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Chapter 9 

Optimisation 
 
 
In this chapter, we will study many methods to improve the performance of the 
system that we have built in the previous chapters.  The system consists of some 
simple applications running on a concurrent operating system written in a high 
level language.  The platform (the hardware system, a virtual one) is a stack-
based processor.  It is microprogrammable, so its instruction set can be extended. 
The high level language itself can also be changed.  We have written the 
compiler for the language and the code generator to generate code for the target 
machine.  These programs can be modified. 
   
Studying a computer system as a whole can reveal the relationship between 
components. Their interactions can be complex and interesting.  The optimisation 
aims to improve mainly the performance, to complete a task with fewer numbers 
of cycles.  As we built all components by ourselves, we can change the system at 
every level.  We can experiment with any component and observe the change.  
We can instrument our system to collect statistics easily.  
 
There is no separate lab session in this chapter as the work is spread out in all 
sections.  Each optimisation method will be tried and data collected.  The 
analysis follows each experiment.   
 

9.1 Framework 
 
There are many levels in which to aim an optimisation for.  The highest level is 
an algorithmic level.  We will not explore this topic; instead we refer to many 
excellent textbooks in the field [COR01] [PRA01] [KLI05].  What we will 
explore is at a more concrete level: the language level, the code generation level 
and the microprogramming level. 
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At the language level, the macro expansion will be studied.  The extension of the 
language itself to include new operators will be tried. At the code generation 
level, many techniques will be investigated: supporting new instructions such as 
increment, decrement (which are implemented in the previous chapter), 
improving some simple sequence of code, and eliminating some code. At the 
instruction level, a few new instructions will be designed and implemented.  The 
microarchitecture level has been demonstrated in the chapter 7, showing an 
improving data path of the Sx processor. 
 

What are we going to measure and how? 

 
To observe any improvement we need to set up a controlled environment.  
Several methods will be applied to improve a system that performs the same task.  
The effects of these different methods can then be observed and compared.  The 
benchmark programs are a set of programs (or tasks) representing the kind of 
workload that we expect in our work.  We elected two programs as our workload 
representatives: the Nut compiler and the Nut operating system. 
 
The first benchmark is the compiler benchmark.  The original Nut compiler, 
“nut.txt”, is used to compile itself.  This represents a substantial work that is 
moderately complex and contains many well-known problems in computer 
science.  Nut compiler is also a non-trivial program that will exercise a large 
repertoire of instructions.   
 
The second benchmark is the message passing benchmark.  An application 
program performs producer/consumer type of behaviour. It sends and receives 
100 simple messages.  This benchmark tests the operating system, the task 
switcher and represents the fundamental operation in the operating system, the 
interprocess communication. The program is “nos2.txt”. It contains Nos and the 
messaging services: send, receive. There are 200 task switches. 
 
The data collection consists of the profile of running the benchmark programs.  
Two statistics are collected: 
 
1. Frequency of each instruction used 
2. Frequency of each line of program used 
 
The statistic 1 let us know what instruction to improve. The statistic 2 let us know 
where the programs spend its time. 
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Tools 

 
The set of tools that will be used are: 
 
1 The original Nut compiler, the source is “nut.txt”; the N-object code is 

“nut.obj”. 
2 The code generator, the source is “gen.txt”; the N-object is “gen.obj”. 
3 The evaluator of N-object, the Nut virtual machine, nvm.  It is an executable 

code running on a real computer. 
4 The Sx processor, its simulator is used to execute the S-object which is 

considered to be the “grounded” level for measuring the number of cycle 
used to run benchmark programs. 

 

Baseline 

 
We establish the baseline data to be compared with the result of the methods 
suggested in this chapter.  
 
This is the profile of the compiler benchmark.  Let “nuts.obj” be the S-code of 
Nut compiler, “nut.txt”.  We run the following task to collect the statistic.   
 

c:>sx nuts.obj < nut.txt 
 
The base Nut compiler, compiles the original Nut compiler. “sx” will output a 
profile file, “prof.txt” showing the frequency of each instruction used and the 
frequency of each line of program used.  Table 9.1 shows the profile of the 
number of instruction used the functions.  Only the functions that consume more 
than 100 (x1000) instructions are shown. The total number of instruction 
executed in this benchmark is 8585 (x1000). 
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Table 9.1  The number of instruction (x1000) used in functions in the compiler 
benchmark (anything less than 50 is not shown) 
 

!= 738      
and 963 
str= 4414 
getName 416 
install 1456 
   
 7987 

 
 

Observation 

 
In terms of functions that consume most of cycle, the “str=” is the first one, 
followed by “install”, “!=“, “and”, “getName”. They are summed up to 93% of 
total instruction executed.  The “str=”, string comparison function, alone 
consumes 50% of cycle. This function is used almost entirely on the task related 
to the symbol table.  This fact suggests that we should concentrate on supporting 
this function in machine instructions. We should also consider changing the 
access methods of the symbol table. 
 
The next step is to collect the data of the message passing benchmark.  The 
profile of running nos2 is shown in Table 9.2.   
 
They are accounted for 82% of total number of instructions executed.  The total 
number of instruction executed in this benchmark is 43580. 
 
The functions in the table are mostly the functions accessing data structure in the 
form (vec a n), (setv a n), where a is a local variable, n is a constant. 
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Table 9.2  The number of instruction used in functions (anything less than 1000 is 
not shown) in the message passing benchmark. 
 

!=  1993 
or  1295 
ei/di  1194 
getNext  1992  
setNext 2020 
setPrev 2020 
appendDL 3413 
deleteDL 2700 
setValue  3005 
switchp  3804 
findmail 3465 
send  3267 
receive 2772 
produce  1581 
consume  1395 
        
        35916 

  
 

9.2 Macro expansion 
 
To reduce the overhead of a function call, a function can be defined as a “macro”.  
A macro definition is just like a function definition, the difference is that the 
body of a macro definition is substituted into the call.  Hence, the size of a 
program with a macro is larger.  The advantage is that it will be executed faster.  
The syntax of a macro definition is similar to a function definition, only the 
keyword is “defm” instead of “def”.  For example, 
 

(defm print (x) () (sys 1 x)) 
 
Whenever the macro appears in the program, the macro body is substituted. 
 

