
Exploiting Building Blocks in Hard Problems with Modified

Compact Genetic Algorithm

 Kamonluk Suksen
Department of Computer Engineering

Faculty of Engineering
Chulalongkorn University

Bangkok, Thailand

6071401321@student.chula.ac.th

Prabhas Chongstitvatana
Department of Computer Engineering

Faculty of Engineering
Chulalongkorn University

Bangkok, Thailand

prabhas.c@chula.ac.th

ABSTRACT

In Evolutionary Computation, good substructures that are

combined into good solutions are called Building Blocks. In this

context, Building Blocks are common structure of high-quality

solutions. This paper describes an algorithm that exploits building

blocks (BBs) with Compact Genetic Algorithm (cGA) in order to

solve difficult optimization problems. cGA is a second generation

of Genetic Algorithm that contains the model of the solution in

terms of probability vectors representing probability density

function of solutions. The main idea is to update the probability

vectors as a group of bits that represents BBs thus avoiding the

disruption of the BBs. A comparison to the plain cGA is made.

The experiments are carried out on Trap-function and TSP

problems. The results show the effect of this heuristic. It is most

effective when the problem instants have common structures that

can be identify as Building Blocks.

KEYWORDS

Genetic algorithm, genetic programming, combinatorial

optimization, evolutionary programming

1 INTRODUCTION

Genetic Algorithms (GAs) has now become one of the most

flexible techniques to solve complex optimization problems using

the ideas of natural selection and genetics. The GA [9,14] is a

simulation of the genetic state of a population of individuals. GA

evolves candidate solutions to an optimization problem towards

better solutions. The evolution starts from a population of

randomly generated individuals, and happens in generations. In

each generation, the fitness of every individual in the population

is evaluated, multiple individuals are stochastically selected from

the current population based on their fitness, and modified to form

a new population. The cGA [12], an algorithm that mimics the

order-one behavior of a simple GA with a given population size,

selection rate under tournament selection and uniform crossover.

The cGA reduces its memory requirements because it is not

necessary to store n bits for each gene position. The cGA

represents the population as a probability distribution over the set

of solutions. It only needs to keep the proportion of ones (and

zeros), a finite set of n numbers that can be stores with log2n bits.

However, as the problem’s difficulty increase, higher selection

rate must be used to produce new chromosomes that are as good

as the ones already in the population. Higher selection pressure

based on the cGA is used to solve soft-decision decoding

effectively [6].

The example of GA-hard problem is trap function [1]. Trap

function is an adversary function for studying BBs and linkage

problems in GAs [11]. The general n-bit trap functions are defined

as:

Fn(b0….bn-1) = {
𝑓ℎ𝑖𝑔ℎ; 𝑖𝑓 𝑢 = 𝑛

𝑓𝑙𝑜𝑤 − 𝑢
𝑓𝑙𝑜𝑤

𝑛−1
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (1)

Where bi ∈ {0, 1}, u = ∑ 𝑏𝑖𝑛−1
𝑖=0 , and fhigh > flow. Usually, fhigh is set

at n and flow is set at n-1.

The reason this is called a GA-hard problem or deceptive

problem is that the GAs gets rewarded incrementally for each 0 it

adds to the problem, but the best solution consists of all 1s. In

swapping genes between parents in the simple GA, it will often

disrupt good combinations and the average fitness in the

population decrease after crossover. The crossover operator mixes

and also breaks the BBs because the cut point is chosen at random

(see Fig. 1). Similarly, the order-1 probability represents the

population as a probability distribution over the set of solutions.

Yet, generating new solutions using probability distribution leads

to poor solutions. That is, both the simple GA and the cGA, fail to

produce new chromosomes that are as good as the ones already in

the population. A building block crossover can be developed in

the GA with the purpose that the crossover operator needs to

understand related genes, and not break up the combinations they

represent. A building block only swap whole solutions to sub-

problems, instead of single genes.

Figure 1: The solutions are mixed by the crossover operator.

The BBs are shadowed. The random cut point is selected and

the tails of its two solutions are swapped to get new solutions.

In case (A), the solutions are mixed while maintaining the

BBs. In case (B), the BBs are disrupted.

