distances,

, assuming that there are solutions on the best nondomi-
nated front. With solutions, there are consecutive
distances. The denominator is the value of the numerator for the
case when all solutions lie on one solution. It is interesting to
note that this is not the worst case spread of solutions possible.
We can have a scenario in which there is a large variance in.
In such scenarios, the metric may be greater than one. Thus, the
maximum value of the above metric can be greater than one.
However, a good distribution would make all distancesequal
to and would make (with existence of extreme
solutions in the nondominated set). Thus, for the most widely
and uniformly spreadout set of nondominated solutions, the nu-
merator of would be zero, making the metric to take a value
zero. For any other distribution, the value of the metric would be
greater than zero. For two distributions having identical values
of and , the metric takes a higher value with worse distri-
butions of solutions within the extreme solutions. Note that the
above diversity metric can be used on any nondominated set of
solutions, including one that is not the Pareto-optimal set. Using
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TABLE II
MEAN (FIRST ROWS) AND VARIANCE (SECOND ROWS) OF THE CONVERGENCEMETRIC�

TABLE III
MEAN (FIRST ROWS) AND VARIANCE (SECOND ROWS) OF THE DIVERSITY METRIC�

a triangularization technique or a Voronoi diagram approach [1]
to calculate , the above procedure can be extended to estimate
the spread of solutions in higher dimensions.

C. Discussion of the Results

Table II shows the mean and variance of the convergence
metric obtained using four algorithms NSGA-II (real-coded),
NSGA-II (binary-coded), SPEA, and PAES.

NSGA-II (real coded or binary coded) is able to converge
better in all problems except in ZDT3 and ZDT6, where PAES
found better convergence. In all cases with NSGA-II, the vari-
ance in ten runs is also small, except in ZDT4 with NSGA-II
(binary coded). The fixed archive strategy of PAES allows better
convergence to be achieved in two out of nine problems.

Table III shows the mean and variance of the diversity metric
obtained using all three algorithms.
NSGA-II (real or binary coded) performs the best in all nine

test problems. The worst performance is observed with PAES.
For illustration, we show one of the ten runs of PAES with an ar-
bitrary run of NSGA-II (real-coded) on problem SCH in Fig. 5.

On most problems, real-coded NSGA-II is able to find a
better spread of solutions than any other algorithm, including
binary-coded NSGA-II.

In order to demonstrate the working of these algorithms,
we also show typical simulation results of PAES, SPEA, and
NSGA-II on the test problems KUR, ZDT2, ZDT4, and ZDT6.
The problem KUR has three discontinuous regions in the
Pareto-optimal front. Fig. 6 shows all nondominated solutions
obtained after 250 generations with NSGA-II (real-coded). The
Pareto-optimal region is also shown in the figure. This figure
demonstrates the abilities of NSGA-II in converging to the true
front and in finding diverse solutions in the front. Fig. 7 shows
the obtained nondominated solutions with SPEA, which is the
next-best algorithm for this problem (refer to Tables II and III).

Fig. 5. NSGA-II finds better spread of solutions than PAES on SCH.

Fig. 6. Nondominated solutions with NSGA-II (real-coded) on KUR.
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Fig. 7. Nondominated solutions with SPEA on KUR.

Fig. 8. Nondominated solutions with NSGA-II (binary-coded) on ZDT2.

In both aspects of convergence and distribution of solutions,
NSGA-II performed better than SPEA in this problem. Since
SPEA could not maintain enough nondominated solutions in
the final GA population, the overall number of nondominated
solutions is much less compared to that obtained in the final
population of NSGA-II.

Next, we show the nondominated solutions on the problem
ZDT2 in Figs. 8 and 9. This problem has a nonconvex Pareto-op-
timal front. We show the performance of binary-coded NSGA-II
and SPEA on this function. Although the convergence is not
a difficulty here with both of these algorithms, both real- and
binary-coded NSGA-II have found a better spread and more
solutions in the entire Pareto-optimal region than SPEA (the
next-best algorithm observed for this problem).

The problem ZDT4 has 21or 7.94(10 ) different local
Pareto-optimal fronts in the search space, of which only one
corresponds to the global Pareto-optimal front. The Euclidean
distance in the decision space between solutions of two con-
secutive local Pareto-optimal sets is 0.25. Fig. 10 shows that
both real-coded NSGA-II and PAES get stuck at different
local Pareto-optimal sets, but the convergence and ability
to find a diverse set of solutions are definitely better with
NSGA-II. Binary-coded GAs have difficulties in converging

Fig. 9. Nondominated solutions with SPEA on ZDT2.