(def report (a) () 
  ... 
  (print a) 
  ... 



218 

 
will become 
 

(def report (a) () 
  ... 
  (sys 1 a) 
  ... 

 
Macro is suitable for defining the access function such as the following functions 
(from symbol table access functions in “nut.txt”) 
 

(def getName idx () (vec symtab idx)) 
(def getType idx () (vec symtab (+ idx 1))) 
(def setName (idx nm) () (setv symtab idx nm)) 
(def setType (idx ty) () (setv symtab (+ idx 1) ty)) 

 
These functions will be executed much faster because there is no overhead 
associated with “call” and “return” such as create/destroy the stack frame.  Our 
macro definition cannot have local variables because the local variables in the 
body of the macro must be appended to the list of local variables of the caller, 
that is, extending the environment of the caller.  We opt to demonstrate only a 
simple macro substitution without changing the caller environment. 
 
The Nut-language is extended to have macros.  The new keyword “defm” is 
recognised by the extended compiler, “nut4.txt”.  The macro definition will be 
parsed as a normal function definition, only that its type will be “macro” (instead 
of “func”).  The expression that called the macro can be recognised by inspecting 
its type.  For the macro call, the body of macro will be expanded with the proper 
binding of actual parameters to the formal parameters defined in the macro 
definition. 
 
The main function of the macro expansion is the function “subst”. The function 
“subst” takes apart the body of macro definition one by one element, and maps 
that item to the corresponding element in the actual parameter list using 
“mapATOM”. 
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; do macro expansion 
(def domacro (nm e1) (arg body) 
    (do 
    (set arg (de_arg nm)) 
    (set body (pick (getVal arg) 2)) 
    (subst body e1))) 

 
; e1 is the body of macro def, e2 is the actual arg list 
(def subst (e1 e2) (e) 
    (if (= e1 NIL) NIL 
        ; else 
        (do 
        (set e (head e1)) 
        (if (isATOM e) 
            (cons (mapATOM e e2) (subst (tail e1) e2)) 
            ; else 
            (cons (subst e e2) (subst (tail e1) e2)))))) 
 

Where (pick e n) gets the n-th element of the list e. Most of the work is done in 
“mapATOM”, where the term “get.a” or “put.a” in the body of macro definition 
is substituted with the corresponding actual parameters from the argument list. 
The following rules are the rules for substitution: 
 
 

mapATOM a e2 
e3 = (pick e2 n) 
if a = get.n  out e3 
if a = put.n   
  if e3 = get.n out put.n  local 
  if e3 = ld.n  out st.n   global 
if a = ldx.n 
  if e3 = get.n out ldx.n  local 
  if e3 = ld.n  out ldy.n  global 
if a = stx.n 
  if e3 = get.n out stx.n  local 
  if e3 = ld.n  out sty.n  global 
otherwise 
  out a       do not substitute 
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Where a is the atom in the macro body, e2 is the argument list of the caller.  The 
function (pick e n)  select n-th element of e. 
 
The function “mapATOM” and its related functions are shown below. 
 

; return n-th element of e 
(def pick (e n) () 
    (if (= e NIL) NIL 
    (if (< n 1) NIL 
    (if (= n 1) (head e) 
    (pick (tail e) (- n 1)))))) 

 
; return op1/op2 depends on e3 is get/ld 
(def map2 (e3 op1 op2) (e n) 
    (do 
    (set n (de_arg e3)) 
    (if (isOp e3 xGET)(set e (mkATOM op1 n)) 
    (if (isOp e3 xLD)(set e (mkATOM op2 n)) 
    (error “no ld/get in caller macro expansion”))) 
    e)) 

 
; map atom a with n-arg in e2, e2 is the actual arg list 
(def mapATOM (a e2) (e e3 c n) 
    (do 
    (set c (de_op a)) 
    (set n (de_arg a)) 
    (set e3 (pick e2 n))  ; n-arg of caller 
    (if (= c xGET) (set e e3) 
    (if (= c xPUT) (set e (map2 e3 xPUT xST)) 
    (if (= c xLDX) (set e (map2 e3 xLDX xLDY)) 
    (if (= c xSTX) (set e (map2 e3 xSTX xSTY)) 
    (set e a)))))   ; no substitution 
    e)) 

 

Example 

(defm inc2 (a b) () 
    (a = a + b)) 

 
The expression (inc2 x y) will be expanded as follows.  The macro body is: 
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(put.a (add get.a get.b)) 

 
The atoms in the macro body are: 1) put.a 2) add 3) get.a 4) get.b.  Let the 
arguments be two cases: locals, globals, then (inc2 x y) is compiled to: 
 

1. x, y are locals, the call expression is (call.inc2 get.x get.y) 
 

The substitution for each atom is as follows. 
atom put.a  map to get.x, out put.x 
atom add    don’t map,    out add 
atom get.a  map to get.x, out get.x 
atom get.b  map to get.y, out get.y 

 
The output is (put.x (add get.x get.y)) 

 
2. x, y are globals, the call expression is (call.inc2 ld.x ld.y) 

 
The substitution for each atom is as follows. 

atom put.a  map to ld.x, out st.x 
atom add    don’t map,   out add 
atom get.a  map to ld.x, out ld.x 
atom get.b  map to ld.y, out ld.y 

 
The output is (st.x (add ld.x ld.y)) 

 
Similarly for the atom “ldx” and “stx”.  The atom in the actual parameters can 
not be global as it is a call by value.  
 

How to do macro 

The Nut-compiler (“nut.txt”) is modified to expand macro (“nut4.txt”).  The 
compiler itself (the target) has changed almost all the access functions to be the 
macros (“nutm.txt”).  The compiler, nut4.txt, is used to compile the macro-
version of compiler (“nutm.txt”).  Then the macro-version compiler is used to 
compile the original, “nut.txt” for benchmarking.  This is the step of the work. 
 