There are strategies in the GA literature use the bit-reordering

approach to pack the dependent bits close together, for instance,

inversion operator [11], messy GAs [10], symbiotic evolution

[18], recombination strategy adaption [19], adaptive linkage

crossover [19], and linkage learning [9], Recently, the Hybrid

Linkage Crossover (HLX) operator and incorporating it into the

GECCO’18, July 15-19, 2018, Kyoto, Japan K. Suksen, P. Chongstitvatana

2

Differential Evolution was presented [7]. The bit-reordering

approach does not explicitly identify BBs, but it successfully

achieves the optimal solution. Several papers do BBs

identification explicitly to find a partition of bit positions. For

example, Table 1 infers the partition:

{ {0,1,2}, {3,4,6}, {7,8,9}, {10,11,12}, {13,14,15} } (2)

In the case of non-overlapping BBs, partition is a clear

representation [3,4,13,15-17]. The bits governed by the same

partition subset are passed together to prevent BB disruption.

Table 1: A Population of Highly Fit Individuals

Indivi

dual

No.

b0b1b2 b3b4b5 b6b7b8 b9b10b11 b12b13b14 Fitness

1 111 000 111 111 000 13.0

2 000 000 111 000 111 12.0

3 000 111 000 111 000 12.0

4 000 000 000 111 000 11.0

5 000 000 000 000 000 10.0

The fitness is the sum of five three-bit trap functions. “111” is the

optimum for three-bit trap function. “000” gives more

contribution to the fitness than that of “001”, “010”, “011”, “100”,

“101”, and “110”. As a result, the highly fit population is

composed of “000” and “111”.

Moreover, identification of BBs is practically impossible in

realworld problems. BBs on design variables of Interior

Permanent Magnet Synchronous Motor (IPMSM) are identified

and GA is applied to optimal design of IPMSM using information

of identified BB [20].

There are many strategies of identifying the BBs. We will only

refer to the building-block identification by simultaneity matrix

(BISM) [8]. The algorithm consists of two parts: simultaneity

matrix construction (SMC) and partitioning (PAR) algorithms.

The SMC construct the matrix according to a set of solutions and

counts a pair of two-bit BBs that are complement to each other.

Then, PAR searches for a partition for the matrix. The partition is

exploited in solution recombination so that the bits governed by

the same partition subset are passed together.

This paper presents a new hybrid algorithm that exploits BBs

with the cGA in order to solve difficult optimization problems.

Let us assume that we have already know the BBs of n bits. The

cGA with BBs construct a probability vector (P) of each building

block, instead of probability vector (P) of each single bit. The

solutions are randomly generated from P of each building block at

each generation and P of each building block is then updated base

on their solutions.

The remainder of the paper is organized as follows. Section II,

we will begin by briefly reviewing the working of the cGA. Then,

we describe the cGA exploited by using BBs in Section III.

Section IV, computer simulation compares the two algorithms,

both in terms of solution quality and speed. We will then modify

the cGA with BBs for the travelling salesman problem (TSP) in

Section V and presents the comparison results with the cGA

applied to the TSP in Section VI. At the end of the paper in

Section VII, some conclusions are drawn.

2 COMPACT GENETIC ALGORITHM

Compact genetic algorithm represents the population as a

probability vector over the set of solutions and is operationally

equivalent to the order-one behavior of the simple GA (sGA) with

uniform crossover. The vector contains each bit with a real

number from 0.0 to 1.0 representing the probability of that bit to

be one. This reduces the storage of the population to just the

storage of the probability vector.

Here is a short description of the steps in cGA. In the

initialization step a random population is generated. An

appropriate encoding of the candidate solution is dependent on the

problem. The second step is to sample two candidates from the

population. Each member of the population is then evaluated and

we calculate a ‘fitness value’ for that individual by using the

fitness function. The third step is to allow the two candidates to

compete and determine a winner and a loser by comparing their

fitness values. The winner’s chromosome will be used to update

the probability vector so that the distribution will converge

towards the best fit solution. This is an iterative process until we

reach a termination condition.

