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Higher-level synchronization primitives
We have looked at one synchronization primitive: locks

Locks are useful for many things, but sometimes programs have 
different requirements.

Examples?
● Say we had a shared variable where we wanted any number of threads to read 

the variable, but only one thread to write it.
● How would you do this with locks?

What's wrong with this code?

Reader() {
  lock.acquire();
  mycopy = shared_var;
  lock.release(); 
  return mycopy;
}

Writer() {
  lock.acquire();
  shared_var = NEW_VALUE;
  lock.release(); 
}
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Semaphores
Higher-level synchronization

construct
● Designed by Edsger Dijkstra in the

1960's, part of the THE operating
system (classic stuff!)

Semaphore is a shared counter

Two operations on semaphores:

P() or wait() or down()
● From Dutch “proeberen”, meaning “test”
● Atomic action:

● Wait for semaphore value to become > 0, then decrement it

V() or signal() or up()
● From Dutch “verhogen”, meaning “increment”
● Atomic action:

● Increments semaphore value by 1.

Semaphore
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Semaphore Example
Semaphores can be used to implement locks:

A semaphore where the counter value is only 0 or 1 is
called a binary semaphore.

int withdraw(account, amount) {
  P(my_semaphore);
  balance = get_balance(account);
  balance -= amount;
  put_balance(account, balance);
  V(my_semaphore);
  return balance;
}

critical
section

Semaphore my_semaphore = 1; // Initialize to nonzero
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Simple Semaphore Implementation

What's wrong with this code???

struct semaphore {
int val;
thread_list waiting;  // List of threads waiting for semaphore

}

P(semaphore Sem):    // Wait until > 0 then decrement
while (Sem.val <= 0) {

add this thread to Sem.waiting;
block(this thread);  // What does this do??

}
Sem.val = Sem.val -1;
return;

V(semaphore Sem):     // Increment value and wake up next thread
Sem.val = Sem.val + 1;
if (Sem.waiting is nonempty) {

remove a thread T from Sem.waiting;
wakeup(T);

}

Why is this a while loop
and not just an if statement?
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Simple Semaphore Implementation

P() and V() must be 
atomic actions!

struct semaphore {
int val;
thread_list waiting;  // List of threads waiting for semaphore

}

P(semaphore Sem):    // Wait until > 0 then decrement
while (Sem.val <= 0) {

add this thread to Sem.waiting;
block(this thread);  // What does this do??

}
Sem.val = Sem.val -1;
return;

V(semaphore Sem):     // Increment value and wake up next thread
Sem.val = Sem.val + 1;
if (Sem.waiting is nonempty) {

remove a thread T from Sem.waiting;
wakeup(T);

}
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Semaphore Implementation

How do we ensure that the semaphore implementation is atomic?
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Semaphore Implementation

How do we ensure that the semaphore implementation is atomic?

One approach: Make them system calls, and ensure only one P() 
or V() operation can be executed by any process at a time.

● This effectively puts a lock around the P() and V() operations themselves!
● Easy to do by disabling interrupts in the P() and V() calls.

Another approach: Use hardware support
● Say your CPU had atomic P and V instructions
● That would be sweet.
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OK, but why are semaphores useful?

A binary semaphore (counter is always 0 or 1) is basically a lock.

The real value of semaphores becomes apparent when the 
counter can be initialized to a value other than 0 or 1.

Say we initialize a semaphore's counter to 50.
● What does this mean about P() and V() operations?
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The Producer/Consumer Problem
Also called the Bounded Buffer problem.

Producer pushes items into the buffer.

Consumer pulls items from the buffer.

Producer needs to wait when buffer is full.

Consumer needs to wait when the buffer is empty.

Producer Consumer

Mmmm... donuts
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The Producer/Consumer Problem
Also called the Bounded Buffer problem.

Producer pushes items into the buffer.

Consumer pulls items from the buffer.

Producer needs to wait when buffer is full.

Consumer needs to wait when the buffer is empty.

Producer Consumer

zzzzz....
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One implementation...

Producer Consumer

int count = 0;

Producer() {
int item;
while (TRUE) {

item = bake();
if (count == N) sleep();
insert_item(item);
count = count + 1;
if (count == 1) 

wakeup(consumer);
}

}

Consumer() {
int item;
while (TRUE) {

if (count == 0) sleep();
item = remove_item();
count = count – 1;
if (count == N-1) 

wakeup(producer);
eat(item);

}
}

What's wrong with this code? What if we context switch right here??
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A fix using semaphores

Producer Consumer

Semaphore mutex = 1;
Semaphore empty = N;
Semaphore full = 0;

Producer() {
int item;
while (TRUE) {

item = bake();
P(empty);
P(mutex);
insert_item(item);
V(mutex);
V(full);

}
}

Consumer() {
int item;
while (TRUE) {

P(full);
P(mutex);
item = remove_item();
V(mutex);
V(empty);
eat(item);

}
}
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Reader/Writers
Let's go back to the problem at the beginning of lecture.