1 Produce the compiler that can expand macro. 
 

c:>nvm nut.obj < nut4.txt > nut4.obj 
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2 Use this compiler to compile the macro-version of compiler 
 

c:>nvm nut4.obj < nutm.txt > nutm.obj 
 
3  Generate S-code for “nutm.obj”. 
 

c:>nvm gen.obj < nutm.obj > nutms.obj 
 
The final executable code is the compiler with most access functions inlined, 
“nutms.obj”.  We use this compiler to compile the original Nut-compiler to 
collect profiling statistics. 
 
4  Run the compiler benchmark 
 

c:>sx nutms.obj < nut.txt 
 
The second benchmark is similar.  
 
1 First, compile the macro-version of Nos, “nos2m.txt”. 
 

c:>nvm nut4.obj < nos2m.txt > nos2m.obj 
 
2  Produce the executable code. 
 

c:>nvm gen.obj < nos2m.obj > ns2.obj 
 
3  Run Nos (with most access functions inlined) under Noss. 
 

c:>noss ns2.obj 
 
The result from macro expansion (inline) to eliminate calls is shown in Table 9.4.  
In the compiler benchmark, using macro is 30% faster (in terms of cycle), and 
46% faster in the message passing benchmark. 
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Table 9.3  The frequency of each instruction used 
 
  compiler  instr. X1000   message passing instr. 
 base macro prim  codegen extend   base macro prim   codegen    extend 
Add   244  244   244   121   121     107    107    107       9       9 
Sub       4       4       4       4       4         1        1        1       1       1 
Mul       1       1       1       1       1         0        0        0       0       0 
Div       0       0       0       0       0         0        0        0       0       0 
Band     13     13   227   227   227         0        0        0       0       0 
Bor       0       0       2       2       2         0        0    200   200   200 
Bxor       0       0       0       0        0         0        0        0       0       0 
Not       0       0       0       0       0         0        0        0       0       0 
Eq   379  275   256   228   220   1496  1397       1197   798   400 
Ne       0       0   123   120       0         0        0    299       0       0 
Lt   112   111   112   112   112     198    198    198   198   198 
Le       0       0       0       0       0         0        0        0       0       0 
Ge       0       0       0       0       0         0        0        0       0       0 
Gt       1       1       1       1       1         0        0        0       0       0 
Shl       2       2       2       2       2         0        0        0       0       0 
Shr       4       4       4       4       4         0        0        0       0       0 
Mod       0       0       0       0       0         0        0        0       0       0 
Ldx  364   364   364   364   107         1094  1094  1094 1094       0 
Stx       6       6       6       6       1   1727  1727  1727 1727       0 
Ret   629   132   289   289   289   5896  1105  5397 5397 5397 
Array       1       1       1       1       1         3        3        3       3       3 
End       0       0       0       0       0     203    203    203   203   203 
Get 2774 1949 2201 2078   863 12613  6608     11714    11616 8795 
Put   824   824   824   701   137   1694  1694  1694 1596 1596 
Ld   121   121   121   121   121   1812  1713  1812 1812 1812 
St       3       3       3       3       3     414    414    414   414   414 
Jmp   355   355   229   220   115   1098  1098    800   401   401 
Jt   339   339   339   352   231     496    496    496   496   895 
Jf   620   620   281   268   124   1597  1597  1098 1098   301 
Lit 1126 1021   897   742   398   5947  5848  5549 4753 1932 
Call   629   132   289   289   289   5896  1105  5397 5397 5397 
Inc       0       0       0   123       3         0        0        0     98     98 
Dec       0       0       0       0       0         0        0        0       0       0 
Sys     23     23     23     23     23   1288  1288  1288 1288 1288 
Jne       0       0       0       0       7         0        0        0       0   398 
Ldxv       0       0       0       0   230         0        0        0       0 1094 
Stxv       0       0       0       0       5         0            0         0       0 1727 
Seqi       0       0       0       0   120         0        0        0       0       0 

total 8585 6556 6855 6412 3777 43580   27696      40688    38599     32559 
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Table 9.4  The profile of the benchmarks, comparing the baseline and the macro 
expansion. (1) is macro/base  
 

compiler message passing 

 instr. 
x1000 

cycle 
x1000 

instr cycle (system:user) cycle/ 
switch 

      
base 8585 38033 43580 220915 (49274:171641) 246 
macro 6556 26422 27696 120644 (22724:97920) 114 
      
(1)  %  76.4 69.6 63.6 54.6  

 
 
 
Observing the frequency of instruction used in Table 9.3, the “call” (plus “ret”) 
is reduced by 80% in macro version and 30% of “get” is reduced (in getting the 
parameters). Similar reduction is observed in Nos benchmark, 80% reduction in 
“call”, and 48% reduction in “get”. So macro expansion is highly effective. 
 

9.3 Introduce new primitives into the language 
 
Nut is designed to be minimal.  Many basic and frequently used functions are 
written as user-defined functions, such as !=, >=, <=, and, or, not.  As the 
processor Sx already has machine instructions to support these functions, they 
should be considered as built-in operators of the language.  The code generator 
can be modified to convert the call to these functions into generating the 
associated instructions of the Sx processor.  This is not the same as macro 
expansion because the way Sx instruction behave is not exactly the same as the 
same operation written in Nut-language, for example the “and” function, in Nut. 
 

(def and (a b) (if a b 0)) 
 
The meaning of this “and” is “if a is true then the result depends on b, else the 
result is false”.  Its semantic is the “short-cut and” where the argument is 
evaluated enough to know the result (not always evaluate all arguments as in 
eager evaluation semantic).  However, the machine instruction “Band” will 
evaluate all arguments.  So there is a difference.  The macro expansion will 
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preserve the semantic of the function.  The machine primitive will be faster but 
not always.  In some case where evaluating arguments is costly, “short cut” 
semantic may be faster because it may evaluate less number of arguments. 
 
Here is how the code generator is modified.  The functions !=, >=, <=, and, or, 
not are still written as user-defined functions in the source program, their use will 
be compiled into function calls.  The code generation for “call” checks the index 
to these functions and generates Sx machine instructions instead of a normal call. 
 

