Probabilistic Model-Building Genetic Algorithms

a.k.a. Estimation of Distribution Algorithms a.k.a. Iterated Density Estimation Algorithms

Martin Pelikan

Missouri Estimation of Distribution Algorithms Laboratory (MEDAL) Dept. of Math. and Computer Science
University of Missouri at St. Louis
pelikan@cs.umsl.edu
http://medal.cs.umsl.edu/
[last update: April 2008]

Foreword

- Motivation
\square Genetic and evolutionary computation (GEC) popular.
\square Toy problems great, but difficulties in practice.
\square Must design new representations, operators, tune, ...
- This talk
\square Discuss a promising direction in GEC.
\square Combine machine learning and GEC.
\square Create practical and powerful optimizers.

Overview

- Introduction
\square Black-box optimization via probabilistic modeling.
■ Probabilistic Model-Building GAs
\square Discrete representation
\square Continuous representation
\square Computer programs (PMBGP)
\square Permutations
- Conclusions

Problem Formulation

- Input
\square How do potential solutions look like?
\square How to evaluate quality of potential solutions?
■ Output
\square Best solution (the optimum).
■ I mportant
\square No additional knowledge about the problem.

Why View Problem as Black Box?

■ Advantages
\square Separate problem definition from optimizer.
\square Easy to solve new problems.
\square Economy argument.
■ Difficulties
\square Almost no prior problem knowledge.
\square Problem specifics must be learned automatically.
\square Noise, multiple objectives, interactive evaluation.

Representations Considered Here

- Start with
\square Solutions are n-bit binary strings.

■ Later
\square Real-valued vectors.
\square Program trees.
\square Permutations

Typical Situation

■ Previously visited solutions + their evaluation:

$\#$	Solution	Evaluation
1	00100	1
2	11011	4
3	01101	0
4	10111	3

■ Question: What solution to generate next?

Many Answers

■ Hill climber
\square Start with a random solution.
\square Flip bit that improves the solution most.
\square Finish when no more improvement possible.

- Simulated annealing
\square Introduce Metropolis.
■ Probabilistic model-building GAs
\square Inspiration from GAs and machine learning (ML).

Probabilistic Model-Building GAs

...replace crossover+mutation with learning and sampling probabilistic model

Other Names for PMBGAs

- Estimation of distribution algorithms (EDAs) (Mühlenbein \& Paass, 1996)

■ Iterated density estimation algorithms (IDEA) (Bosman \& Thierens, 2000)

What Models to Use?

■ Start with a simple example
\square Probability vector for binary strings.

■ Later
\square Dependency tree models (COMIT).
\square Bayesian networks (BOA).
\square Bayesian networks with local structures (hBOA).

Probability Vector

- Assume n-bit binary strings.

■ Model: Probability vector $p=\left(p_{1}, \ldots, p_{n}\right)$
$\square \mathrm{p}_{\mathrm{i}}=$ probability of 1 in position $;$
\square Learn p : Compute proportion of 1 in each position.
\square Sample p: Sample 1 in position i with prob. p_{i}

Example: Probability Vector

(Mühlenbein, Paass, 1996), (Baluja, 1994)

Probability Vector PMBGAs

■ PBIL (Baluja, 1995)
\square Incremental updates to the prob. vector.
■ Compact GA (Harik, Lobo, Goldberg, 1998)
\square Also incremental updates but better analogy with populations.
■ UMDA (Mühlenbein, Paass, 1996)
\square What we showed here.
■ DEUM (Shakya et al., 2004)

- All variants perform similarly.

Probability Vector Dynamics

■ Bits that perform better get more copies.

- And are combined in new ways.

■ But context of each bit is ignored.

■ Example problem 1: Onemax

$$
f\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} X_{i}
$$

Probability Vector on Onemax

Probability Vector: I deal Scale-up

■ $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ evaluations until convergence
\square (Harik, Cantú-Paz, Goldberg, \& Miller, 1997)
\square (Mühlenbein, Schlierkamp-Vosen, 1993)
■ Other algorithms
\square Hill climber: O(n log n) (Mühlenbein, 1992)
\square GA with uniform: approx. O(n log n)
\square GA with one-point: slightly slower

When Does Prob. Vector Fail?

