
213

Chapter 9

Optimisation

In this chapter, we will study many methods to improve the performance of the
system that we have built in the previous chapters. The system consists of some
simple applications running on a concurrent operating system written in a high
level language. The platform (the hardware system, a virtual one) is a stack-
based processor. It is microprogrammable, so its instruction set can be extended.
The high level language itself can also be changed. We have written the
compiler for the language and the code generator to generate code for the target
machine. These programs can be modified.

Studying a computer system as a whole can reveal the relationship between
components. Their interactions can be complex and interesting. The optimisation
aims to improve mainly the performance, to complete a task with fewer numbers
of cycles. As we built all components by ourselves, we can change the system at
every level. We can experiment with any component and observe the change.
We can instrument our system to collect statistics easily.

There is no separate lab session in this chapter as the work is spread out in all
sections. Each optimisation method will be tried and data collected. The
analysis follows each experiment.

9.1 Framework

There are many levels in which to aim an optimisation for. The highest level is
an algorithmic level. We will not explore this topic; instead we refer to many
excellent textbooks in the field [COR01] [PRA01] [KLI05]. What we will
explore is at a more concrete level: the language level, the code generation level
and the microprogramming level.

214

At the language level, the macro expansion will be studied. The extension of the
language itself to include new operators will be tried. At the code generation
level, many techniques will be investigated: supporting new instructions such as
increment, decrement (which are implemented in the previous chapter),
improving some simple sequence of code, and eliminating some code. At the
instruction level, a few new instructions will be designed and implemented. The
microarchitecture level has been demonstrated in the chapter 7, showing an
improving data path of the Sx processor.

What are we going to measure and how?

To observe any improvement we need to set up a controlled environment.
Several methods will be applied to improve a system that performs the same task.
The effects of these different methods can then be observed and compared. The
benchmark programs are a set of programs (or tasks) representing the kind of
workload that we expect in our work. We elected two programs as our workload
representatives: the Nut compiler and the Nut operating system.

The first benchmark is the compiler benchmark. The original Nut compiler,
“nut.txt”, is used to compile itself. This represents a substantial work that is
moderately complex and contains many well-known problems in computer
science. Nut compiler is also a non-trivial program that will exercise a large
repertoire of instructions.

The second benchmark is the message passing benchmark. An application
program performs producer/consumer type of behaviour. It sends and receives
100 simple messages. This benchmark tests the operating system, the task
switcher and represents the fundamental operation in the operating system, the
interprocess communication. The program is “nos2.txt”. It contains Nos and the
messaging services: send, receive. There are 200 task switches.

The data collection consists of the profile of running the benchmark programs.
Two statistics are collected:

1. Frequency of each instruction used
2. Frequency of each line of program used

The statistic 1 let us know what instruction to improve. The statistic 2 let us know
where the programs spend its time.

215

Tools

The set of tools that will be used are:

1 The original Nut compiler, the source is “nut.txt”; the N-object code is

“nut.obj”.
2 The code generator, the source is “gen.txt”; the N-object is “gen.obj”.
3 The evaluator of N-object, the Nut virtual machine, nvm. It is an executable

code running on a real computer.
4 The Sx processor, its simulator is used to execute the S-object which is

considered to be the “grounded” level for measuring the number of cycle
used to run benchmark programs.

Baseline

We establish the baseline data to be compared with the result of the methods
suggested in this chapter.

This is the profile of the compiler benchmark. Let “nuts.obj” be the S-code of
Nut compiler, “nut.txt”. We run the following task to collect the statistic.

c:>sx nuts.obj < nut.txt

The base Nut compiler, compiles the original Nut compiler. “sx” will output a
profile file, “prof.txt” showing the frequency of each instruction used and the
frequency of each line of program used. Table 9.1 shows the profile of the
number of instruction used the functions. Only the functions that consume more
than 100 (x1000) instructions are shown. The total number of instruction
executed in this benchmark is 8585 (x1000).

216

Table 9.1 The number of instruction (x1000) used in functions in the compiler
benchmark (anything less than 50 is not shown)

!= 738
and 963
str= 4414
getName 416
install 1456

 7987

Observation

In terms of functions that consume most of cycle, the “str=” is the first one,
followed by “install”, “!=“, “and”, “getName”. They are summed up to 93% of
total instruction executed. The “str=”, string comparison function, alone
consumes 50% of cycle. This function is used almost entirely on the task related
to the symbol table. This fact suggests that we should concentrate on supporting
this function in machine instructions. We should also consider changing the
access methods of the symbol table.

The next step is to collect the data of the message passing benchmark. The
profile of running nos2 is shown in Table 9.2.

They are accounted for 82% of total number of instructions executed. The total
number of instruction executed in this benchmark is 43580.

The functions in the table are mostly the functions accessing data structure in the
form (vec a n), (setv a n), where a is a local variable, n is a constant.

217

Table 9.2 The number of instruction used in functions (anything less than 1000 is
not shown) in the message passing benchmark.

!= 1993
or 1295
ei/di 1194
getNext 1992
setNext 2020
setPrev 2020
appendDL 3413
deleteDL 2700
setValue 3005
switchp 3804
findmail 3465
send 3267
receive 2772
produce 1581
consume 1395

 35916

9.2 Macro expansion

To reduce the overhead of a function call, a function can be defined as a “macro”.
A macro definition is just like a function definition, the difference is that the
body of a macro definition is substituted into the call. Hence, the size of a
program with a macro is larger. The advantage is that it will be executed faster.
The syntax of a macro definition is similar to a function definition, only the
keyword is “defm” instead of “def”. For example,

(defm print (x) () (sys 1 x))

Whenever the macro appears in the program, the macro body is substituted.

(def report (a) ()
 ...
 (print a)
 ...

218

will become

(def report (a) ()
 ...
 (sys 1 a)
 ...