; e is arglist 
(def gencall (arg e) (idx a) 
    (do 
    (set idx (searchRef arg)) 
    ... 
    (if (= idx yNe) (genop icNe 0 e) 
    (if (= idx yLe) (genop icLe 0 e) 
    (if (= idx yGe) (genop icGe 0 e) 
    (if (= idx yAnd) (genop icBand 0 e) 
    (if (= idx yOr) (genop icBor 0 e) 
    (if (= idx yNot) (genop icNot 0 e) 
    ; else 
    (genop icCall idx e)))))))))) ; normal call 

 
; eval arg-list (e), out code op.arg 
(def genop (op arg e) () 
    (do 
    (while e 
        (do 
        (eval (head e)) 
        (set e (tail e)))) 
    (outa op arg))) 

 
Where yNe, yLe, yGe, yAnd, yOr, yNot are the indexes to the user-defined 
functions !=, <=, >=, and, or, not.  These indexes are found in the symbol table 
which is read by the code generator. The instructions icNe, icLe, icGe, icBand, 
icBor, icNot are the native Sx instructions for not-equal, less-than-or-equal, 
greater-than-or-equal, bitwise-and, bitwise-or, logical-not operations. 
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For example the following code fragment from “nut.txt” (the last line of function 
“str=”) 
 

  ... 
  (and (= c1 0) (= c2 0)))) 

 
is normally compiled to call to the defined function “and”. 
 

   133 Get 1 
   134 Lit 0 
   135 Eq 
   136 Call and 

 
With this code generator it is compiled into: 
 

   133 Get 1 
   134 Lit 0 
   135 Eq 
   136 Band 

 
Let this code generator be “gen5.txt”.  The following steps produce the profile 
statistic. 
 
1  Compile the code generator. 
 

c:>nvm nut.obj < gen5.txt > gen5.obj 
 
2  Generate the compiler. 
 

c:>nvm gen5.obj < nut.obj > nutp.obj 
 
3  Run “nutp.obj” to compile “nut.txt”. 
 

c:>sx nutp.obj < nut.txt  
 
Similarly for the operating system, the step of work is as follows. 
 
1  Generate the operating system using the modified code generator, “gen5.obj”. 
 

c:>nvm gen5.obj < nos2.obj > nos2p.obj 
 



227 

 
Table 9.5 The profile of the benchmarks, comparing the baseline and the 
primitive. (1) is primitive/base 
 

compiler message passing 

 instr. 
x1000 

cycle 
x1000 

instr cycle (system:user) cycle/ 
switch 

      
base 8585 38033 43580 220915 (49274:171641) 246 
primitive 6855 28987 40688 206450 (44468:161982) 222 
      
(1)  %  79.8 76.2 93.3 93.4  

  
 
2  Run “nos2p.obj” to collect statistics. 
 

c:>noss nos2p.obj 
 
The result of running benchmarks using the code generator “gen5.txt” is shown 
in Table 9.5. 
 
In terms of speedup (cycle), using only primitives is not as effective as macro 
expansion as it is only 24% faster (macro is 30%) but they are comparable.  
However, in the message passing benchmark, the primitives are not used much, 
the speedup is only 7% and 8% in task switching (for macro, 46% and 50%). So 
using primitives is not effective in the operating system as much as using macro 
expansion.   
 
Inspecting the compiler task profile revealed that the reduction in the number of 
“call” is 56%, and “get” is 21%, not as much as in macro expansion (89% and 
48% consecutively).  In the message passing benchmark, the native instructions 
“Bor” and “Ne” generated by the modified code generator, are executed only 499 
times, merely 1.2% of the total number of instruction executed. 
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9.4 Improving the quality of code from the code 
generator 

 
The next step, the quality of code from the code generator can be improved.  This 
method can be applied without changing the instruction set or the language.  
Some sequence of operations can be replaced by a shorter sequence of operations 
without affecting the result, hence making them faster.   
 
We elected to do the following code optimisation, which are not difficult to 
implement. 
 
1 Introduce inc/dec local variables as there are native instructions supported in 

Sx processor (as done in the exercise 6.4 of Chapter 6).  
2 Improve jmp to jmp, jmp to ret, to “short cut” them. 
3 Change (!= p 0) to p. 
4 Change the conditional (= a 0) in “if” expression, there are two possibilities. 

4.1 (if (= a 0) x y) is replaced by (if a y x) 
4.2 (if (= a 0) x) is replaced by (if a skip x) 

 
The expression with inc/dec can be detected from the N-code. 
 

(set a (+ a 1)) 
 
It is normally compiled into, 
 

get.a lit.1 add put.a 
 
It can be replaced by generating the native code “Inc.a”, “Dec.a”. 
 
The last two rules come from the observation that in the “if” expression, the 
conditional becomes: 
 

get.a lit.0 eq jf 
 
The sequence “lit.0 eq if” can be replaced by “jt”.  So the conditional becomes, 
 

get.a jt  
 
The rule 4.1 and 4.2 used this fact.     
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The code generator fragment for doing “inc/dec” is as follows.  “genput” is the 
main function.  It is called when the operator “put.a” is encountered at the 
beginning of the expression (in N-code)  (put.a (add get.a lit.1)).  “isIncDec” 
checks whether the expression is in the increment/decrement expression.  If it is 
then generate the native instruction, otherwise generate the normal unary-op code 
(in “genuop”). 
 
 

(def genuop (op arg e) () 
    (do 
    (eval e) 
    (outa op arg))) 
 
(def isIncDec (op arg e) () 
    (do 
    (if (isATOM e) 0 
    (if (!= (head e) (mkATOM op 0)) 0 
    (if (!= (arg2 e) (mkATOM xGET arg)) 0 
    (if (!= (arg3 e) (mkATOM xLIT 1)) 0 
    1)))))) 
 
(def genput (op arg e) () 
    (if (isIncDec xADD arg e) 
        (outa icInc arg) 
    (if (isIncDec xSUB arg e) 
        (outa icDec arg) 
    ; else 
    (genuop op arg e))))  

 
 
The code fragment for transforming (!= p 0) to p is as follows (at the function 
“gencall”), similar to the generating the primitives.  Where yNe is the index to 
the user-defined function (def != ...).  If the call is “!=” and the second argument 
is “lit.0” then generate the native code, otherwise generate the normal code (as 
function call). 
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  (if (= idx yNe) 
      (if (isOpArg (arg2 e) xLIT 0)  ; (!= p 0) -> p 
          (eval (head e)) 
          ; else 
          (genop icNe 0 e)) 

 
The code fragment for “short-cut” jump is straight forward and we will not 
elaborate any further.  The code fragment for performing reduction in “if” 
expression is as follows.  Where “genif2” is the normal “if” generation, “iseq0” 
checks the expression of the form (= a 0). 
 