The cGA is approximately equivalent to the sGA with uniform

crossover: it achieves solutions of comparable quality with

approximately the same number of function evaluations. As a

problem with higher order building blocks, cGA with both higher

selection rates and larger population sizes should allow it to solve

problems. Such an increase to the selection pressure helps the

cGA to converge to better solutions since it increases the survival

probability of higher order building blocks. Although the cGA

mimics the order-one behavior of a sGA with uniform crossover,

it was not proposed as an alternative algorithm. According to its

authors, it can be used to quickly assess the “difficulty” of a

problem. A problem is easy if it can be solved with a cGA

exploiting a low selection rate. On the other hand, if it requires

raising the selection rate to solve the problem, it should be

considered as difficult.

3 COMPACT GENETIC ALGORITHM WITH

BUILDING BLOCKS

Exploiting Building Blocks in Hard Problems with Modified

Compact Genetic Algorithm
GECCO’18, July 15-19, 2018, Kyoto, Japan

 3

The cGA with BBs are a set of l-bit binary string and a number of

n bits in BBs. The set of l-bit binary string is distributed into l/n

BBs and the one BB consist of 2n sub-solutions. It is assumed that

all bits in each BBs are dependent. The set of l-bit binary string

denoted by:

S = {s0, s1, . . . , sl-1} (3)

where si is the ith string. The number of bits in BBs is n bits

where 1 < n ≤ l. Therefore we can partition for the solution to the

sub-solutions every the nth string. The set of BBs l-bit binary

string denoted by:

S = { {s0, s1, . . . , sn-1}, {sn, sn+1, . . . , s2n-1}, . . . , {s2n, s2n+1, . . .

, sl-1} }.
(4)

The joint probability of these n bits in each BBs having total 2n

sub-solutions. The initial probability value for each sub-solution is

1/2n. For example, a 30-bit trap functions problem can be formed

by grouping together each three genes into a sub-solution and

these three genes are related. This problem will have 10 of BBs.

The joint probability of these three bits having total 8 sub-

solutions and the initial probability vector for each sub-solution is

1/8 as shown in Table 2.

Table 2: The Joint Probability of Three Bits and Initial

Probability Vector for a Sub-solution

Sub-

solution

000 001 010 011 100 101 110 111

Initial

Probability

Vector

.125 .125 .125 .125 .125 .125 .125 .125

The joint probability of these three bits having total 8 sub-

solutions including “000”, “001”, . . ., “111”. The initial

probability vector is 1/8 for each sub-solution. Fig. 2 gives pseudo

code of the cGA with BBs.

Algorithm cGA with BBs is shown in Fig. 2. Step 1 initialize the

probability vector P of BBs which input is set of l-bit binary string

and a number of bits in BBs. Step 2 generate two individuals from

probability vector of each BBs. Step 3 let them compete based on

their fitness value. Step 4 BBs is then updated based on these

solutions. Step 1 to 4 will be iterative until the terminating

condition is met. So that in step 6 the distribution will converge to

a population that fits the solution requirement. The time

complexity of cGA with BBs is O(I2n+1/n) for one generation

where n is a number of bits in BBs and l is length of bit binary

string.

Figure 2: Pseudo code of the cGA with BBs.

For a deceptive problem such as n-bit trap functions problem, it

will take a long time to solve problems with higher order BBs.

Therefore we limit the size of trap. 10 copies of a 3-bit trap

functions are concatenated to form a 30-bit trap functions. In the

cGA, all the pi start with 1/2 and pi is dependent on one bit. For an

order-3 schema, the survival probability is 1/8. Therefore the

selection rate should greater than 8 that is enough to combat the

disruptive effects of crossover. However, a selection rate of s = 2

in the cGA with BBs is enough to converge to reach the optimal

solution because the algorithm maintains related genes by

updating probability vector of BBs so that it does not break up the

combinations.