Macro is suitable for defining the access function such as the following functions
(from symbol table access functions in “nut.txt”)

(def getName idx () (vec symtab idx))
(def getType idx () (vec symtab (+ idx 1)))
(def setName (idx nm) () (setv symtab idx nm))
(def setType (idx ty) () (setv symtab (+ idx 1) ty))

These functions will be executed much faster because there is no overhead
associated with “call” and “return” such as create/destroy the stack frame. Our
macro definition cannot have local variables because the local variables in the
body of the macro must be appended to the list of local variables of the caller,
that is, extending the environment of the caller. We opt to demonstrate only a
simple macro substitution without changing the caller environment.

The Nut-language is extended to have macros. The new keyword “defm” is
recognised by the extended compiler, “nut4.txt”. The macro definition will be
parsed as a normal function definition, only that its type will be “macro” (instead
of “func”). The expression that called the macro can be recognised by inspecting
its type. For the macro call, the body of macro will be expanded with the proper
binding of actual parameters to the formal parameters defined in the macro
definition.

The main function of the macro expansion is the function “subst”. The function
“subst” takes apart the body of macro definition one by one element, and maps
that item to the corresponding element in the actual parameter list using
“mapATOM”.

219

; do macro expansion
(def domacro (nm e1) (arg body)
 (do
 (set arg (de_arg nm))
 (set body (pick (getVal arg) 2))
 (subst body e1)))

; e1 is the body of macro def, e2 is the actual arg list
(def subst (e1 e2) (e)
 (if (= e1 NIL) NIL
 ; else
 (do
 (set e (head e1))
 (if (isATOM e)
 (cons (mapATOM e e2) (subst (tail e1) e2))
 ; else
 (cons (subst e e2) (subst (tail e1) e2))))))

Where (pick e n) gets the n-th element of the list e. Most of the work is done in
“mapATOM”, where the term “get.a” or “put.a” in the body of macro definition
is substituted with the corresponding actual parameters from the argument list.
The following rules are the rules for substitution:

mapATOM a e2
e3 = (pick e2 n)
if a = get.n out e3
if a = put.n
 if e3 = get.n out put.n local
 if e3 = ld.n out st.n global
if a = ldx.n
 if e3 = get.n out ldx.n local
 if e3 = ld.n out ldy.n global
if a = stx.n
 if e3 = get.n out stx.n local
 if e3 = ld.n out sty.n global
otherwise
 out a do not substitute

220

Where a is the atom in the macro body, e2 is the argument list of the caller. The
function (pick e n) select n-th element of e.

The function “mapATOM” and its related functions are shown below.

; return n-th element of e
(def pick (e n) ()
 (if (= e NIL) NIL
 (if (< n 1) NIL
 (if (= n 1) (head e)
 (pick (tail e) (- n 1))))))

; return op1/op2 depends on e3 is get/ld
(def map2 (e3 op1 op2) (e n)
 (do
 (set n (de_arg e3))
 (if (isOp e3 xGET)(set e (mkATOM op1 n))
 (if (isOp e3 xLD)(set e (mkATOM op2 n))
 (error “no ld/get in caller macro expansion”)))
 e))

; map atom a with n-arg in e2, e2 is the actual arg list
(def mapATOM (a e2) (e e3 c n)
 (do
 (set c (de_op a))
 (set n (de_arg a))
 (set e3 (pick e2 n)) ; n-arg of caller
 (if (= c xGET) (set e e3)
 (if (= c xPUT) (set e (map2 e3 xPUT xST))
 (if (= c xLDX) (set e (map2 e3 xLDX xLDY))
 (if (= c xSTX) (set e (map2 e3 xSTX xSTY))
 (set e a))))) ; no substitution
 e))

Example

(defm inc2 (a b) ()
 (a = a + b))

The expression (inc2 x y) will be expanded as follows. The macro body is:

221

(put.a (add get.a get.b))

The atoms in the macro body are: 1) put.a 2) add 3) get.a 4) get.b. Let the
arguments be two cases: locals, globals, then (inc2 x y) is compiled to:

1. x, y are locals, the call expression is (call.inc2 get.x get.y)

The substitution for each atom is as follows.
atom put.a map to get.x, out put.x
atom add don’t map, out add
atom get.a map to get.x, out get.x
atom get.b map to get.y, out get.y

The output is (put.x (add get.x get.y))

2. x, y are globals, the call expression is (call.inc2 ld.x ld.y)

The substitution for each atom is as follows.

atom put.a map to ld.x, out st.x
atom add don’t map, out add
atom get.a map to ld.x, out ld.x
atom get.b map to ld.y, out ld.y

The output is (st.x (add ld.x ld.y))

Similarly for the atom “ldx” and “stx”. The atom in the actual parameters can
not be global as it is a call by value.

How to do macro

The Nut-compiler (“nut.txt”) is modified to expand macro (“nut4.txt”). The
compiler itself (the target) has changed almost all the access functions to be the
macros (“nutm.txt”). The compiler, nut4.txt, is used to compile the macro-
version of compiler (“nutm.txt”). Then the macro-version compiler is used to
compile the original, “nut.txt” for benchmarking. This is the step of the work.

1 Produce the compiler that can expand macro.

c:>nvm nut.obj < nut4.txt > nut4.obj

222

2 Use this compiler to compile the macro-version of compiler

c:>nvm nut4.obj < nutm.txt > nutm.obj

3 Generate S-code for “nutm.obj”.

c:>nvm gen.obj < nutm.obj > nutms.obj

The final executable code is the compiler with most access functions inlined,
“nutms.obj”. We use this compiler to compile the original Nut-compiler to
collect profiling statistics.

4 Run the compiler benchmark

c:>sx nutms.obj < nut.txt

The second benchmark is similar.