Fig. 10. NSGA-II finds better convergence and spread of solutions than PAES
on ZDT4.

near the global Pareto-optimal front, a matter that is also been
observed in previous single-objective studies [5]. On a similar
ten-variable Rastrigin’s function [the function here],
that study clearly showed that a population of size of about
at least 500 is needed for single-objective binary-coded GAs
(with tournament selection, single-point crossover and bitwise
mutation) to find the global optimum solution in more than
50% of the simulation runs. Since we have used a population of
size 100, it is not expected that a multiobjective GA would find
the global Pareto-optimal solution, but NSGA-II is able to find
a good spread of solutions even at a local Pareto-optimal front.
Since SPEA converges poorly on this problem (see Table II),
we do not show SPEA results on this figure.

Finally, Fig. 11 shows that SPEA finds a better converged
set of nondominated solutions in ZDT6 compared to any other
algorithm. However, the distribution in solutions is better with
real-coded NSGA-II.

D. Different Parameter Settings

In this study, we do not make any serious attempt to find the
best parameter setting for NSGA-II. But in this section, we per-
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Fig. 11. Real-coded NSGA-II finds better spread of solutions than SPEA on
ZDT6, but SPEA has a better convergence.

TABLE IV
MEAN AND VARIANCE OF THE CONVERGENCE ANDDIVERSITY METRICS

UP TO 500 GENERATIONS

form additional experiments to show the effect of a couple of
different parameter settings on the performance of NSGA-II.

First, we keep all other parameters as before, but increase the
number of maximum generations to 500 (instead of 250 used
before). Table IV shows the convergence and diversity metrics
for problems POL, KUR, ZDT3, ZDT4, and ZDT6. Now, we
achieve a convergence very close to the true Pareto-optimal front
and with a much better distribution. The table shows that in all
these difficult problems, the real-coded NSGA-II has converged
very close to the true optimal front, except in ZDT6, which prob-
ably requires a different parameter setting with NSGA-II. Par-
ticularly, the results on ZDT3 and ZDT4 improve with genera-
tion number.

The problem ZDT4 has a number of local Pareto-optimal
fronts, each corresponding to particular value of . A large
change in the decision vector is needed to get out of a local
optimum. Unless mutation or crossover operators are capable
of creating solutions in the basin of another better attractor,
the improvement in the convergence toward the true Pareto-op-
timal front is not possible. We use NSGA-II (real-coded) with a
smaller distribution index for mutation, which has an
effect of creating solutions with more spread than before. Rest
of the parameter settings are identical as before. The conver-
gence metric and diversity measure on problem ZDT4 at
the end of 250 generations are as follows:

Fig. 12. Obtained nondominated solutions with NSGA-II on problem ZDT4.

These results are much better than PAES and SPEA, as shown
in Table II. To demonstrate the convergence and spread of so-
lutions, we plot the nondominated solutions of one of the runs
after 250 generations in Fig. 12. The figure shows that NSGA-II
is able to find solutions on the true Pareto-optimal front with

.

V. ROTATED PROBLEMS

It has been discussed in an earlier study [3] that interactions
among decision variables can introduce another level of dif-
ficulty to any multiobjective optimization algorithm including
EAs. In this section, we create one such problem and investi-
gate the working of previously three MOEAs on the following
epistatic problem:

minimize

minimize

where

and

for

(2)

An EA works with the decision variable vector, but the above
objective functions are defined in terms of the variable vector,
which is calculated by transforming the decision variable vector

by a fixed rotation matrix . This way, the objective functions
are functions of a linear combination of decision variables. In
order to maintain a spread of solutions over the Pareto-optimal
region or even converge to any particular solution requires an
EA to update all decision variables in a particular fashion. With
a generic search operator, such as the variablewise SBX operator
used here, this becomes a difficult task for an EA. However,
here, we are interested in evaluating the overall behavior of three
elitist MOEAs.

We use a population size of 100 and run each algorithm until
500 generations. For SBX, we use and we use

for mutation. To restrict the Pareto-optimal solutions to lie
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Fig. 13. Obtained nondominated solutions with NSGA-II, PAES, and SPEA
on the rotated problem.

within the prescribed variable bounds, we discourage solutions
with by adding a fixed large penalty to both objec-
tives. Fig. 13 shows the obtained solutions at the end of 500
generations using NSGA-II, PAES, and SPEA. It is observed
that NSGA-II solutions are closer to the true front compared
to solutions obtained by PAES and SPEA. The correlated pa-
rameter updates needed to progress toward the Pareto-optimal
front makes this kind of problems difficult to solve. NSGA-II’s
elite-preserving operator along with the real-coded crossover
and mutation operators is able to find some solutions close to the
Pareto-optimal front [with resulting ].
This example problem demonstrates that one of the known dif-
ficulties (thelinkageproblem [11], [12]) of single-objective op-
timization algorithm can also cause difficulties in a multiobjec-
tive problem. However, more systematic studies are needed to
amply address the linkage issue in multiobjective optimization.