1) Initialize the probability vector p which input is set of l-

bit binary string and n is a number of bits in BBs

 numberOfBBs = l / n;

 For i := 1 to numberOfBBs do

 For j := 1 to 2n do

 generateAllBinaryBit(n);

 p[j] := 1 / 2n;

2) Generate two individuals from p

 a := generate(p);

 b := generate(p);

3) Let them compete

 Winner, loser := compete(a, b);

4) Update p towards the better one

 For i := 1 to numberOfBBs do

 For j := 1 to 2n do

 if winner[j] ≠ loser[j] then

 if winner[j] = 1 then

 p[j] := p[j] + 1/β

 else p[j] := p[j] - 1/β

5) Check if the vector p has converged

 For i := 1 to l do

 if p[i] > 0 and p[i] < 1 then

 return to step 2;

6) The probability p represents the final solution

cGA with BBs parameters

 β: population size.

 l: bit length.

GECCO’18, July 15-19, 2018, Kyoto, Japan K. Suksen, P. Chongstitvatana

4

4 EXPERIMENTAL RESULTS FOR TRAP

FUNCTION

This section presents simulation results and compare the

effectiveness between the cGA with BBs and the original cGA,

both in terms of solution quality and in the number of function

evaluations taken. For solution quality, we count the number of

correct BBs. All experiments are averaged over 50 runs. The cGA

uses tournament selection with s = 8 while the cGA with BBs uses

tournament selection with s = 2. All runs end when the population

fully converges that is all positions of P become binary (0 or 1).

Fig. 3 and 4 show the results of the experiments on the 10 copies

of a 3-bit trap function. Figure 3 plots the solution quality

(number of correct BBs at the end of the run) for the various

population sizes. Fig. 4 plots the number of function evaluations

taken until reaching the convergence state known for different

population sizes.

Figure 3. Solution quality comparison achieved by the cGA

and the cGA with BBs on the 10 copies of a 3-bit trap

function. The solid line is for the cGA and the dashed line is

for the cGA with BBs.

Figure 4. Performance comparison achieved by the cGA and

the cGA with BBs on the 10 copies of a 3-bit trap function.

The solid line is for the cGA and the dashed line is for the

cGA with BBs.

Fig. 3 shows that the solution quality of the cGA with BBs is

averaged 1.6 times better than the cGA and Fig. 4 shows that the

performance of cGA with BBs is averaged 2.8 times less number

of evaluations than the cGA for the various population sizes on a

deceptive problem.

5 COMPACT GENETIC ALGORITHM WITH

BUILDING BLOCKS FOR TRAVELLING

SALESMAN PROBLEM

The traveling salesman problem (TSP) is the most well-known

NP-hard combinatorial optimization problem. The TSP problem

consists of a salesman and a set of cities. The salesman has to visit

each one of the cities starting from a certain one, visiting each

exactly once, and returning to the same city such that the total

distance traveled is minimized [5]. A combinational crossover

technique based on genetic algorithm and utilize the concept of

heritable BBs is employed in the search for optimal or near-

optimal TSP solution [2]. In this paper, in order to design the

cGA with BBs for the TSP, we adopted the path-representation

model which represents a feasible tour as one of the k! possible

permutations of the k cities [21]. Total number of feasible edges

between cities is

Total number of feasible edges =
𝑘−1

2
(k) where k cities (5)

Total number of feasible edges represents a set of l-bit binary

string. The initial probability value Pij[] (one for each bit) is set to

0.5, where Pij is the probability vector for edge between city i and

city j. For instance, Table 3 infers the number of feasible edges

for 6 cities and the initial probability vector.

Table 3: The feasible edges of 6 cities (A,B,C,D,E,F) that

represents 15-bit binary string and the initial probability

vector for each bit

Edgeij EAB EAC EAD EAE EAF EBC EBD EBE

Pij .5 .5 .5 .5 .5 .5 .5 .5

Edgeij EBF ECD ECE ECF EDE EDF EEF

Pij .5 .5 .5 .5 .5 .5 .5

Let us assume that we have k cities to visit. We need to have

instances of problems that contain BBs so we arrange the k cities

into n BBs. So that each BB contains the k/n cities. Then, we find

the best path of k/n cities in each BB and the path is not a loop. To

find the best path for each BB, the steps are as follows:

1. From Table 3, an EAB is randomly selected and define

city A is the starting city from that path. Then, city A

will be inserted in the tour N as the starting city.

2. To generate feasible tour: the next feasible path must

not be city in tour N and must have city B in the path.