1 First, compile the macro-version of Nos, “nos2m.txt”.

c:>nvm nut4.obj < nos2m.txt > nos2m.obj

2 Produce the executable code.

c:>nvm gen.obj < nos2m.obj > ns2.obj

3 Run Nos (with most access functions inlined) under Noss.

c:>noss ns2.obj

The result from macro expansion (inline) to eliminate calls is shown in Table 9.4.
In the compiler benchmark, using macro is 30% faster (in terms of cycle), and
46% faster in the message passing benchmark.

223

Table 9.3 The frequency of each instruction used

 compiler instr. X1000 message passing instr.
 base macro prim codegen extend base macro prim codegen extend
Add 244 244 244 121 121 107 107 107 9 9
Sub 4 4 4 4 4 1 1 1 1 1
Mul 1 1 1 1 1 0 0 0 0 0
Div 0 0 0 0 0 0 0 0 0 0
Band 13 13 227 227 227 0 0 0 0 0
Bor 0 0 2 2 2 0 0 200 200 200
Bxor 0 0 0 0 0 0 0 0 0 0
Not 0 0 0 0 0 0 0 0 0 0
Eq 379 275 256 228 220 1496 1397 1197 798 400
Ne 0 0 123 120 0 0 0 299 0 0
Lt 112 111 112 112 112 198 198 198 198 198
Le 0 0 0 0 0 0 0 0 0 0
Ge 0 0 0 0 0 0 0 0 0 0
Gt 1 1 1 1 1 0 0 0 0 0
Shl 2 2 2 2 2 0 0 0 0 0
Shr 4 4 4 4 4 0 0 0 0 0
Mod 0 0 0 0 0 0 0 0 0 0
Ldx 364 364 364 364 107 1094 1094 1094 1094 0
Stx 6 6 6 6 1 1727 1727 1727 1727 0
Ret 629 132 289 289 289 5896 1105 5397 5397 5397
Array 1 1 1 1 1 3 3 3 3 3
End 0 0 0 0 0 203 203 203 203 203
Get 2774 1949 2201 2078 863 12613 6608 11714 11616 8795
Put 824 824 824 701 137 1694 1694 1694 1596 1596
Ld 121 121 121 121 121 1812 1713 1812 1812 1812
St 3 3 3 3 3 414 414 414 414 414
Jmp 355 355 229 220 115 1098 1098 800 401 401
Jt 339 339 339 352 231 496 496 496 496 895
Jf 620 620 281 268 124 1597 1597 1098 1098 301
Lit 1126 1021 897 742 398 5947 5848 5549 4753 1932
Call 629 132 289 289 289 5896 1105 5397 5397 5397
Inc 0 0 0 123 3 0 0 0 98 98
Dec 0 0 0 0 0 0 0 0 0 0
Sys 23 23 23 23 23 1288 1288 1288 1288 1288
Jne 0 0 0 0 7 0 0 0 0 398
Ldxv 0 0 0 0 230 0 0 0 0 1094
Stxv 0 0 0 0 5 0 0 0 0 1727
Seqi 0 0 0 0 120 0 0 0 0 0

total 8585 6556 6855 6412 3777 43580 27696 40688 38599 32559

224

Table 9.4 The profile of the benchmarks, comparing the baseline and the macro
expansion. (1) is macro/base

compiler message passing

 instr.
x1000

cycle
x1000

instr cycle (system:user) cycle/
switch

base 8585 38033 43580 220915 (49274:171641) 246
macro 6556 26422 27696 120644 (22724:97920) 114

(1) % 76.4 69.6 63.6 54.6

Observing the frequency of instruction used in Table 9.3, the “call” (plus “ret”)
is reduced by 80% in macro version and 30% of “get” is reduced (in getting the
parameters). Similar reduction is observed in Nos benchmark, 80% reduction in
“call”, and 48% reduction in “get”. So macro expansion is highly effective.

9.3 Introduce new primitives into the language

Nut is designed to be minimal. Many basic and frequently used functions are
written as user-defined functions, such as !=, >=, <=, and, or, not. As the
processor Sx already has machine instructions to support these functions, they
should be considered as built-in operators of the language. The code generator
can be modified to convert the call to these functions into generating the
associated instructions of the Sx processor. This is not the same as macro
expansion because the way Sx instruction behave is not exactly the same as the
same operation written in Nut-language, for example the “and” function, in Nut.

(def and (a b) (if a b 0))

The meaning of this “and” is “if a is true then the result depends on b, else the
result is false”. Its semantic is the “short-cut and” where the argument is
evaluated enough to know the result (not always evaluate all arguments as in
eager evaluation semantic). However, the machine instruction “Band” will
evaluate all arguments. So there is a difference. The macro expansion will

225

preserve the semantic of the function. The machine primitive will be faster but
not always. In some case where evaluating arguments is costly, “short cut”
semantic may be faster because it may evaluate less number of arguments.

Here is how the code generator is modified. The functions !=, >=, <=, and, or,
not are still written as user-defined functions in the source program, their use will
be compiled into function calls. The code generation for “call” checks the index
to these functions and generates Sx machine instructions instead of a normal call.

; e is arglist
(def gencall (arg e) (idx a)
 (do
 (set idx (searchRef arg))
 ...
 (if (= idx yNe) (genop icNe 0 e)
 (if (= idx yLe) (genop icLe 0 e)
 (if (= idx yGe) (genop icGe 0 e)
 (if (= idx yAnd) (genop icBand 0 e)
 (if (= idx yOr) (genop icBor 0 e)
 (if (= idx yNot) (genop icNot 0 e)
 ; else
 (genop icCall idx e)))))))))) ; normal call

; eval arg-list (e), out code op.arg
(def genop (op arg e) ()
 (do
 (while e
 (do
 (eval (head e))
 (set e (tail e))))
 (outa op arg)))

Where yNe, yLe, yGe, yAnd, yOr, yNot are the indexes to the user-defined
functions !=, <=, >=, and, or, not. These indexes are found in the symbol table
which is read by the code generator. The instructions icNe, icLe, icGe, icBand,
icBor, icNot are the native Sx instructions for not-equal, less-than-or-equal,
greater-than-or-equal, bitwise-and, bitwise-or, logical-not operations.