- Example problem 2: Concatenated traps
\square Partition input string into disjoint groups of 5 bits.
\square Groups contribute via trap (ones=number of ones):

$$
\operatorname{trap}(\text { ones })=\left\{\begin{array}{lc}
5 & \text { if ones }=5 \\
4-\text { ones } & \text { otherwise }
\end{array}\right.
$$

\square Concatenated trap = sum of single traps
\square Optimum: String 111... 1

Trap-5

Probability Vector on Traps

Why Failure?

■ Onemax:
\square Optimum in 111... 1
$\square 1$ outperforms 0 on average.

■ Traps: optimum in 11111, but

- $\mathrm{f}\left(\mathrm{O}^{* * * *}\right)=2$
- $\mathrm{f}\left(\mathbf{1}^{* * * *)}=1.375\right.$

■ So single bits are misleading.

How to Fix It?

■ Consider 5-bit statistics instead 1-bit ones.
■ Then, 11111 would outperform 00000.
■ Learn model
\square Compute p(00000), p(00001), .., p(11111)

- Sample model
\square Sample 5 bits at a time
\square Generate 00000 with p(00000), 00001 with p(00001), ...

Correct Model on Traps: Dynamics

Good News: Good Stats Work Great!

- Optimum in O(n log n) evaluations.

■ Same performance as on onemax!
■ Others
\square Hill climber: $\mathrm{O}\left(\mathrm{n}^{5} \log \mathrm{n}\right)=$ much worse.
\square GA with uniform: $\mathrm{O}\left(2^{\mathrm{n}}\right)=$ intractable.
\square GA with k-point xover: $\mathrm{O}\left(2^{\mathrm{n}}\right)$ (w/o tight linkage).

Challenge

■ If we could learn and use relevant context for each position
\square Find non-misleading statistics.
\square Use those statistics as in probability vector.
■ Then we could solve problems decomposable into statistics of order at most k with at most $O\left(n^{2}\right)$ evaluations!
\square And there are many such problems (Simon, 1968).

What's Next?

- COMIT
\square Use tree models

■ Extended compact GA
\square Cluster bits into groups.

- Bayesian optimization algorithm (BOA)
\square Use Bayesian networks (more general).

Beyond single bits: COMIT

(Baluja, Davies, 1997)

String

How to Learn a Tree Model?

■ Mutual information:

$$
I\left(X_{i}, X_{j}\right)=\sum_{a, b} P\left(X_{i}=a, X_{j}=b\right) \log \frac{P\left(X_{i}=a, X_{j}=b\right)}{P\left(X_{i}=a\right) P\left(X_{j}=b\right)}
$$

■ Goal
\square Find tree that maximizes mutual information between connected nodes.
\square Will minimize Kullback-Leibler divergence.

- Algorithm
\square Prim's algorithm for maximum spanning trees.

Prim's Algorithm

- Start with a graph with no edges.
- Add arbitrary node to the tree.
- Iterate
\square Hang a new node to the current tree.
\square Prefer addition of edges with large mutual information (greedy approach).
- Complexity: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Variants of PMBGAs with Tree Models

■ COMIT (Baluja, Davies, 1997)
\square Tree models.

■ MI MIC (DeBonet, 1996)
\square Chain distributions.

■ BMDA (Pelikan, Mühlenbein, 1998)
\square Forest distribution (independent trees or tree)

Beyond Pairwise Dependencies: ECGA

■ Extended Compact GA (ECGA) (Harik, 1999).
■ Consider groups of string positions.
String
Model
\square

Learning the Model in ECGA

■ Start with each bit in a separate group.
■ Each iteration merges two groups for best improvement.

How to Compute Model Quality?

- ECGA uses minimum description length.

■ Minimize number of bits to store model+data:

$$
\operatorname{MDL}(M, D)=D_{\text {Model }}+D_{\text {Data }}
$$

■ Each frequency needs $(0.5 \log N$) bits:

$$
D_{\text {Model }}=\sum_{g \in G} 2^{|g|-1} \log N
$$

■ Each solution X needs $-\log \mathrm{p}(X)$ bits:

$$
D_{\text {Data }}=-N \sum_{X} p(X) \log p(X)
$$

Sampling Model in ECGA

■ Sample groups of bits at a time.

■ Based on observed probabilities/proportions.

- But can also apply population-based crossover similar to uniform but w.r.t. model.