City B is set to the current city

Exploiting Building Blocks in Hard Problems with Modified

Compact Genetic Algorithm
GECCO’18, July 15-19, 2018, Kyoto, Japan

 5

3. Generate feasible tour by randomly selecting and update

traversed city in tour N and the current city.

4. Repeat step 2-3 until traverse all cities in the BB and the

path is not a loop.

Then, we find the best route to connect each BB into one loop. So

that we can visit each one of the cities starting from a certain one,

visiting each exactly once, and returning to the same city.

Generate two individuals from the probability vector and find out

the best one, updating the probability vector towards the better

one same as step 4 of the cGA with BBs. The above steps will be

iterative until the terminating condition is met. The time

complexity of cGA with BBs for TSP is O(2n2k) for one

generation where n is a number of BBs and k is a number of cities

for each BB. The algorithm of the cGA with BBs for TSP is

shown in Fig. 5.

Figure 5. Pseudo code of the cGA with BBs for TSP

6 EXPERIMENTAL RESULTS FOR TSP

This section presents simulation results and compare the

effectiveness between the cGA with BBs for TSP and the cGA, in

terms of solution quality. All experiments are averaged over 50

runs. The tournament selection with s = 2. All runs end when the

population fully converges that is all positions of P become binary

(0 or 1). Figure 6 show the results of the experiments on the TSP

for U.S. cities (13 cities). Fig. 6 plots the solution quality (number

of correct bits at the end of the run) for the various population

sizes.

Figure 6. Solution quality comparison achieved by the cGA

for TSP and the cGA with BBs for TSP on the TSP to find

the shortest route through the U.S. cities (13 cities). The

solid line is for the cGA for TSP and the dashed line is for

the cGA with BBs for TSP.

Fig. 6 shows that the solution quality of the cGA with BBs for

TSP is averaged 1.89 times better than the cGA.

7 CONCLUSIONS

In this paper, we show that the cGA with BBs can be successfully

deal with difficult order-n optimization problems such as the trap

function and the TSP. The optimal solution can be achieved by

composing BBs. Our algorithm can maintain BBs by using

probability distribution for the BB instead of individual bit; genes

being considered order-n BB where n is a number of bits in a BB.

So that the BBs are maintained in solution recombination. We

introduce tournament selection with the probability vector

distribution of each of the BBs. We applied our algorithm to solve

a n-bit trap function problem. A comparison to the cGA that using

higher selection pressure with randomly generated individuals is

made. Empirical results show that the cGA with BBs is more

effective than the cGA, both in terms of solution quality and

speed. Moreover, we modified the cGA with BBs for TSP. The

algorithm was evaluated on small problem instances. The results

achieved were satisfactory if compared to the cGA. The cGA with

BBs successfully delivers the optimal solution while the cGA fail

to solve the problem.

7) Initialize(vector)

8) bestFitness = INT_MAX

9) repeat

 for i = 1 to 2 do

 routeCount = 0

 for block = 1 to n - 1 do

 for routeIndex = 1 to cityInBlock - 1 do

 validRouteVecto = validateBlockRoute

 (currentRoute,vector,routeArray)

 currentRoute = generateRoute

 (validRouteVector)

 routeArray[routeCount] = currentRoute

 routeCount++

 end for

 end for

 for routeIndex = 1 to numBlock do

 validRouteVector =validateBlockConnectionRoute

 (currentRoute,vector,routeArray)

 currentRoute = generateRoute(validRouteVector)

 routeArray[routeCount] = currentRoute

 routeCount++

 end for

 candidate[i] = routeArray

 fitness[i] = computeLength(candidate[i])

 end for

 if(fitness[0] < fitness[1]) then

 winner = candidate[0], loser = candidate[1]

 else

 winner = candidate[1], loser = candidate[0]

 winnerFitness = computeLength(winner)

 if (bestFitness > winnerFitness) then

 bestFitness = winnerFitness

 best = winner

 updateVector(vector, winner, loser)

until (bestFitness == BEST_PROBLEM_FITNESS OR

generation == MAX_GENERATION)

output(best , bestFitness)

GECCO’18, July 15-19, 2018, Kyoto, Japan K. Suksen, P. Chongstitvatana

6

REFERENCES
[1]

[2]

Ackley DH (1987) A connectionist machine for genetic hillclimbing. Kluwer,

Boston.