226

For example the following code fragment from “nut.txt” (the last line of function
“str=”)

 ...
 (and (= c1 0) (= c2 0))))

is normally compiled to call to the defined function “and”.

 133 Get 1
 134 Lit 0
 135 Eq
 136 Call and

With this code generator it is compiled into:

 133 Get 1
 134 Lit 0
 135 Eq
 136 Band

Let this code generator be “gen5.txt”. The following steps produce the profile
statistic.

1 Compile the code generator.

c:>nvm nut.obj < gen5.txt > gen5.obj

2 Generate the compiler.

c:>nvm gen5.obj < nut.obj > nutp.obj

3 Run “nutp.obj” to compile “nut.txt”.

c:>sx nutp.obj < nut.txt

Similarly for the operating system, the step of work is as follows.

1 Generate the operating system using the modified code generator, “gen5.obj”.

c:>nvm gen5.obj < nos2.obj > nos2p.obj

227

Table 9.5 The profile of the benchmarks, comparing the baseline and the
primitive. (1) is primitive/base

compiler message passing

 instr.
x1000

cycle
x1000

instr cycle (system:user) cycle/
switch

base 8585 38033 43580 220915 (49274:171641) 246
primitive 6855 28987 40688 206450 (44468:161982) 222

(1) % 79.8 76.2 93.3 93.4

2 Run “nos2p.obj” to collect statistics.

c:>noss nos2p.obj

The result of running benchmarks using the code generator “gen5.txt” is shown
in Table 9.5.

In terms of speedup (cycle), using only primitives is not as effective as macro
expansion as it is only 24% faster (macro is 30%) but they are comparable.
However, in the message passing benchmark, the primitives are not used much,
the speedup is only 7% and 8% in task switching (for macro, 46% and 50%). So
using primitives is not effective in the operating system as much as using macro
expansion.

Inspecting the compiler task profile revealed that the reduction in the number of
“call” is 56%, and “get” is 21%, not as much as in macro expansion (89% and
48% consecutively). In the message passing benchmark, the native instructions
“Bor” and “Ne” generated by the modified code generator, are executed only 499
times, merely 1.2% of the total number of instruction executed.

228

9.4 Improving the quality of code from the code
generator

The next step, the quality of code from the code generator can be improved. This
method can be applied without changing the instruction set or the language.
Some sequence of operations can be replaced by a shorter sequence of operations
without affecting the result, hence making them faster.

We elected to do the following code optimisation, which are not difficult to
implement.

1 Introduce inc/dec local variables as there are native instructions supported in

Sx processor (as done in the exercise 6.4 of Chapter 6).
2 Improve jmp to jmp, jmp to ret, to “short cut” them.
3 Change (!= p 0) to p.
4 Change the conditional (= a 0) in “if” expression, there are two possibilities.

4.1 (if (= a 0) x y) is replaced by (if a y x)
4.2 (if (= a 0) x) is replaced by (if a skip x)

The expression with inc/dec can be detected from the N-code.

(set a (+ a 1))

It is normally compiled into,

get.a lit.1 add put.a

It can be replaced by generating the native code “Inc.a”, “Dec.a”.

The last two rules come from the observation that in the “if” expression, the
conditional becomes:

get.a lit.0 eq jf

The sequence “lit.0 eq if” can be replaced by “jt”. So the conditional becomes,

get.a jt

The rule 4.1 and 4.2 used this fact.

229

The code generator fragment for doing “inc/dec” is as follows. “genput” is the
main function. It is called when the operator “put.a” is encountered at the
beginning of the expression (in N-code) (put.a (add get.a lit.1)). “isIncDec”
checks whether the expression is in the increment/decrement expression. If it is
then generate the native instruction, otherwise generate the normal unary-op code
(in “genuop”).

(def genuop (op arg e) ()
 (do
 (eval e)
 (outa op arg)))

(def isIncDec (op arg e) ()
 (do
 (if (isATOM e) 0
 (if (!= (head e) (mkATOM op 0)) 0
 (if (!= (arg2 e) (mkATOM xGET arg)) 0
 (if (!= (arg3 e) (mkATOM xLIT 1)) 0
 1))))))

(def genput (op arg e) ()
 (if (isIncDec xADD arg e)
 (outa icInc arg)
 (if (isIncDec xSUB arg e)
 (outa icDec arg)
 ; else
 (genuop op arg e))))

The code fragment for transforming (!= p 0) to p is as follows (at the function
“gencall”), similar to the generating the primitives. Where yNe is the index to
the user-defined function (def != ...). If the call is “!=” and the second argument
is “lit.0” then generate the native code, otherwise generate the normal code (as
function call).

230

 (if (= idx yNe)
 (if (isOpArg (arg2 e) xLIT 0) ; (!= p 0) -> p
 (eval (head e))
 ; else
 (genop icNe 0 e))

The code fragment for “short-cut” jump is straight forward and we will not
elaborate any further. The code fragment for performing reduction in “if”
expression is as follows. Where “genif2” is the normal “if” generation, “iseq0”
checks the expression of the form (= a 0).

(def genif e (e1 e2 e3 ads)
 (if (iseq0 (head e)) ; (= a 0)
 (do
 (set e1 (arg2 (head e))) ; e1 is a
 (set e2 (arg2 e))
 (set e3 (arg3 e))
 (if e3 ; (if (= a 0) x y) -> (if a y x)
 (genif2 (cons e1 (cons e3 (cons e2 NIL))))
 ; else
 (do ; (if (= a 0) x) -> if a skip x
 (eval e1) ; a
 (outa icJt 0)
 (set ads (- XP 1))
 (eval e2) ; x
 (patch ads (- XP ads)))))
 ; else
 (genif2 e))) ; normal if

The code generator, “gen5.txt” is modified with these rules. The result is the
code generator which generates primitives: !=, <=, >=, and, or, not and with the
above improvement, inc, dec, short-cut jump, reduce != and improve conditional
(if (= a 0)..). Let this code generator be “gen6.txt”.