(def genif e (e1 e2 e3 ads) 
    (if (iseq0 (head e))   ; (= a 0) 
        (do 
        (set e1 (arg2 (head e)))  ; e1 is a 
        (set e2 (arg2 e)) 
        (set e3 (arg3 e)) 
        (if e3    ; (if (= a 0) x y) -> (if a y x) 
            (genif2 (cons e1 (cons e3 (cons e2 NIL)))) 
            ; else 
            (do    ; (if (= a 0) x) -> if a skip x 
            (eval e1)   ; a 
            (outa icJt 0) 
            (set ads (- XP 1)) 
            (eval e2)   ; x 
            (patch ads (- XP ads))))) 
    ; else 
    (genif2 e)))   ; normal if 

 
The code generator, “gen5.txt” is modified with these rules.  The result is the 
code generator which generates primitives: !=, <=, >=, and, or, not and with the 
above improvement, inc, dec, short-cut jump, reduce != and improve conditional 
(if (= a 0)..). Let this code generator be “gen6.txt”. 
 
The step to run benchmarks of this new code generator is: 
 
1  Compile the code generator. 
 

c:>nvm nut.obj < gen6.txt > gen6.obj 
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Table 9.6 The profile of the benchmarks.  Comparing the primitive and the 
codegen. (1) is codegen/primitive 
                             

Compiler Message passing 

 instr. 
x1000 

cycle 
x1000 

instr cycle (system:user) cycle/ 
switch 

      
primitive 6855 28987 40688 206450 (44468:161982) 222 
codegen 6412 27483 38599 199088 (44036:155052) 220 
      
(1) %  93.5 94.8 94.8 96.4  

 
 
2 Use the new code generator to generate the executable object of the compiler. 
 

c:>nvm gen6.obj < nut.obj > nutg.obj 
 
3  Use the new compiler to compile the benchmark. 
 

c:>sx nutg.obj < nut.txt 
 
Similarly for the operating system benchmark, do the following steps. 
 
1  Generate the executable Nos. 
 

c:>nvm gen6.obj < nos2.obj > nos2g.obj 
 
2  Run the new Nos2. 
 

c:>noss nos2g.obj 
 
The result is shown in Table 9.6. 
 
The “gen6.txt” code generation is built on top of the “gen5.txt” (primitive) code 
generation so the performance improvement is considered relative to “gen5.txt” 
(a kind of further improvement of “gen5.txt”).  The improvement in code 
generation further reduces the cycle by 5% in compiler benchmark and 4% in 
message passing benchmark.  It reduces the task switching cycle by only 1%.  
Inspecting the profile of the compiler benchmark revealed that the “inc” is used 
123 times, the instructions in the sequence that it replaced, consists of “get.a lit.1 
add put.a” are reduced by the same amount. The profile of message passing 
benchmark is similar, but the “short-cut jump” which is not much in effect in the 
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compiler benchmark, is quite effective here, the number of “jmp” is reduced by 
50% (from 800 to 401). 
 

9.5 Instruction set level 
 
The next level is the level of the instruction set.  Although the instruction set is 
considered as “given” in any real computer system, to understand why an 
instruction set is designed that way, one should try to experiment with the effect 
of instruction set design [CHO03].  Observing the profile of the baseline 
benchmarks, two facts emerge.   
 
1 The compiler benchmark is dominated by the execution of the function 

“str=”. 
2 Both benchmarks, the instructions to access data structure, mostly “ldx” and 

“stx” are used often, 370/8585 = 4.3% in compiler benchmark, 2821/43580 = 
6.5% in message passing benchmark. 

 
By introducing new instructions, these functions can be much faster.  
Implementing new instructions in the processor can be accomplished by writing 
new microprograms for those instructions in the Sx processor.  Tools are 
available to create and execute new instructions in the Sx processor.   
 
Let us start with the fact 1, the string comparison function.  Here is the “str=” 
function from the Nut-compiler, “nut.txt”. 
 

; test string equal 
(def str= (s1 s2) (flag i c1 c2)  [lib 28] 
    (do 
    (set flag 1) 
    (set i 0) 
    (while flag 
        (do 
        (set c1 (vec s1 i)) 
        (set c2 (vec s2 i)) 
        (if (!= c1 c2) (set flag 0) 
        (if (= c1 0)   (set flag 0) 
        (if (= c2 0)   (set flag 0)))) 
        (set i (+ i 1)))) 
    (and (= c1 0) (= c2 0)))) 
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We should design the new instruction for the inner loop of this function.  The 
inner loop does fetching two characters and compares them, at the same time it 
must checks the termination of strings.  We do not try to do iteration within an 
instruction because it causes a long multiple cycles which is not desirable, 
especially at the microarchitecture level.  It can cause unpredictable delay.  But 
we try to do as much as possible in an instruction, so we will include the 
increment of index (set i (+ i 1)) in the instruction.  Let the new instruction for 
string comparison be “string equal and increment” (seqi).  Here is its pseudo 
code. Let p1 and p2 be two pointers to strings, s1 and s2 consecutively. 
 

seqi p1 p2 
  c1 = *p1            fetch a character 
  if c1 == 0 ret 0    s1 terminate 
  c2 = *p2            fetch a character 
  if c2 == 0 ret 0    s2 terminate 
  if c1 != c2 ret 0   if not equal ret false 
  p1++                increment both pointers 
  p2++ 
  ret 1               ret true   

 
“seqi” fetches and compares two characters from two pointers to strings.  It 
returns true if they are equal, otherwise it returns false, including when either 
pointers pointed to a terminal character. If it returns true, it also increment both 
pointers.  This is very nice abstraction of the inner loop of the “str=” function.  It 
does not do iteration and it does almost everything else (as much as possible).  
With the primitive “seqi” as a built-in operator, the “str=” function can be 
written as follows. 
 