Building-Block-Wise Mutation in ECGA

- Sastry, Goldberg (2004); Lima et al. (2005)
- Basic idea
\square Use ECGA model builder to identify decomposition
\square Use the best solution for BB-wise mutation
\square For each k-bit partition (building block)
- Evaluate the remaining 2^{k-1} instantiations of this BB
- Use the best instantiation of this BB

■ Result (for order-k separable problems)
\square BB-wise mutation is $O(\sqrt{k} \log n)$ times faster than ECGA!
\square But only for separable problems (and similar ones).

What's Next?

- We saw
\square Probability vector (no edges).
\square Tree models (some edges).
\square Marginal product models (groups of variables).

■ Next: Bayesian networks
\square Can represent all above and more.

Bayesian Optimization Algorithm (BOA)

■ Pelikan, Goldberg, \& Cantú-Paz (1998)
■ Use a Bayesian network (BN) as a model.
■ Bayesian network
\square Acyclic directed graph.
\square Nodes are variables (string positions).
\square Conditional dependencies (edges).
\square Conditional independencies (implicit).

Example: Bayesian Network (BN)

■ Conditional dependencies.
■ Conditional independencies.

BOA

Learning BNs

■ Two things again:
\square Scoring metric (as MDL in ECGA).
\square Search procedure (in ECGA done by merging).

Learning BNs: Scoring Metrics

- Bayesian metrics
\square Bayesian-Dirichlet with likelihood equivallence

$$
B D(B)=p(B) \prod_{i=1}^{n} \prod_{\pi_{i}} \frac{\Gamma\left(m^{\prime}\left(\pi_{i}\right)\right)}{\Gamma\left(m^{\prime}\left(\pi_{i}\right)+m\left(\pi_{i}\right)\right)} \prod_{x_{i}} \frac{\Gamma\left(m^{\prime}\left(x_{i}, \pi_{i}\right)+m\left(x_{i}, \pi_{i}\right)\right)}{\Gamma\left(m^{\prime}\left(x_{i}, \pi_{i}\right)\right)}
$$

- Minimum description length metrics
\square Bayesian information criterion (BIC)

$$
B I C(B)=\sum_{i=1}^{n}\left(-H\left(X_{i} \mid \Pi_{i}\right) N-2^{\left[\Pi_{i} \mid\right.} \frac{\log _{2} N}{2}\right)
$$

Learning BNs: Search Procedure

■ Start with empty network (like ECGA).
■ Execute primitive operator that improves the metric the most (greedy).

■ Until no more improvement possible.

- Primitive operators
\square Edge addition (most important).
\square Edge removal.
\square Edge reversal.

Learning BNs: Example

BOA and Problem Decomposition

- Conditions for factoring problem decomposition into a product of prior and conditional probabilities of small order in Mühlenbein, Mahnig, \& Rodriguez (1999).
■ In practice, approximate factorization sufficient that can be learned automatically.

■ Learning makes complete theory intractable.

BOA Theory: Population Sizing

■ Initial supply (Goldberg et al., 2001)
\square Have enough stuff to combine.
■ Decision making (Harik et al, 1997)
\square Decide well between competing partial sols $\Rightarrow O(\sqrt{n} \log n)$
■ Drift (Thierens, Goldberg, Pereira, 1998)
\square Don't lose less salient stuff prematurely.
■ Model building (Pelikan et al., 2000, 2002)
\square Find a good model.

BOA Theory: Num. of Generations

■ Two extreme cases, everything in the middle.
■ Uniform scaling
\square Onemax model (Muehlenbein \& Schlierkamp-Voosen, 1993)

$$
O(\sqrt{n})
$$

■ Exponential scaling
\square Domino convergence (Thierens, Goldberg, Pereira, 1998)

$$
O(n)
$$

Good News: Challenge Met!

- Theory
\square Population sizing (Pelikan et al., 2000, 2002)
■ Initial supply.
- Decision making.
- Drift.

```
O(n) to O(n
```

- Model building.
\square Number of iterations (Pelikan et al., 2000, 2002)
■ Uniform scaling.
■ Exponential scaling.

$$
\longmapsto \mathrm{O}\left(n^{0.5}\right) \text { to } \mathrm{O}(n)
$$

- BOA solves order-k decomposable problems in $O\left(n^{1.55}\right)$ to $O\left(n^{2}\right)$ evaluations!