The step to run benchmarks of this new code generator is:

1 Compile the code generator.

c:>nvm nut.obj < gen6.txt > gen6.obj

231

Table 9.6 The profile of the benchmarks. Comparing the primitive and the
codegen. (1) is codegen/primitive

Compiler Message passing

 instr.
x1000

cycle
x1000

instr cycle (system:user) cycle/
switch

primitive 6855 28987 40688 206450 (44468:161982) 222
codegen 6412 27483 38599 199088 (44036:155052) 220

(1) % 93.5 94.8 94.8 96.4

2 Use the new code generator to generate the executable object of the compiler.

c:>nvm gen6.obj < nut.obj > nutg.obj

3 Use the new compiler to compile the benchmark.

c:>sx nutg.obj < nut.txt

Similarly for the operating system benchmark, do the following steps.

1 Generate the executable Nos.

c:>nvm gen6.obj < nos2.obj > nos2g.obj

2 Run the new Nos2.

c:>noss nos2g.obj

The result is shown in Table 9.6.

The “gen6.txt” code generation is built on top of the “gen5.txt” (primitive) code
generation so the performance improvement is considered relative to “gen5.txt”
(a kind of further improvement of “gen5.txt”). The improvement in code
generation further reduces the cycle by 5% in compiler benchmark and 4% in
message passing benchmark. It reduces the task switching cycle by only 1%.
Inspecting the profile of the compiler benchmark revealed that the “inc” is used
123 times, the instructions in the sequence that it replaced, consists of “get.a lit.1
add put.a” are reduced by the same amount. The profile of message passing
benchmark is similar, but the “short-cut jump” which is not much in effect in the

232

compiler benchmark, is quite effective here, the number of “jmp” is reduced by
50% (from 800 to 401).

9.5 Instruction set level

The next level is the level of the instruction set. Although the instruction set is
considered as “given” in any real computer system, to understand why an
instruction set is designed that way, one should try to experiment with the effect
of instruction set design [CHO03]. Observing the profile of the baseline
benchmarks, two facts emerge.

1 The compiler benchmark is dominated by the execution of the function

“str=”.
2 Both benchmarks, the instructions to access data structure, mostly “ldx” and

“stx” are used often, 370/8585 = 4.3% in compiler benchmark, 2821/43580 =
6.5% in message passing benchmark.

By introducing new instructions, these functions can be much faster.
Implementing new instructions in the processor can be accomplished by writing
new microprograms for those instructions in the Sx processor. Tools are
available to create and execute new instructions in the Sx processor.

Let us start with the fact 1, the string comparison function. Here is the “str=”
function from the Nut-compiler, “nut.txt”.

; test string equal
(def str= (s1 s2) (flag i c1 c2) [lib 28]
 (do
 (set flag 1)
 (set i 0)
 (while flag
 (do
 (set c1 (vec s1 i))
 (set c2 (vec s2 i))
 (if (!= c1 c2) (set flag 0)
 (if (= c1 0) (set flag 0)
 (if (= c2 0) (set flag 0))))
 (set i (+ i 1))))
 (and (= c1 0) (= c2 0))))

233

We should design the new instruction for the inner loop of this function. The
inner loop does fetching two characters and compares them, at the same time it
must checks the termination of strings. We do not try to do iteration within an
instruction because it causes a long multiple cycles which is not desirable,
especially at the microarchitecture level. It can cause unpredictable delay. But
we try to do as much as possible in an instruction, so we will include the
increment of index (set i (+ i 1)) in the instruction. Let the new instruction for
string comparison be “string equal and increment” (seqi). Here is its pseudo
code. Let p1 and p2 be two pointers to strings, s1 and s2 consecutively.

seqi p1 p2
 c1 = *p1 fetch a character
 if c1 == 0 ret 0 s1 terminate
 c2 = *p2 fetch a character
 if c2 == 0 ret 0 s2 terminate
 if c1 != c2 ret 0 if not equal ret false
 p1++ increment both pointers
 p2++
 ret 1 ret true

“seqi” fetches and compares two characters from two pointers to strings. It
returns true if they are equal, otherwise it returns false, including when either
pointers pointed to a terminal character. If it returns true, it also increment both
pointers. This is very nice abstraction of the inner loop of the “str=” function. It
does not do iteration and it does almost everything else (as much as possible).
With the primitive “seqi” as a built-in operator, the “str=” function can be
written as follows.

(def str= (s1 s2) ()
 (do
 (while (seqi s1 s2) (nop)) ; loop until false
 (and (= (vec s1 0) 0) (= (vec s2 0) 0))))

The instruction “seqi” has two arguments. This will introduce a new instruction
format to the S-code instruction set. The two-address format is as follows.

16 8 8

a2 a1 op

234

Therefore some new signals in the data path must be added to decode this
instruction format. Let they be y.a1 and y.a2 to feed the argument a1 and a2
to the y-mux in the data path.

The next step, we must write the microprogram for the “seqi” instruction. Here
is its microprogram.