(def str= (s1 s2) () 
    (do 
    (while (seqi s1 s2) (nop))   ; loop until false 
    (and (= (vec s1 0) 0) (= (vec s2 0) 0)))) 
 

The instruction “seqi” has two arguments.  This will introduce a new instruction 
format to the S-code instruction set. The two-address format is as follows. 
 

16 8 8 

a2 a1 op 
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Therefore some new signals in the data path must be added to decode this 
instruction format.  Let they be y.a1 and y.a2 to feed the argument a1 and a2 
to the y-mux in the data path. 
 
The next step, we must write the microprogram for the “seqi” instruction.  Here 
is its microprogram. 
 

<seqi>          ; seqi.a1.a2 
  sp+1, pc+1 
  ts->mW(sp)                     ; push ts 
  alu(fp-a1)->tbus, mR(tbus)->nx ; read p1 
  mR(nx)->ts->ff                 ; read *p1,save 
  alu(ts=0) ifT fetch            ; ret 0 
  alu(fp-a2)->tbus, mR(tbus)->nx ; read p2 
  mR(nx)->ts                     ; read *p2 
  alu(ts=0) ifT fetch            ; ret 0 
  alu(ts=ff)->ts ifF fetch       ; ret 0 
  alu(nx+1)->ts                  ; p2++ 
  alu(fp-a2)->tbus, ts->mW(tbus) ; update p2 
  alu(fp-a1)->tbus, mR(tbus)->nx ; read p1 
  alu(nx+1)->ts->ff              ; p1++ 
  alu(fp-a1)->tbus, ts->mW(tbus) ; update p1 
  alu(nx!=ff)->ts fetch          ; 1->ts 

 
The last line of microprogram is a good trick.  To create a “true” value, we use 
the fact that “nx” is not equal to “ff” (we do not have any “true” value as a 
constant in the data path).  This fact follows from the assignment in the line 
“alu(nx+1)->ts->ff”, therefore the “nx” and “ff” will be definitely not 
the same. To do the function “not-equal” in the arithmetic logic unit, a signal 
“alu.ne” is added to the signal list in the microprogram specification, 
“mspec.txt”. The timing of the “seqi” instruction is as follows. If it returns false, 
it takes one of the following cycle 6 or 9 or 10 cycles; if it returns true, it takes 16 
cycles. 
 
Now, let us turn our attention to the fact 2, accessing data structure.  By 
inspecting the listing of the code (S-code), the data structure access is mostly in 
this form: (vec a index), (setv a index value), where a is the base address, 
index is mostly a constant.  This observation suggests immediately the following 
instructions (also in two-argument format): 
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ldxv.a.x        TS = M[ M[fp-a] + x] 
stxv.a.x        M[ M[fp-a] + x ] = TS  

 
This is a kind of index addressing mode where the index is a constant.  They are 
useful to access a structured data type such as a record.  This kind of data is used 
very often in the benchmark programs. 
 
Here are their microprograms. 
 

<ldxv>  [micro 329] 
  sp+1 
  ts->mW(sp)           ; push ts 
  alu(fp-a1)->tbus, mR(tbus)->ts 
  alu(ts+a2)->tbus, mR(tbus)->ts fetch 
 
<stxv>  [micro 335] 
  alu(fp-a1)->tbus, mR(tbus)->nx 
  alu(nx+a2)->tbus, ts->mW(tbus) 
  mR(sp)->ts  ; pop ts 
  sp-1, pc+1, fetch 

 
Now the sequence of instruction for (vec a 0) and (setv a 3 44) which are 
normally compiled into: 
 

get.a lit.0 ldx 
 
and 
 

get.a lit.3 lit.4 stx 
 
will become a shorter sequence. 
 

ldx.a.0   
 
and 
 

lit.44 stxv.a.3 
 
“ldxv” takes slightly more cycle than “ldx” (“ldxv” 5, “ldx” 4 cycles).  
Surprisingly “stxv” takes less cycle than “stx” (“stxv” 5, “stx” 7 cycles).  This is 
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because the “stxv” has its two arguments ready in the instruction; it does not 
have to pop the evaluation stack as much as “stx”. 
 
Finally, the sequence “eq, jf” is founded often; it will be replaced by a new 
instruction “jne”.  In fact, many of this “eq, jf” have already been optimised 
away when transforming (if (= a 0) x y) to eliminate the (= a 0) but the 
remaining is still significant. 
 

<jne>  [micro 339] 
  mR(sp)->ff  
  sp-1 
  alu(ts=ff), ifT j3  
<jump>                  ; jump 
  pc+arg, mR(sp)->ts    ; pop ts 
  sp-1, fetch 
<j3>                    ; don't jump 
  pc+1, mR(sp)->ts      ; pop ts 
  sp-1, fetch 

 

How to generate microprogram 

 
Now we have four new instructions: seqi, ldxv, stxv, jne (the inc, dec 
instructions have already been implemented in the previous chapter).  These four 
instructions must be installed into the processor simulator. Assume all the 
additional signal definition and the appropriated microprogram are added into the 
input file, the microprogram specification, “mspect.txt”. 
 
It is two steps to generate a microprogram.  First, generate a microprogram bit-
image.  A microprogram bit-image is the raw data to be loaded into the 
microprogram control ROM.  Second, to efficiently run the processor simulator, 
this bit-image is converted to an event list.  It is 10 times faster when performing 
simulation using an event list.   
 
1  Generate the bit-image file, mpgm.txt 
 

c:>mgen > mpgm.txt     
 
mgen implicitly takes the input file “mspec.txt”. mgen outputs another file 
“mspec.h” as a header file of the signal definition. 
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2  Then generate the header file to be include in compiling the processor 
generator. 
 

c:>sxgen 
 
The sxgen reads input from two files “mpgm.txt” and “mspec.h” then it outputs 
one file “sxbit.h” which includes all signal definitions and the event list data 
structure to be used by the processor simulator. 
 