Theory vs. Experiment (5-bit Traps)

Martin Pelikan, Probabilistic Model-Building GAs

BOA Siblings

■ Estimation of Bayesian Networks Algorithm (EBNA) (Etxeberria, Larrañaga, 1999).

■ Learning Factorized Distribution Algorithm (LFDA) (Mühlenbein, Mahnig, Rodriguez, 1999).

Another Option: Markov Networks

■ MN-FDA, MN-EDA (Santana; 2003, 2005)
■ Similar to Bayes nets but with undirected edges.

Yet Another Option: Dependency Networks

- Estimation of dependency networks algorithm (EDNA)
\square Gamez, Mateo, Puerta (2007).
\square Use dependency network as a model.
\square Dependency network learned from pairwise interactions.
\square Use Gibbs sampling to generate new solutions.
- Dependency network
\square Parents of a variable= all variables influencing this variable.
\square Dependency network can contain cycles.

Model Comparison

Model Expressiveness Increases

From single level to hierarchy

■ Single-level decomposition powerful.

- But what if single-level decomposition is not enough?
- Learn from humans and nature
\square Decompose problem over multiple levels.
\square Use solutions from lower level as basic building blocks.
\square Solve problem hierarchically.

Hierarchical Decomposition

Three Keys to Hierarchy Success

■ Proper decomposition
\square Must decompose problem on each level properly.
■ Chunking
\square Must represent \& manipulate large order solutions.
■ Preservation of alternative solutions
\square Must preserve alternative partial solutions (chunks).

Hierarchical BOA (hBOA)

■ Pelikan \& Goldberg $(2000,2001)$
■ Proper decomposition
\square Use Bayesian networks like BOA.
■ Chunking
\square Use local structures in Bayesian networks.
■ Preservation of alternative solutions.
\square Use restricted tournament replacement (RTR).
\square Can use other niching methods.

Local Structures in BNs

■ Look at one conditional dependency.
$\square 2^{k}$ probabilities for k parents.

- Why not use more powerful representations for conditional probabilities?

$X_{2} X_{3}$	$P\left(X_{1}=0 \mid X_{2} X_{3}\right)$
00	26%
01	44%
10	15%
11	15%

Local Structures in BNs

■ Look at one conditional dependency.
$\square 2^{k}$ probabilities for k parents.
■ Why not use more powerful representations for conditional probabilities?

Restricted Tournament Replacement

■ Used in hBOA for niching.
■ Insert each new candidate solution x like this:
\square Pick random subset of original population.
\square Find solution y most similar to x in the subset.
\square Replace y by x if x is better than y .

Hierarchical Traps: The Ultimate Test

- Combine traps on more levels.

■ Each level contributes to fitness.
■ Groups of bits map to next level.

hBOA on Hierarchical Traps

PMBGAs Are Not J ust Optimizers

- PMBGAs provide us with two things
\square Optimum or its approximation.
\square Sequence of probabilistic models.
■ Probabilistic models
\square Encode populations of increasing quality.
\square Tell us a lot about the problem at hand.
\square Can we use this information?

Efficiency Enhancement for PMBGAs

- Sometimes $O\left(\mathrm{n}^{2}\right)$ is not enough
\square High-dimensional problems (1000s of variables)
\square Expensive evaluation (fitness) function
- Solution
\square Efficiency enhancement techniques

Efficiency Enhancement Types

■ 7 efficiency enhancement types for PMBGAs
\square Parallelization
\square Hybridization
\square Time continuation
\square Fitness evaluation relaxation
\square Prior knowledge utilization
\square Incremental and sporadic model building
\square Learning from experience

Multi-objective PMBGAs

- Methods for multi-objective GAs adopted
\square Multi-objective hBOA (from NSGA-II and hBOA) (Khan, Goldberg, \& Pelikan, 2002)
(Pelikan, Sastry, \& Goldberg, 2005)
\square Another multi-objective BOA (from SPEA2) (Laumanns, \& Ocenasek, 2002)
\square Multi-objective mixture-based IDEAs (Thierens, \& Bosman, 2001)
\square Regularity Model Based Multiobjective EDA (RM-MEDA) (Zhang, Zhou, J in, 2008)

Promising Results with Discrete PMBGAs

- Artificial classes of problems

■ Physics

- Bioinformatics

■ Computational complexity and AI
■ Others

Results: Artificial Problems

- Decomposition
\square Concatenated traps (Pelikan et al., 1998).
■ Hierarchical decomposition
\square Hierarchical traps (Pelikan, Goldberg, 2001).
- Other sources of difficulty
\square Exponential scaling, noise (Pelikan, 2002).