● Single shared object
● Want to allow any number of threads to read simultaneously
● But, only one thread should be able to write to the object at a time

● (And, not interfere with any readers...)

                            Where's the race condition?

Semaphore wrt = 1;
int readcount = 0;

Writer() {
P(wrt);
do_write();
V(wrt);

}

Reader() {

readcount++;
if (readcount == 1) {

P(wrt);
}

do_read();

readcount--;
if (readcount == 0) {

V(wrt);
}

Why the test here??
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Reader/Writers fixed
Problem: Multiple readers are accessing 'readcount' !

Semaphore mutex = 1;
Semaphore wrt = 1;
int readcount = 0;

Writer() {
P(wrt);
do_write();
V(wrt);

}

Reader() {
P(mutex);
readcount++;
if (readcount == 1) {

P(wrt);
}
V(mutex);
do_read();
P(mutex);
readcount--;
if (readcount == 0) {

V(wrt);
}
V(mutex);



© 2007 Matt Welsh – Harvard University 16

Issues with Semaphores

Much of the power of semaphores derives from calls to
P() and V() that are unmatched

● See previous example!

Unlike locks, acquire() and release() are not always paired.

This means it is a lot easier to get into trouble with semaphores.
● Semaphores are a lot of rope to hang yourself with...

Would be nice if we had some clean, well-defined language 
support for synchronization...

● Hey. Java does!
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Java Synchronization Support: Mutexes
Every Java object can be used as a mutex!

Compiler ensures that lock is released before leaving the 
synchronized block

● Even if there is an exception!!

Object foo;
synchronized (foo) {
  /* Do some stuff with 'foo' locked... */
  foo.counter++;
}

try {
  synchronized(foo) {
     if (foo.doSomething() == false) {
       throw new Exception(“Bad!!”);
     }
  }
catch (Exception e) {
  /* Lock was released before getting here! */
  System.err.println(“Something bad happened!”);
}
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Java Condition Variables
All Java objects can also act as condition variables.

A condition variable represents some condition that a thread can:
● Wait on, until the condition occurs; or
● Notify other waiting threads that the condition has occurred

● Very useful primitive for signaling between threads.

Three operations on condition variables:
● wait() -- Block until another thread calls notify() or notifyAll() on the CV
● notify() -- Wake up one thread waiting on the CV
● notifyAll() -- Wake up all threads waiting on the CV



© 2007 Matt Welsh – Harvard University 19

Java CVs and Locks

All condition variable operations must be within a synchronized
block on the same object

Why is the “synchronized” necessary?

/* Thread A */
synchronized (foo) {
  while (foo.counter < 10) {
    foo.wait();
  }
}

/* Thread B */
synchronized (foo) {
  foo.counter++;
  if (foo.counter >= 10) {
    foo.notify();
  }
}
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Java CVs and Locks

All condition variable operations must be within a synchronized
block on the same object

Why is the “synchronized” necessary?

If no lock on Thread A...
● Thread might sleep just after another thread sets the counter value to 10!

If no lock on Thread B...
● No guarantee that increment and test of counter is atomic!

● Requiring CV operations to be done within a synchronized { } block prevents 
a lot of common programming mistakes.

/* Thread A */
synchronized (foo) {
  while (foo.counter < 10) {
    foo.wait();
  }
}

/* Thread B */
synchronized (foo) {
  foo.counter++;
  if (foo.counter >= 10) {
    foo.notify();
  }
}
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Java CVs and Locks

All condition variable operations must be within a synchronized
block on the same object

What happens to the lock when you call wait() on the CV?

/* Thread A */
synchronized (foo) {
  while (foo.counter < 10) {
    foo.wait();
  }
}

/* Thread B */
synchronized (foo) {
  foo.counter++;
  if (foo.counter >= 10) {
    foo.notify();
  }
}
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Java CVs and Locks

All condition variable operations must be within a synchronized
block on the same object

What happens to the lock when you call wait() on the CV?
● Calling wait() releases the lock (atomically!) before blocking.

● Can't wait while holding the lock – Thread B could never run!
● And, the lock is automatically reclaimed just before Thread A starts running again!

/* Thread A */
synchronized (foo) {
  while (foo.counter < 10) {
    foo.wait();
  }
}

/* Thread B */
synchronized (foo) {
  foo.counter++;
  if (foo.counter >= 10) {
    foo.notify();
  }
}
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Bounded Buffer using CV's

int theArray[ARRAY_SIZE], size;
Object theLock;

void put(int val) {
synchronized(theLock) {

while (size == ARRAY_SIZE) {
theLock.wait();

}
addItemToArray(val);
size++;
if (size == 1)

theLock.notify();
}

}

int get() {
int item;
synchronized(theLock) {

while (size == 0) {
theLock.wait();

}
item = getItemFromArray()
size--;
if (size == ARRAY_SIZE-1)

theLock.notify();
}
return item;

}

Problems with this code??
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Bounded Buffer using CV's

int theArray[ARRAY_SIZE], size;
Object theLock;

void put(int val) {
synchronized(theLock) {

while (size == ARRAY_SIZE) {
theLock.wait();

}
addItemToArray(val);
size++;
if (size == 1)

theLock.notify();
}

}

int get() {
int item;
synchronized(theLock) {

while (size == 0) {
theLock.wait();

}
item = getItemFromArray()
size--;
if (size == ARRAY_SIZE-1)

theLock.notify();
}
return item;

}

Assumes only a single thread calling put() or get() at a time!
If two threads call get(), then two threads call put(), only one 
will be woken up!!
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How to fix this problem?