The processor simulator, sx, has a small modification to include the new events 
and the order of execution of the events; two new functions to decode the IR 
fields (see the Sx processor simulator listing in the appendix G). 
 
3  Recompile the Sx processor simulator. 
 

c:>make sx 
 
Similarly for the Noss simulator, include this “sxbit.h” and recompile. 
 

c:>make noss 
 

Code generation for new instructions 

A new code generator is written on top of the previous code generator, 
“gen6.txt”.  It becomes “gen7.txt”.  This code generator accepts the primitive 
“seqi” and also generates code using “ldxv”, “stxv” and “jne” as applicable. Let 
the new “str=” be included into a modified Nut-compiler (we do not touch 
anything else in “nut.txt”), named “nut5.txt”.  The steps of work to perform 
statistic collection for this final benchmark are. 
 
1  Compile this new code generator, “gen7.txt”. 
 

c:>nvm nut.obj < gen7.txt > gen7.obj 
 
2  Compile “nut5.txt” to N-object. 
 

c:>nvm nut.obj < nut5.txt > nut5.obj 
 
3  Use “gen7.obj” code generator to generate code from this modified compiler. 
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c:>nvm gen7.obj < nut5.obj > nut5x.obj 

 
4  Run this new compiler (that includes the extended instructions) with the 
updated simulator to compile the compiler benchmark.  The “x” suffix in the 
final object code signified the extended instruction. 
 

c:>sx nut5x.obj < nut.txt 
 
The message passing benchmark is similar. 
 
1  Use “gen7.obj” to generate code. 
 

c:>nvm gen7.obj < nos2.obj > nos2x.obj 
 
2  Run it under the updated noss. 
 

c:>noss nos2x.obj 
 
The result is shown in Table 9.7. 
 
Table 9.7  The profile of the benchmarks.  Comparing the baseline, the codegen, 
and the extend. (1) is extend/codegen  (2) is extend/base 
                             

Compiler Message passing 

 instr. 
x1000 

cycle 
x1000 

instr cycle (system:user) cycle/ 
switch 

      
base 8585 38033 43580 220915 (49274:171641) 246 
codegen 6412 27483 38599 199088 (44036:155052) 220 
extend 3777 17922 32559 171637 (37791:133486) 189 
      
(1) % 58.9 65.2 84.4 86.2  
(2) %  44.0 47.1 74.7 77.7  

 
 
In terms of cycle, the new instruction set (labeled “extend” in the table) further 
reduce (relative to codegen) for the compiler benchmark, 35%, for the message 
passing benchmark, 14%.  This shows that the “seqi” is very effective as it is 
designed to speedup the “str=” in the compiler.  As a whole, comparing the 
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number of cycle from this new “extend” optimisation with the baseline, the result 
shows that for the compiler benchmark, the speedup is more than twice the 
baseline, 53%, for the message passing, the speedup is 23%.  It is worth noticing 
that for the message passing benchmark, the macro expansion is more effective, 
the speedup is 46%.  The fastest task switching takes only 114 cycles. 
 
The table below shows the summary of the speedup figure of each optimisation 
method. The chart from this table is shown in Fig. 9.1. 
 
 
Table 9.8.  The summary of speedup of each optimisation method in terms of 
cycle 

 

 compiler message passing 

base 0.0 0.0 
macro 30.5 45.4 
primitive 23.8 6.5 
codegen 27.7 (5.2) 9.0 (3.6) 
extend 52.9 (34.8) 22.3 (13.8) 
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Figure 9.1 Chart of speedup (%) of each optimisation method in terms of cycle 
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The speedup is calculated from (1-(A/B)) x 100, where A is a method, B is the 
baseline.  Speedup means how much faster the system A compared to the system 
B.  If A is 20% faster than B, A completes the task in 20% less cycle than B.  The 
figure in parentheses show the incremental speedup, for example, in the compiler 
benchmark, the method “codegen” is 5.2% relatively faster than the method 
“primitive”, although it is 27.7% faster than the baseline.  This shows the 
speedup factor from the incremental change of the method (the “codegen” 
method implemented many techniques in addition to the method “primitive”). 
 

9.6 Microarchitecture level 
 
The chapter 7 has developed a processor that retains the same instruction set, S-
code, but has 30% faster data path.  The improvement at this level comes from 
the architectural design and the advancement in fabrication technology.  These 
two factors are interrelated.  The Sx2 processor is faster due to the stack frame 
caching, the use of fast registers to provide access to local variables instead of 
accessing them from the memory. The parallelism or the concurrent use of units 
in data path also provides performance enhancement.  The use of separate unit for 
updating the stack pointer in Sx2 is an example of this case.  Many other standard 
methods such as pipelining, using multiple functional units, instruction level 
parallelism are extensively discussed in many computer architecture textbooks 
[HEN03] [PAT98] [STO93]. 
 

9.7 Summary 
 
In this chapter we have shown a wide range of performance improvement 
methods.  The techniques are applicable at every level, from the top level (at the 
application software), down to the hardware level (at the level of data path and 
microprogram).  At the highest abstraction level, it is a well-known fact that, the 
change at an algorithmic level will have the greatest impact on performance. We 
observe data that support this hypothesis.  In the compiler benchmark profile, it is 
clear that the access to symbol table is the performance bottleneck.  The symbol 
table requires a lot of string comparison.  If however, the data structure is 
changed to a hash table, then the number of string comparison will be reduced 
dramatically.  Our symbol table executes most accessed functions in O(n) where 
n is the number of the entry because it used sequential search.  This will change 
to a constant access time, O(1), with a hash table (see Exercise 9.1). 
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The macro expansion is studied and implemented. It has a high impact on 
performance without having to change the underlying programs much (such as 
the code generation and the instruction set).  Another change at the language 
level is to introduce more operators.  Our experiment shows that this is also 
effective although not as much as macro expansion.  However it is not effective 
in the message passing benchmark because these new operators are not used very 
often.  This shows that it is not easy to gain performance in general by this 
method.  It is sensitive to the type of applications.  
 