BOA on Concatenated 5-bit Traps

hBOA on Hierarchical Traps

Results: Physics

■ Spin glasses (Pelikan et al., 2002, 2006, 2008) (Hoens, 2005) (Santana, 2005) (Shakya et al., 2006)
$\square \pm \mathrm{J}$ and Gaussian couplings
\square 2D and 3D spin glass
\square Sherrington-Kirkpatrick (SK) spin glass

■ Silicon clusters (Sastry, 2001)
\square Gong potential (3-body)

hBOA on Ising Spin Glasses (2D)

Results on 2D Spin Glasses

■ Number of evaluations is $\mathrm{O}\left(n^{1.51}\right)$.
■ Overall time is $\mathrm{O}\left(n^{3.51}\right)$.
■ Compare $\mathrm{O}\left(n^{3.51}\right)$ to $\mathrm{O}\left(n^{3.5}\right)$ for best method (Galluccio \& Loebl, 1999)
■ Great also on Gaussians.

hBOA on Ising Spin Glasses (3D)

hBOA on SK Spin Glass

Results: Computational Complexity, Al

■ MAXSAT, SAT (Pelikan, 2002)
\square Random 3CNF from phase transition.
\square Morphed graph coloring.
\square Conversion from spin glass.

■ Feature subset selection (Inza et al., 2001) (Cantu-Paz, 2004)

Results: Some Others

- Military antenna design (Santarelli et al., 2004)
- Groundwater remediation design (Arst et al., 2004)
- Forest management (Ducheyne et al., 2003)
- Nurse scheduling (Li, Aickelin, 2004)
- Telecommunication network design (Rothlauf, 2002)
- Graph partitioning (Ocenasek, Schwarz, 1999; Muehlenbein, Mahnig, 2002; Baluja, 2004)
- Portfolio management (Lipinski, 2005, 2007)
- Quantum excitation chemistry (Sastry et al., 2005)
- Maximum clique (Zhang et al., 2005)
- Cancer chemotherapy optimization (Petrovski et al., 2006)
- Minimum vertex cover (Pelikan et al., 2007)
- Protein folding (Santana et al., 2007)
- Side chain placement (Santana et al., 2007)

Discrete PMBGAs: Summary

■ No interactions
\square Univariate models; PBIL, UMDA, cGA.
■ Some pairwise interactions
\square Tree models; COMIT, MI MIC, BMDA.
■ Multivariate interactions
\square Multivariate models: BOA, EBNA, LFDA.
■ Hierarchical decomposition
\square hBOA

Discrete PMBGAs: Recommendations

■ Easy problems
\square Use univariate models; PBIL, UMDA, cGA.
■ Somewhat difficult problems
\square Use bivariate models; MIMIC, COMIT, BMDA.
■ Difficult problems
\square Use multivariate models; BOA, EBNA, LFDA.
■ Most difficult problems
\square Use hierarchical decomposition; hBOA.

Real-Valued PMBGAs

■ New challenge
\square Infinite domain for each variable.
\square How to model?

■ 2 approaches
\square Discretize and apply discrete model/PMBGA
\square Create model for real-valued variables

- Estimate pdf.

PBIL Extensions: First Step

- SHCwL: Stochastic hill climbing with learning (Rudlof, Köppen, 1996).
- Model
\square Single-peak Gaussian for each variable.
\square Means evolve based on parents (promising solutions).
\square Deviations equal, decreasing over time.
■ Problems
\square No interactions.
\square Single Gaussians=can model only one attractor.
\square Same deviations for each variable.

Use Different Deviations

■ Sebag, Ducoulombier (1998)
■ Some variables have higher variance.
■ Use special standard deviation for each

81

Use Covariance

■ Covariance allows rotation of 1-peak Gaussians.
■ EGNA (Larrañaga et al., 2000)
■ IDEA (Bosman, Thierens, 2000)

How Many Peaks?

■ One Gaussian vs. kernel around each point.

- Kernel distribution similar to ES.

■ IDEA (Bosman, Thierens, 2000)

Mixtures: Between One and Many

- Mixture distributions provide transition between one Gaussian and Gaussian kernels.
- Mixture types
\square Over one variable.
- Gallagher, Frean, \& Downs (1999).
\square Over all variables.
- Pelikan \& Goldberg (2000).
- Bosman \& Thierens (2000).
\square Over partitions of variables.