Using notifyAll() will cause all threads to wake up and 
re-check the condition variable.

● Of course, only one thread at a time can get the lock when it wakes up.
● Could be inefficient if a lot of threads are involved!

int theArray[ARRAY_SIZE], size;
Object theLock;

void put(int val) {
synchronized(theLock) {

while (size == ARRAY_SIZE) {
theLock.wait();

}
addItemToArray(val);
size++;
if (size == 1)

theLock.notifyAll();
}

}

int get() {
int item;
synchronized(theLock) {

while (size == 0) {
theLock.wait();

}
item = getItemFromArray()
size--;
if (size == ARRAY_SIZE-1)

theLock.notifyAll();
}
return item;

}
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Monitors
This style of using locks and CV's to protect access to a shared

object is often called a monitor
● Think of a monitor as a lock protecting an object, a series of methods, and 

associated condition variables. 

Shared data

put()

get()

Methods accessing
shared data

Mutex queue

At most one thread in 
the monitor at a time

Lock

condvar

Condition variables
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Monitors

Shared data

put()

get()

Unlocked

condvar

1) Thread enters monitor 
  (grabs lock)
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Monitors

Shared data

put()

get()

Locked

condvar

1) Thread enters monitor 
  (grabs lock)

2) Other threads queue up
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Monitors

Shared data

put()

get()

Locked

condvar

1) Thread enters monitor 
  (grabs lock)

2) Other threads queue up

3) Blue thread waits() on CV
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Monitors

Shared data

put()

get()

Unlocked

condvar

1) Thread enters monitor 
  (grabs lock)

2) Other threads queue up

3) Blue thread waits() on CV

4) Next thread enters monitor
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Monitors

Shared data

put()

get()

Locked

condvar

1) Thread enters monitor 
  (grabs lock)

2) Other threads queue up

3) Blue thread waits() on CV

4) Next thread enters monitor
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Monitors

Shared data

put()

get()

Locked

condvar

5) Thread in monitor calls 
  notify() on CV
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Monitors

Shared data

put()

get()

Locked

condvar

5) Thread in monitor calls 
  notify() on CV

6) Next thread enters monitor
 (order depends on lock
    implementation!)
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Hoare vs. Mesa Monitor Semantics
The monitor notify() operation can have two different meanings:

Hoare monitors (1974)
● notify(CV) means to run the waiting thread immediately
● Causes notifying thread to block

Mesa monitors (Xerox PARC, 1980)
● notify(CV) puts waiting thread back onto the “ready queue” for the monitor
● But, notifying thread keeps running
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Hoare vs. Mesa Monitor Semantics
The monitor notify() operation can have two different meanings:

Hoare monitors (1974)
● notify(CV) means to run the waiting thread immediately
● Causes notifying thread to block

Mesa monitors (Xerox PARC, 1980)
● notify(CV) puts waiting thread back onto the “ready queue” for the monitor
● But, notifying thread keeps running

What's the practical difference?
● In Hoare-style semantics, the “condition” that triggered the notify() 

will always be true when the awoken thread runs
● For example, that the buffer is now no longer empty

● In Mesa-style semantics, awoken thread has to recheck the condition
● Since another thread might have beaten it to the punch

We almost always use Mesa-style semantics.
● But the textbook discusses Hoare semantics.
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The Big Picture
The point here is that getting synchronization right is hard

● Even some of your esteemed faculty members (ahem) have been 
known to get it wrong.

How to pick between locks, semaphores, condvars, monitors???

Locks are very simple for many cases.
● Issues: Maybe not the most efficient solution
● For example, can't allow multiple readers but one writer inside a standard lock.

Condition variables allow threads to sleep while holding a lock
● Just be sure you understand whether they use Mesa or Hoare semantics!

Semaphores provide pretty general functionality
● But also make it really easy to botch things up.

Java captures a lot of useful common operations with its use of 
monitors (compiler checking is nice too)

● But, not possible to implement everything directly with Java's primitives.
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Next Lecture
Famous problems in synchronization

Race conditions, deadlock, and priority inversion

The THERAC-25 disaster
● A radiation machine used to treat cancer
● Had a software bug that actually killed several people.
● Came down to a race condition!

What happened to the Mars Pathfinder?
● Very subtle synchronization bug plagued its software