VI. CONSTRAINT HANDLING

In the past, the first author and his students implemented a
penalty-parameterless constraint-handling approach for single-
objective optimization. Those studies [2], [6] have shown how
a tournament selection based algorithm can be used to handle
constraints in a population approach much better than a number
of other existing constraint-handling approaches. A similar ap-
proach can be introduced with the above NSGA-II for solving
constrained multiobjective optimization problems.

A. Proposed Constraint-Handling Approach (Constrained
NSGA-II)

This constraint-handling method uses the binary tournament
selection, where two solutions are picked from the population
and the better solution is chosen. In the presence of constraints,
each solution can be either feasible or infeasible. Thus, there
may be at most three situations: 1) both solutions are feasible;
2) one is feasible and other is not; and 3) both are infeasible.

For single objective optimization, we used a simple rule for each
case.

Case 1) Choose the solution with better objective function
value.

Case 2) Choose the feasible solution.
Case 3) Choose the solution with smaller overall constraint

violation.

Since in no case constraints and objective function values are
compared with each other, there is no need of having any penalty
parameter, a matter that makes the proposed constraint-handling
approach useful and attractive.

In the context of multiobjective optimization, the latter two
cases can be used as they are and the first case can be resolved by
using the crowded-comparison operator as before. To maintain
the modularity in the procedures of NSGA-II, we simply modify
the definition ofdominationbetween two solutionsand .

Definition 1: A solution is said to constrained-dominate a
solution , if any of the following conditions is true.

1) Solution is feasible and solution is not.
2) Solutions and are both infeasible, but solutionhas a

smaller overall constraint violation.
3) Solutions and are feasible and solutiondominates

solution .
The effect of using this constrained-domination principle

is that any feasible solution has a better nondomination rank
than any infeasible solution. All feasible solutions are ranked
according to their nondomination level based on the objective
function values. However, among two infeasible solutions, the
solution with a smaller constraint violation has a better rank.
Moreover, this modification in the nondomination principle
does not change the computational complexity of NSGA-II.
The rest of the NSGA-II procedure as described earlier can be
used as usual.

The above constrained-domination definition is similar to that
suggested by Fonseca and Fleming [9]. The only difference is
in the way domination is defined for the infeasible solutions.
In the above definition, an infeasible solution having a larger
overall constraint-violation are classified as members of a larger
nondomination level. On the other hand, in [9], infeasible solu-
tions violating different constraints are classified as members
of the same nondominated front. Thus, one infeasible solution
violating a constraint marginally will be placed in the same
nondominated level with another solution violating a different
constraint to a large extent. This may cause an algorithm to
wander in the infeasible search region for more generations be-
fore reaching the feasible region through constraint boundaries.
Moreover, since Fonseca–Fleming’s approach requires domina-
tion checks with the constraint-violation values, the proposed
approach of this paper is computationally less expensive and is
simpler.

B. Ray–Tai–Seow’s Constraint-Handling Approach

Ray et al. [17] suggested a more elaborate constraint-han-
dling technique, where constraint violations of all constraints
are not simply summed together. Instead, a nondomination
check of constraint violations is also made. We give an outline
of this procedure here.
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TABLE V
CONSTRAINED TEST PROBLEMS USED IN THIS STUDY

All objective functions are to be minimized.

Three different nondominated rankings of the population are
first performed. The first ranking is performed using objec-
tive function values and the resulting ranking is stored in a-di-
mensional vector . The second ranking is performed
using only the constraint violation values of all (of them) con-
straints and no objective function information is used. Thus,
constraint violation of each constraint is used a criterion and
a nondomination classification of the population is performed
with the constraint violation values. Notice that for a feasible
solution all constraint violations are zero. Thus, all feasible so-
lutions have a rank 1 in . The third ranking is performed
on a combination of objective functions and constraint-violation
values [a total of values]. This produces the ranking