- Bosman \& Thierens (2000).
- Ahn, Ramakrishna, and Goldberg (2004).

Mixed BOA (mBOA)

■ Mixed BOA (Ocenasek, Schwarz, 2002)

- Local distributions
\square A decision tree (DT) for every variable.
\square Internal DT nodes encode tests on other variables
- Discrete: Equal to a constant
- Continuous: Less than a constant
\square Discrete variables:
DT leaves represent probabilities.
\square Continuous variables: DT leaves contain a normal kernel distribution.

Real-Coded BOA (rBOA)

- Ahn, Ramakrishna, Goldberg (2003)
- Probabilistic Model
\square Underlying structure: Bayesian network
\square Local distributions: Mixtures of Gaussians
■ Also extended to multiobjective problems (Ahn, 2005)

Aggregation Pheromone System (APS)

■ Tsutsui (2004)
■ Inspired by aggregation pheromones

- Basic idea
\square Good solutions emit aggregation pheromones
\square New candidate solutions based on the density of aggregation pheromones
\square Aggregation pheromone density encodes a mixture distribution

Adaptive Variance Scaling

- Adaptive variance in mBOA
\square Ocenasek et al. (2004)
■ Normal IDEAs
\square Bosman et al. $(2006,2007)$
\square Correlation-triggered adaptive variance scaling
\square Standard-deviation ratio (SDR) triggered variance scaling

Real-Valued PMBGAs: Discretization

- Idea: Transform into discrete domain.
- Fixed models
$\square 2^{k}$ equal-width bins with k-bit binary string.
\square Goldberg (1989).
\square Bosman \& Thierens (2000); Pelikan et al. (2003).
- Adaptive models
\square Equal-height histograms of $2 k$ bins.
$\square \mathrm{k}$-means clustering on each variable.
\square Pelikan, Goldberg, \& Tsutsui (2003); Cantu-Paz (2001).

Real-Valued PMBGAs: Summary

- Discretization
\square Fixed
\square Adaptive
■ Real-valued models
\square Single or multiple peaks?
\square Same variance or different variance?
\square Covariance or no covariance?
\square Mixtures?
\square Treat entire vectors, subsets of variables, or single variables?

Real-Valued PMBGAs: Recommendations

- Multimodality?
\square Use multiple peaks.
■ Decomposability?
\square All variables, subsets, or single variables.
■ Strong linear dependencies?
\square Covariance.
- Partial differentiability?
\square Combine with gradient search.

PMBGP (Genetic Programming)

- New challenge
\square Structured, variable length representation.
\square Possibly infinitely many values.
\square Position independence (or not).
\square Low correlation between solution quality and solution structure (Looks, 2006).
- Approaches
\square Use explicit probabilistic models for trees.
\square Use models based on grammars.

PIPE

- Probabilistic incremental program evolution (Salustowicz \& Schmidhuber, 1997)
- Store frequencies of operators/terminals in nodes of a maximum tree.
- Sampling generates tree from top to bottom

eCGP

■ Sastry \& Goldberg (2003)

- ECGA adapted to program trees.

■ Maximum tree as in PIPE.
■ But nodes partitioned into groups.

BOA for GP

■ Looks, Goertzel, \& Pennachin (2004)

- Combinatory logic + BOA
\square Trees translated into uniform structures.
\square Labels only in leaves.
\square BOA builds model over symbols in different nodes.
■ Complexity build-up
\square Modeling limited to max. sized structure seen.
\square Complexity builds up by special operator.

MOSES

■ Looks (2006).

- Evolve demes of programs.

■ Each deme represents similar structures.
■ Apply PMBGA to each deme (e.g. hBOA).
■ Introduce new demes/delete old ones.

- Use normal forms to reduce complexity.

PMBGP with Grammars

■ Use grammars/stochastic grammars as models.