<seqi> ; seqi.a1.a2
 sp+1, pc+1
 ts->mW(sp) ; push ts
 alu(fp-a1)->tbus, mR(tbus)->nx ; read p1
 mR(nx)->ts->ff ; read *p1,save
 alu(ts=0) ifT fetch ; ret 0
 alu(fp-a2)->tbus, mR(tbus)->nx ; read p2
 mR(nx)->ts ; read *p2
 alu(ts=0) ifT fetch ; ret 0
 alu(ts=ff)->ts ifF fetch ; ret 0
 alu(nx+1)->ts ; p2++
 alu(fp-a2)->tbus, ts->mW(tbus) ; update p2
 alu(fp-a1)->tbus, mR(tbus)->nx ; read p1
 alu(nx+1)->ts->ff ; p1++
 alu(fp-a1)->tbus, ts->mW(tbus) ; update p1
 alu(nx!=ff)->ts fetch ; 1->ts

The last line of microprogram is a good trick. To create a “true” value, we use
the fact that “nx” is not equal to “ff” (we do not have any “true” value as a
constant in the data path). This fact follows from the assignment in the line
“alu(nx+1)->ts->ff”, therefore the “nx” and “ff” will be definitely not
the same. To do the function “not-equal” in the arithmetic logic unit, a signal
“alu.ne” is added to the signal list in the microprogram specification,
“mspec.txt”. The timing of the “seqi” instruction is as follows. If it returns false,
it takes one of the following cycle 6 or 9 or 10 cycles; if it returns true, it takes 16
cycles.

Now, let us turn our attention to the fact 2, accessing data structure. By
inspecting the listing of the code (S-code), the data structure access is mostly in
this form: (vec a index), (setv a index value), where a is the base address,
index is mostly a constant. This observation suggests immediately the following
instructions (also in two-argument format):

235

ldxv.a.x TS = M[M[fp-a] + x]
stxv.a.x M[M[fp-a] + x] = TS

This is a kind of index addressing mode where the index is a constant. They are
useful to access a structured data type such as a record. This kind of data is used
very often in the benchmark programs.

Here are their microprograms.

<ldxv> [micro 329]
 sp+1
 ts->mW(sp) ; push ts
 alu(fp-a1)->tbus, mR(tbus)->ts
 alu(ts+a2)->tbus, mR(tbus)->ts fetch

<stxv> [micro 335]
 alu(fp-a1)->tbus, mR(tbus)->nx
 alu(nx+a2)->tbus, ts->mW(tbus)
 mR(sp)->ts ; pop ts
 sp-1, pc+1, fetch

Now the sequence of instruction for (vec a 0) and (setv a 3 44) which are
normally compiled into:

get.a lit.0 ldx

and

get.a lit.3 lit.4 stx

will become a shorter sequence.

ldx.a.0

and

lit.44 stxv.a.3

“ldxv” takes slightly more cycle than “ldx” (“ldxv” 5, “ldx” 4 cycles).
Surprisingly “stxv” takes less cycle than “stx” (“stxv” 5, “stx” 7 cycles). This is

236

because the “stxv” has its two arguments ready in the instruction; it does not
have to pop the evaluation stack as much as “stx”.

Finally, the sequence “eq, jf” is founded often; it will be replaced by a new
instruction “jne”. In fact, many of this “eq, jf” have already been optimised
away when transforming (if (= a 0) x y) to eliminate the (= a 0) but the
remaining is still significant.

<jne> [micro 339]
 mR(sp)->ff
 sp-1
 alu(ts=ff), ifT j3
<jump> ; jump
 pc+arg, mR(sp)->ts ; pop ts
 sp-1, fetch
<j3> ; don't jump
 pc+1, mR(sp)->ts ; pop ts
 sp-1, fetch

How to generate microprogram

Now we have four new instructions: seqi, ldxv, stxv, jne (the inc, dec
instructions have already been implemented in the previous chapter). These four
instructions must be installed into the processor simulator. Assume all the
additional signal definition and the appropriated microprogram are added into the
input file, the microprogram specification, “mspect.txt”.

It is two steps to generate a microprogram. First, generate a microprogram bit-
image. A microprogram bit-image is the raw data to be loaded into the
microprogram control ROM. Second, to efficiently run the processor simulator,
this bit-image is converted to an event list. It is 10 times faster when performing
simulation using an event list.

1 Generate the bit-image file, mpgm.txt

c:>mgen > mpgm.txt

mgen implicitly takes the input file “mspec.txt”. mgen outputs another file
“mspec.h” as a header file of the signal definition.

237

2 Then generate the header file to be include in compiling the processor
generator.

c:>sxgen

The sxgen reads input from two files “mpgm.txt” and “mspec.h” then it outputs
one file “sxbit.h” which includes all signal definitions and the event list data
structure to be used by the processor simulator.

The processor simulator, sx, has a small modification to include the new events
and the order of execution of the events; two new functions to decode the IR
fields (see the Sx processor simulator listing in the appendix G).

3 Recompile the Sx processor simulator.

c:>make sx

Similarly for the Noss simulator, include this “sxbit.h” and recompile.

c:>make noss

Code generation for new instructions

A new code generator is written on top of the previous code generator,
“gen6.txt”. It becomes “gen7.txt”. This code generator accepts the primitive
“seqi” and also generates code using “ldxv”, “stxv” and “jne” as applicable. Let
the new “str=” be included into a modified Nut-compiler (we do not touch
anything else in “nut.txt”), named “nut5.txt”. The steps of work to perform
statistic collection for this final benchmark are.

1 Compile this new code generator, “gen7.txt”.

c:>nvm nut.obj < gen7.txt > gen7.obj

2 Compile “nut5.txt” to N-object.

c:>nvm nut.obj < nut5.txt > nut5.obj

3 Use “gen7.obj” code generator to generate code from this modified compiler.

238

c:>nvm gen7.obj < nut5.obj > nut5x.obj

4 Run this new compiler (that includes the extended instructions) with the
updated simulator to compile the compiler benchmark. The “x” suffix in the
final object code signified the extended instruction.

c:>sx nut5x.obj < nut.txt

The message passing benchmark is similar.

1 Use “gen7.obj” to generate code.

c:>nvm gen7.obj < nos2.obj > nos2x.obj

2 Run it under the updated noss.

c:>noss nos2x.obj

The result is shown in Table 9.7.