Al-Dallal, A. Using Genetic Algorithm with Combinational Crossover to solve

Travelling Salesman Problem. in 2015 7th International Joint Conference on

Computational Intelligence (IJCCI). 2015.

[3] Aporntewan C, Chongstitvatana P (2003) Building-block identification by

simultaneity matrix. In: Cant-úPaz E et al (eds) Proceedings of genetic and

evolutionary computation conference. Springer, Berlin Heidelberg New York,

pp 1566–1567.

[4] Aporntewan C, Chongstitvatana P (2004) Simultaneity matrix for solving

hierarchically decomposable functions. In: Deb K et al (eds) Proceedings of

genetic and evolutionary computation conference. Springer, Berlin Heidelberg

New York, pp 877–888.

[5] Aporntewan, C. and P. Chongstitvatana, Building-block Identification by

Simultaneity Matrix. Soft Computing, 2007. 11(6): p. 541-548.

[6]

[7]

[8]

Berkani, A., A. Azouaoui, and M. Belkasmi. Soft-decision decoding by a

compact genetic algorithm using higher selection pressure. in 2015

International Conference on Wireless Networks and Mobile Communications

(WINCOM). 2015.

Cai, Y. and J. Wang, Differential evolution with hybrid linkage crossover.

Information Sciences, 2015. 320: p. 244-287.

G. Reinelt, The Traveling Salesman: Computational Solutions for TSP

Applications. Berlin, Germany: Springer-Verlag, 1994.

[9] Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine

Learning. Addison-Wesley, Reading, MA (1989).

[10] Goldberg DE, Korb B, Deb K (1989) Messy genetic algorithms: motivation,

analysis and first results. In: Wolfram S (ed) Complex systems, vol 3, no 5.

Complex Systems Publications, Inc., Champaign, pp 493–530.

[11] Harik GR (1997) Learning linkage. In: Belew RK, Vose MD (eds) Foundation

of genetic algorithms 4. Morgan Kaufmann, San Francisco, pp 247–262.

[12] Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. In

Proceedings of the International Conference on Evolutionary Computation

1998 (ICEC ’98), IEEE New York (1998) 523–528.

[13] HarikGR(1999) Linkage learning via probabilistic modeling in the ECGA.

Technical Report 99010, Illinois Genetic Algorithms Laboratory, University of

Illinois at Urbana-Champaign, Champaign, IL.

[14] Holland, J.H.: Adaptation in Natural and Artificial Systems. University of

Michigan Press, Ann Arboor, MI (1975).

[15] Kargupta H (1996) The gene expression messy genetic algorithm. In:

Proceedings of the IEEE international conference on evolutionary computation.

IEEE Press, Piscataway, pp 814–819.

[16] Kargupta H, Park B (2001) Gene expression and fast construction of distributed

evolutionary representation. In: Whitley D (ed) Evolutionary computation, vol

9, no 1.MIT, Cambridge, pp 43–69.

[17] Munetomo M, GoldbergDE(1999). Linkage identification by nonmonotonicity

detection for overlapping functions. In: Whitley D (ed) Evolutionary

computation, vol 7, no 4. MIT, Cambridge, pp 377–398.

[18] Paredis J (1995) The symbiotic evolution of solutions and their representations.

In: Eshelman LJ (ed) Proceedings of the 6th international conference on genetic

algorithms. Morgan Kaufmann, San Mateo, pp 359–36.

[19] Smith J, Fogarty T (1996) Recombination strategy adaptation via evolution of

gene linkage. In: Proceedings of the IEEEinternational conference on

evolutionary computation. IEEE Press, Piscataway, pp 826–831.

[20]

[21]

Son, B., et al. Genetic algorithm adopting building block identification applied

to optimal design of IPMSM. in 2016 IEEE Conference on Electromagnetic

Field Computation (CEFC). 2016.

Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,

3rd ed. Berlin, Germany: Springer-Verlag, 1996.