. Although objective function values and constraint viola-
tions are used together, one nice aspect of this algorithm is that
there is no need for any penalty parameter. In the domination
check, criteria are compared individually, thereby eliminating
the need of any penalty parameter. Once these rankings are over,
all feasiblesolutions having the best rank in are chosen
for the new population. If more population slots are available,
they are created from the remaining solutions systematically. By
giving importance to the ranking in in the selection op-
erator and by giving importance to the ranking in in the
crossover operator, the investigators laid out a systematic multi-
objective GA, which also includes a niche-preserving operator.
For details, readers may refer to [17]. Although the investiga-
tors did not compare their algorithm with any other method,
they showed the working of this constraint-handling method
on a number of engineering design problems. However, since
nondominated sorting of three different sets of criteria are re-
quired and the algorithm introduces many different operators,
it remains to be investigated how it performs on more complex

problems, particularly from the point of view of computational
burden associated with the method.

In the following section, we choose a set of four prob-
lems and compare the simple constrained NSGA-II with the
Ray–Tai–Seow’s method.

C. Simulation Results

We choose four constrained test problems (see Table V) that
have been used in earlier studies. In the first problem, a part of
the unconstrained Pareto-optimal region is not feasible. Thus,
the resulting constrained Pareto-optimal region is a concatena-
tion of the first constraint boundary and some part of the uncon-
strained Pareto-optimal region. The second problem SRN was
used in the original study of NSGA [20]. Here, the constrained
Pareto-optimal set is a subset of the unconstrained Pareto-op-
timal set. The third problem TNK was suggested by Tanakaet
al. [21] and has a discontinuous Pareto-optimal region, falling
entirely on the first constraint boundary. In the next section,
we show the constrained Pareto-optimal region for each of the
above problems. The fourth problem WATER is a five-objec-
tive and seven-constraint problem, attempted to solve in [17].
With five objectives, it is difficult to discuss the effect of the
constraints on the unconstrained Pareto-optimal region. In the
next section, we show all or ten pairwise plots of obtained
nondominated solutions. We apply real-coded NSGA-II here.

In all problems, we use a population size of 100, distribu-
tion indexes for real-coded crossover and mutation operators
of 20 and 100, respectively, and run NSGA-II (real coded)
with the proposed constraint-handling technique and with
Ray–Tai–Seow’s constraint-handling algorithm [17] for a
maximum of 500 generations. We choose this rather large
number of generations to investigate if the spread in solutions
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Fig. 14. Obtained nondominated solutions with NSGA-II on the constrained
problem CONSTR.

Fig. 15. Obtained nondominated solutions with Ray-Tai-Seow’s algorithm on
the constrained problem CONSTR.

can be maintained for a large number of generations. However,
in each case, we obtain a reasonably good spread of solutions as
early as 200 generations. Crossover and mutation probabilities
are the same as before.

Fig. 14 shows the obtained set of 100 nondominated solu-
tions after 500 generations using NSGA-II. The figure shows
that NSGA-II is able to uniformly maintain solutions in both
Pareto-optimal region. It is important to note that in order to
maintain a spread of solutions on the constraint boundary, the
solutions must have to be modified in a particular manner dic-
tated by the constraint function. This becomes a difficult task of
any search operator. Fig. 15 shows the obtained solutions using
Ray-Tai-Seow’s algorithm after 500 generations. It is clear that
NSGA-II performs better than Ray–Tai–Seow’s algorithm in
terms of converging to the true Pareto-optimal front and also
in terms of maintaining a diverse population of nondominated
solutions.

Next, we consider the test problem SRN. Fig. 16 shows the
nondominated solutions after 500 generations using NSGA-II.

Fig. 16. Obtained nondominated solutions with NSGA-II on the constrained
problem SRN.

Fig. 17. Obtained nondominated solutions with Ray–Tai–Seow’s algorithm on
the constrained problem SRN.

The figure shows how NSGA-II can bring a random population
on the Pareto-optimal front. Ray–Tai–Seow’s algorithm is also
able to come close to the front on this test problem (Fig. 17).

Figs. 18 and 19 show the feasible objective space and
the obtained nondominated solutions with NSGA-II and
Ray–Tai–Seow’s algorithm. Here, the Pareto-optimal region
is discontinuous and NSGA-II does not have any difficulty in
finding a wide spread of solutions over the true Pareto-optimal
region. Although Ray–Tai–Seow’s algorithm found a number
of solutions on the Pareto-optimal front, there exist many
infeasible solutions even after 500 generations. In order to
demonstrate the working of Fonseca–Fleming’s constraint-han-
dling strategy, we implement it with NSGA-II and apply on
TNK. Fig. 20 shows 100 population members at the end of
500 generations and with identical parameter setting as used in
Fig. 18. Both these figures demonstrate that the proposed and
Fonseca–Fleming’s constraint-handling strategies work well
with NSGA-II.
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Fig. 18. Obtained nondominated solutions with NSGA-II on the constrained
problem TNK.