Table 9.7 The profile of the benchmarks. Comparing the baseline, the codegen,
and the extend. (1) is extend/codegen (2) is extend/base

Compiler Message passing

 instr.
x1000

cycle
x1000

instr cycle (system:user) cycle/
switch

base 8585 38033 43580 220915 (49274:171641) 246
codegen 6412 27483 38599 199088 (44036:155052) 220
extend 3777 17922 32559 171637 (37791:133486) 189

(1) % 58.9 65.2 84.4 86.2
(2) % 44.0 47.1 74.7 77.7

In terms of cycle, the new instruction set (labeled “extend” in the table) further
reduce (relative to codegen) for the compiler benchmark, 35%, for the message
passing benchmark, 14%. This shows that the “seqi” is very effective as it is
designed to speedup the “str=” in the compiler. As a whole, comparing the

239

number of cycle from this new “extend” optimisation with the baseline, the result
shows that for the compiler benchmark, the speedup is more than twice the
baseline, 53%, for the message passing, the speedup is 23%. It is worth noticing
that for the message passing benchmark, the macro expansion is more effective,
the speedup is 46%. The fastest task switching takes only 114 cycles.

The table below shows the summary of the speedup figure of each optimisation
method. The chart from this table is shown in Fig. 9.1.

Table 9.8. The summary of speedup of each optimisation method in terms of
cycle

 compiler message passing

base 0.0 0.0
macro 30.5 45.4
primitive 23.8 6.5
codegen 27.7 (5.2) 9.0 (3.6)
extend 52.9 (34.8) 22.3 (13.8)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

macro primitive codegen extend

Figure 9.1 Chart of speedup (%) of each optimisation method in terms of cycle

240

The speedup is calculated from (1-(A/B)) x 100, where A is a method, B is the
baseline. Speedup means how much faster the system A compared to the system
B. If A is 20% faster than B, A completes the task in 20% less cycle than B. The
figure in parentheses show the incremental speedup, for example, in the compiler
benchmark, the method “codegen” is 5.2% relatively faster than the method
“primitive”, although it is 27.7% faster than the baseline. This shows the
speedup factor from the incremental change of the method (the “codegen”
method implemented many techniques in addition to the method “primitive”).

9.6 Microarchitecture level

The chapter 7 has developed a processor that retains the same instruction set, S-
code, but has 30% faster data path. The improvement at this level comes from
the architectural design and the advancement in fabrication technology. These
two factors are interrelated. The Sx2 processor is faster due to the stack frame
caching, the use of fast registers to provide access to local variables instead of
accessing them from the memory. The parallelism or the concurrent use of units
in data path also provides performance enhancement. The use of separate unit for
updating the stack pointer in Sx2 is an example of this case. Many other standard
methods such as pipelining, using multiple functional units, instruction level
parallelism are extensively discussed in many computer architecture textbooks
[HEN03] [PAT98] [STO93].

9.7 Summary

In this chapter we have shown a wide range of performance improvement
methods. The techniques are applicable at every level, from the top level (at the
application software), down to the hardware level (at the level of data path and
microprogram). At the highest abstraction level, it is a well-known fact that, the
change at an algorithmic level will have the greatest impact on performance. We
observe data that support this hypothesis. In the compiler benchmark profile, it is
clear that the access to symbol table is the performance bottleneck. The symbol
table requires a lot of string comparison. If however, the data structure is
changed to a hash table, then the number of string comparison will be reduced
dramatically. Our symbol table executes most accessed functions in O(n) where
n is the number of the entry because it used sequential search. This will change
to a constant access time, O(1), with a hash table (see Exercise 9.1).

241

The macro expansion is studied and implemented. It has a high impact on
performance without having to change the underlying programs much (such as
the code generation and the instruction set). Another change at the language
level is to introduce more operators. Our experiment shows that this is also
effective although not as much as macro expansion. However it is not effective
in the message passing benchmark because these new operators are not used very
often. This shows that it is not easy to gain performance in general by this
method. It is sensitive to the type of applications.

The next level is the code generation level. The quality of code can be improved.
Most methods at this level are classified as code optimisation in the literature of
compiler. We choose to perform a number of significant code improvements.
The result shows that the performance gain is not large but it is very logical
method. The rule for replacing some sequence with a shorter sequence to
improve performance is numerous (in fact, it is combinatorial even!). One can
almost invent a new rule by inspection the output code. However, how often that
sequence will be used is not always easy to predict.

The instruction set level is interesting. Inventing new instructions is not practical
in a real computer system where hardware is given. However, our study shows
that a huge performance gain is possible. The “string equal and increment”
instruction is an extreme example. It is more than twice as fast as the code
without this instruction in the compiler benchmark. However, it has a limit
application to string comparison. This is why the multimedia extension of an
instruction set is so important for modern processors.

9.8 Further reading

In general, a programming language should not be designed with paramount of
efficiency in mind. The high level language should reflect the efficiency of
human programmers, at the cognitive level. It should reduce the burden of
human programmers. During early development of computer systems many
components were being developed: the hardware, the compiler, the operating
system, the user interface etc. The designers and the developers faced the
difficulty of not having the machine fast enough to run the intended applications.
This must be the nature of computer technology that human can imagine new
kind of application beyond what a computer system can support at the time. So,
in all history of development of computer systems, efficiency is always a

242

paramount factor. The C language [KER78] reflects this fact. Pascal [WIR71]
also reflects this concern. Computer language design is still an open, endless
quest for a tool of thought to invent the next generation machines. The history of
computer development can be read in IEEE Annals of the history of computing.

For code optimisation, many compiler related textbooks are excellent source of
information [AHO86] [FRA95] [LOU97]. Although it seems that code
optimisation is used for code generation, it application can be wider range. For
example, it is also applicable at the meta level programming, to build a virtual
machine (or environment) [CHO98], to prototype a new computer system.