- Grammars restrict the class of programs.
- Some representatives
\square Program evolution with explicit learning (Shan et al., 2003)
\square Grammar-based EDA for GP (Bosman, de J ong, 2004)
\square Stochastic grammar GP (Tanev, 2004)
\square Adaptive constrained GP (J anikow, 2004)

PMBGP: Summary

- Interesting starting points available.
- But still lot of work to be done.
- Much to learn from discrete domain, but some completely new challenges.
- Research in progress

PMBGAs for Permutations

■ New challenges
\square Relative order
\square Absolute order
\square Permutation constraints
■ Two basic approaches
\square Random-key and real-valued PMBGAs
\square Explicit probabilistic models for permutations

Random Keys and PMBGAs

■ Bengoetxea et al. (2000); Bosman et al. (2001)

- Random keys (Bean, 1997)
\square Candidate solution $=$ vector of real values
\square Ascending ordering gives a permutation
- Can use any real-valued PMBGA (or GEA)
\square IDEAs (Bosman, Thierens, 2002)
\square EGNA (Larranaga et al., 2001)
- Strengths and weaknesses
\square Good: Can use any real-valued PMBGA.
\square Bad: Redundancy of the encoding.

Direct Modeling of Permutations

■ Edge-histogram based sampling algorithm (EHBSA) (Tsutsui, Pelikan, Goldberg, 2003)
\square Permutations of n elements
\square Model is a matrix $A=\left(\mathrm{a}_{\mathrm{i}, \mathrm{j}, \mathrm{j}=1,2, \ldots, \mathrm{n}}\right.$
$\square \mathrm{a}_{\mathrm{i}, \mathrm{j}}$ represents the probability of edge (i, j)
\square Uses template to reduce exploration
\square Applicable also to scheduling

ICE: Modify Crossover from Model

- ICE
\square Bosman, Thierens (2001).
\square Represent permutations with random keys.
\square Learn multivariate model to factorize the problem.
\square Use the learned model to modify crossover.
- Performance
\square Typically outperforms IDEAs and other PMBGAs that learn and sample random keys.

Multivariate Permutation Models

- Basic approach
\square Use any standard multivariate discrete model.
\square Restrict sampling to permutations in some way.
\square Bengoetxea et al. (2000), Pelikan et al. (2007).
■ Strengths and weaknesses
\square Use explicit multivariate models to find regularities.
\square High-order alphabet requires big samples for good models.
\square Sampling can introduce unwanted bias.
\square Inefficient encoding for only relative ordering constraints, which can be encoded simpler.

Conclusions

- Competent PMBGAs exist
\square Scalable solution to broad classes of problems.
\square Solution to previously intractable problems.
\square Algorithms ready for new applications.
- PMBGAs do more than just solve the problem
\square They provide us with sequences of probabilistic models.
\square The probabilistic models tell us a lot about the problem.
- Consequences for practitioners
\square Robust methods with few or no parameters.
\square Capable of learning how to solve problem.
\square But can incorporate prior knowledge as well.
\square Can solve previously intractable problems.

Starting Points

- World wide web
- Books and surveys
\square Larrañaga \& Lozano (eds.) (2001). Estimation of distribution algorithms: A new tool for evolutionary computation. Kluwer.
\square Pelikan et al. (2002). A survey to optimization by building and using probabilistic models. Computational optimization and applications, 21(1), pp. 5-20.
\square Pelikan (2005). Hierarchical BOA: Towards a New Generation of Evolutionary Algorithms. Springer.
\square Lozano, Larrañaga, Inza, Bengoetxea (2007). Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms, Springer.
\square Pelikan, Sastry, Cantu-Paz (eds.) (2007). Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications, Springer.

Online Code (1/2)

- BOA, BOA with decision graphs, dependency-tree EDA http://medal.cs.umsl.edu/
- ECGA, xi-ary ECGA, BOA, and BOA with decision trees/graphs http://www-illigal.ge.uiuc.edu/
- mBOA http://jiri.ocenasek.com/
- PIPE
http://www.idsia.ch/~rafal/
- Real-coded BOA http://www.evolution.re.kr/

Online Code (2/2)

- Demos of APS and EHBSA http://www.hannan-u.ac.jp/~tsutsui/research-e.html
- RM-MEDA: A Regularity Model Based Multiobjective EDA Differential Evolution + EDA hybrid http://cswww.essex.ac.uk/staff/qzhang/mypublication.htm
- Naive Multi-objective Mixture-based IDEA (MIDEA) Normal IDEA-I nduced Chromosome Elements Exchanger (ICE) Normal Iterated Density-Estimation Evolutionary Algorithm (IDEA) http://homepages.cwi.nl/~bosman/code.html