The next level is the code generation level.  The quality of code can be improved.  
Most methods at this level are classified as code optimisation in the literature of 
compiler.  We choose to perform a number of significant code improvements.  
The result shows that the performance gain is not large but it is very logical 
method.  The rule for replacing some sequence with a shorter sequence to 
improve performance is numerous (in fact, it is combinatorial even!). One can 
almost invent a new rule by inspection the output code.  However, how often that 
sequence will be used is not always easy to predict.  
 
The instruction set level is interesting.  Inventing new instructions is not practical 
in a real computer system where hardware is given. However, our study shows 
that a huge performance gain is possible.  The “string equal and increment” 
instruction is an extreme example.  It is more than twice as fast as the code 
without this instruction in the compiler benchmark.  However, it has a limit 
application to string comparison. This is why the multimedia extension of an 
instruction set is so important for modern processors. 
 

9.8 Further reading 
 
In general, a programming language should not be designed with paramount of 
efficiency in mind.  The high level language should reflect the efficiency of 
human programmers, at the cognitive level.  It should reduce the burden of 
human programmers.  During early development of computer systems many 
components were being developed: the hardware, the compiler, the operating 
system, the user interface etc. The designers and the developers faced the 
difficulty of not having the machine fast enough to run the intended applications.  
This must be the nature of computer technology that human can imagine new 
kind of application beyond what a computer system can support at the time.  So, 
in all history of development of computer systems, efficiency is always a 
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paramount factor.  The C language [KER78] reflects this fact.  Pascal [WIR71] 
also reflects this concern. Computer language design is still an open, endless 
quest for a tool of thought to invent the next generation machines.  The history of 
computer development can be read in IEEE Annals of the history of computing. 
 
For code optimisation, many compiler related textbooks are excellent source of 
information [AHO86] [FRA95] [LOU97].  Although it seems that code 
optimisation is used for code generation, it application can be wider range.  For 
example, it is also applicable at the meta level programming, to build a virtual 
machine (or environment) [CHO98], to prototype a new computer system. 
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Exercises 
 
9.1 Do some simple optimization. At the level of algorithm, change the 

symbol table access to use hash table. Run the compiler benchmark with 
this new compiler.  Collect the profile and discuss the result. 

 
9.2 Do some language extension. In the Nut-compiler and the code 

generator, there are frequent uses of multiway branch. To do multiway 
branch, nested-if is used.  This is very flexible but it is inefficient to do 
sequential testing on the conditions.  Also, the syntax for deep nested-if 
is quite cumbersome, especially the closing parenthesis.  The number of 
right parenthesis is equal to the depth of nested-if.   

 
(if (= op xADD) (doadd) 
(if (= op xSUB) (dosub) 
... 
; else 
(error "unknown op") ...)) 

  
To help improving the syntax in general case, a new control-flow 
operator is needed. The expression (cond....) in LISP is a good example.  
In Nut, we want to do: 

 
(switch 
  (cond1) (action1) 
  (cond2) (action2) ... 
  true (default action)) 
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This syntax will reduce the number of the closing right parenthesis to one. 
 
To improve the efficiency, if the condition is testing the equality of a 
variable with many constants, then we can do similar to “switch, case” in 
C or Pascal.  The implementation can use a jump-table indexed by the 
value of that variable. 
 

(case op 
  (label xADD (doadd)) 
  (label xSUB (dosub)) 
  ... 
  (else (default action))) 

 
The N-code for “case” will contain a jump-table of the association list of 
(label jump-to) which is implemented as an array of cells. To conform to 
the existing N-code only the head can be an atom, therefore the head is a 
label instruction (a new instruction), the tail is a pointer to the action 
body. 
 
In N-code, assume op is local, len is length of the jump-table, and the last 
entry is an instruction to terminate the table. The “case” construct is 
compiled to: 

 
(case.op 
  ; jump table   
  (label.xADD L1) 
  (label.xSUB L2) 
  ... 
  (else.0 Ln)) 
  ; actions 
  <L1> (action 1) 
  <L2> (action 2) 
  ... 
  <Ln> (default action) 

 
If the label is sorted according to the key (constants) then the jump table 
can be a binary search table. The length of jump-table must be known. 
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(case2.op lit.len 
  ; jump table, label is sorted by its arg 
  [xADD L1 
   xSUB L2 
  ... 
   NIL Ln]) 
  ; actions 
  <L1> (action 1) 
  <L2> (action 2) 
  ... 
  <Ln> (default action) 

 
Another way which is faster is to use label to index into the jump table 
directly.  The size of jump table is equal to the range of index.  The label 
instruction is not necessary.  The range of index must be known.   
 

(case3.op lit.lo lit.hi 
  ; jump table, label is sorted by its arg 
  [L1 L2 ... Ln]) 
  ; actions 
  <L1> (action 1) 
  <L2> (action 2) 
  ... 
  <Ln> (default action) 

 
For the second kind and third kind of “case”, the jump-table itself does 
not conform the format of N-code.  To implement it, it is not really a list; 
it is an array (which is a data).  To have an array in the code segment, an 
additional representation must be designed. 
 
Implement a multiway branch.  Run the benchmark and measure its 
effectiveness. 

 
9.3 Write a code generator for S2, the register-based processor.  Compile all 

the benchmarks to target this instruction set.  Run and collect the 
performance statistic.  Compare it with Sx processor. Discuss the result. 

 
9.4 One can always argue that some inefficiency comes from the quality of a 

compiler.  To prove or disprove this belief, we can write a segment of 
program in machine language then compare the execution time with the 
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one produced by a compiler.  Write the string comparison function in S-
code by hand.  Try to optimise it by speed.  Compare the running time 
with the one produced by Nut-compiler. 

 
9.5 Invent new instructions by combining two instructions into a new one.  

Produce a log file of the frequency of pair of instructions and select five 
most frequently used pairs.  Write their microprogram.  Integrate these 
new instructions into the Sx processor simulator.  Modify the code 
generator to output these new instructions.  Run the benchmarks and 
discuss the result.  How much do you expect the improvement will be? 

 
9.6 Performance measurement is sensitive to benchmark programs.  Write a 

new set of benchmark programs, for example, image processing.  
Measure the performance of our system on this new benchmark.  What is 
the difference and why? 

 
 
 
 