References

[AHO86] Aho, A., Sethi, R. and Ullman, J. Compilers: Principles, techniques,

and tools, Addison-Wesley, 1986.

[CHO98] Chongstitvatana, P. A multi-tasking environment for real-time control.
Final report, Faculty of Engineering, Chulalongkorn university, research
project number 132-MRD-2537, 1998. Also available on-line at http:
//www.cp.eng.chula.ac.th/faculty/pjw/r1/

[CHO03] Chongstitvatana, P., “The Art of Instruction Set Design”, Electrical
Engineering Conference, Thailand, 2003.

[COR01] Cormen, T., Leiserson, C., Rivest, R., and Stein, C., Introduction to
algorithms, 2nd ed., MIT Press, 2001.

[FRA95] Fraser, C. and Hanson, D. A retargetable C compiler: design and
implementation, Benjamin/Cummings Pub., 1995.

[HEN03] Hennessy, J., and Patterson, D., Computer Architecture: a quantitative
approach, 3rd ed. Morgan Kaufmann, 2003.

[KER78] Kernighan, B., and Ritchie, D., The C programming language, Prentice-
Hall, 1978.

[KLI05] Klienberg, J., and Tardos, E., Algorithm Design, Addison Wesley, 2005.

[LOU97] Louden, K. Compiler construction: Principles and practice, Inter.
Thompson Pub., 1997.

[PAT98] Patterson, D., and Hennessy, J., Computer Organization and Design:
the hardware/software interface, 2nd ed. Morgan Kaufmann, 1998.

243

[PRA01] Prasitjutrakul, S., Analysis and design of algorithms, NECTEC, 2001.
(in Thai).

[SEB04] Sebesta, R. Concepts of programming languages, 6th ed.
Pearson/Addison-Wesley, 2004.

[STO93] Stone, H., High performance Computer architecture, McGraw-Hill,
1993.

[WIR71] Wirth, N., “The programming language Pascal”, Acta Informatica,
1(1):35-63, 1971.

Exercises

9.1 Do some simple optimization. At the level of algorithm, change the

symbol table access to use hash table. Run the compiler benchmark with
this new compiler. Collect the profile and discuss the result.

9.2 Do some language extension. In the Nut-compiler and the code

generator, there are frequent uses of multiway branch. To do multiway
branch, nested-if is used. This is very flexible but it is inefficient to do
sequential testing on the conditions. Also, the syntax for deep nested-if
is quite cumbersome, especially the closing parenthesis. The number of
right parenthesis is equal to the depth of nested-if.

(if (= op xADD) (doadd)
(if (= op xSUB) (dosub)
...
; else
(error "unknown op") ...))

To help improving the syntax in general case, a new control-flow
operator is needed. The expression (cond....) in LISP is a good example.
In Nut, we want to do:

(switch
 (cond1) (action1)
 (cond2) (action2) ...
 true (default action))

244

This syntax will reduce the number of the closing right parenthesis to one.

To improve the efficiency, if the condition is testing the equality of a
variable with many constants, then we can do similar to “switch, case” in
C or Pascal. The implementation can use a jump-table indexed by the
value of that variable.

(case op
 (label xADD (doadd))
 (label xSUB (dosub))
 ...
 (else (default action)))

The N-code for “case” will contain a jump-table of the association list of
(label jump-to) which is implemented as an array of cells. To conform to
the existing N-code only the head can be an atom, therefore the head is a
label instruction (a new instruction), the tail is a pointer to the action
body.

In N-code, assume op is local, len is length of the jump-table, and the last
entry is an instruction to terminate the table. The “case” construct is
compiled to:

(case.op
 ; jump table
 (label.xADD L1)
 (label.xSUB L2)
 ...
 (else.0 Ln))
 ; actions
 <L1> (action 1)
 <L2> (action 2)
 ...
 <Ln> (default action)

If the label is sorted according to the key (constants) then the jump table
can be a binary search table. The length of jump-table must be known.

245

(case2.op lit.len
 ; jump table, label is sorted by its arg
 [xADD L1
 xSUB L2
 ...
 NIL Ln])
 ; actions
 <L1> (action 1)
 <L2> (action 2)
 ...
 <Ln> (default action)

Another way which is faster is to use label to index into the jump table
directly. The size of jump table is equal to the range of index. The label
instruction is not necessary. The range of index must be known.

(case3.op lit.lo lit.hi
 ; jump table, label is sorted by its arg
 [L1 L2 ... Ln])
 ; actions
 <L1> (action 1)
 <L2> (action 2)
 ...
 <Ln> (default action)

For the second kind and third kind of “case”, the jump-table itself does
not conform the format of N-code. To implement it, it is not really a list;
it is an array (which is a data). To have an array in the code segment, an
additional representation must be designed.

Implement a multiway branch. Run the benchmark and measure its
effectiveness.

9.3 Write a code generator for S2, the register-based processor. Compile all

the benchmarks to target this instruction set. Run and collect the
performance statistic. Compare it with Sx processor. Discuss the result.

9.4 One can always argue that some inefficiency comes from the quality of a

compiler. To prove or disprove this belief, we can write a segment of
program in machine language then compare the execution time with the

246

one produced by a compiler. Write the string comparison function in S-
code by hand. Try to optimise it by speed. Compare the running time
with the one produced by Nut-compiler.

9.5 Invent new instructions by combining two instructions into a new one.

Produce a log file of the frequency of pair of instructions and select five
most frequently used pairs. Write their microprogram. Integrate these
new instructions into the Sx processor simulator. Modify the code
generator to output these new instructions. Run the benchmarks and
discuss the result. How much do you expect the improvement will be?

9.6 Performance measurement is sensitive to benchmark programs. Write a

new set of benchmark programs, for example, image processing.
Measure the performance of our system on this new benchmark. What is
the difference and why?