Fig. 19. Obtained nondominated solutions with Ray–Tai–Seow’s algorithm on
the constrained problem TNK.

Ray et al. [17] have used the problem WATER in their
study. They normalized the objective functions in the following
manner:

Since there are five objective functions in the problem WATER,
we observe the range of the normalized objective function
values of the obtained nondominated solutions. Table VI shows
the comparison with Ray–Tai–Seow’s algorithm. In most
objective functions, NSGA-II has found a better spread of
solutions than Ray–Tai–Seow’s approach. In order to show the
pairwise interactions among these five normalized objective
functions, we plot all or ten interactions in Fig. 21 for both
algorithms. NSGA-II results are shown in the upper diagonal
portion of the figure and the Ray–Tai–Seow’s results are shown
in the lower diagonal portion. The axes of any plot can be
obtained by looking at the corresponding diagonal boxes and
their ranges. For example, the plot at the first row and third
column has its vertical axis as and horizontal axis as .
Since this plot belongs in the upper side of the diagonal, this

Fig. 20. Obtained nondominated solutions with Fonseca–Fleming’s
constraint-handling strategy with NSGA-II on the constrained problem TNK.

plot is obtained using NSGA-II. In order to compare this plot
with a similar plot using Ray–Tai–Seow’s approach, we look
for the plot in the third row and first column. For this figure, the
vertical axis is plotted as and the horizontal axis is plotted
as . To get a better comparison between these two plots, we
observe Ray–Tai–Seow’s plot as it is, but turn the page 90in
the clockwise direction for NSGA-II results. This would make
the labeling and ranges of the axes same in both cases.

We observe that NSGA-II plots have better formed patterns
than in Ray–Tai–Seow’s plots. For example, figures- ,

- , and - interactions are very clear from NSGA-II
results. Although similar patterns exist in the results obtained
using Ray–Tai–Seow’s algorithm, the convergence to the true
fronts is not adequate.

VII. CONCLUSION

We have proposed a computationally fast and elitist MOEA
based on a nondominated sorting approach. On nine different
difficult test problems borrowed from the literature, the pro-
posed NSGA-II was able to maintain a better spread of solu-
tions and converge better in the obtained nondominated front
compared to two other elitist MOEAs—PAES and SPEA. How-
ever, one problem, PAES, was able to converge closer to the true
Pareto-optimal front. PAES maintains diversity among solutions
by controlling crowding of solutions in a deterministic and pre-
specified number of equal-sized cells in the search space. In
that problem, it is suspected that such a deterministic crowding
coupled with the effect of mutation-based approach has been
beneficial in converging near the true front compared to the dy-
namic and parameterless crowding approach used in NSGA-II
and SPEA. However, the diversity preserving mechanism used
in NSGA-II is found to be the best among the three approaches
studied here.

On a problem having strong parameter interactions, NSGA-II
has been able to come closer to the true front than the other
two approaches, but the important matter is that all three
approaches faced difficulties in solving this so-called highly
epistatic problem. Although this has been a matter of ongoing
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TABLE VI
LOWER AND UPPERBOUNDS OF THEOBJECTIVE FUNCTION VALUES OBSERVED IN THEOBTAINED NONDOMINATED SOLUTIONS

Fig. 21. Upper diagonal plots are for NSGA-II and lower diagonal plots are for Ray–Tai–Seow’s algorithm. Compare(i; j) plot (Ray–Tai–Seow’s algorithm
with i > j) with (j; i) plot (NSGA-II). Label and ranges used for each axis are shown in the diagonal boxes.

research in single-objective EA studies, this paper shows
that highly epistatic problems may also cause difficulties to
MOEAs. More importantly, researchers in the field should
consider such epistatic problems for testing a newly developed
algorithm for multiobjective optimization.

We have also proposed a simple extension to the definition
of dominance for constrained multiobjective optimization. Al-
though this new definition can be used with any other MOEAs,
the real-coded NSGA-II with this definition has been shown
to solve four different problems much better than another re-
cently-proposed constraint-handling approach.

With the properties of a fast nondominated sorting procedure,
an elitist strategy, a parameterless approach and a simple yet
efficient constraint-handling method, NSGA-II, should find in-
creasing attention and applications in the near future.
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