

computer science
AN OVERVIEW

This page intentionally left blank

A N O V E R V I E W

computer science

J. Glenn Brookshear

with contributions from

David T. Smith
Indiana University of Pennsylvania

Dennis Brylow
Marquette University

11th Edition

Addison-Wesley

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton
Editor-in-Chief: Michael Hirsch
Editorial Assistant: Stephanie Sellinger
Vice President of Marketing: Patrice Jones
Marketing Manager: Yezan Alayan
Marketing Coordinator: Kathryn Ferranti
Vice President, Production: Vince O’Brien
Managing Editor: Jeff Holcomb
Production Project Manager: Kayla

Smith-Tarbox
Senior Operations Supervisor: Lisa McDowell
Art Directors: Jayne Conte and Kristine

Carney

Cover Designer: Rachael Cronin
Cover Image: “Slot Canyon”

© gettyimages® Inc.
RF Media Editor: Dan Sandin and Wanda

Rockwell
Project Management: GEX Publishing Services
Composition and Illustration: GEX Publishing

Services
Printer/Binder: Edwards Brothers
Cover Printer: Lehigh-Phoenix

Color/Hagerstown

Credits
Figure 0.3: “An abacus ”. © Wayne Chandler. Figure 0.4: “The Mark I computer.” Courtesy of
IBM corporate archives. Unauthorized use is not permitted. Figure 10.1: “A photograph of a viral
world produced by using 3D graphics (from Toy Story by Walt Disney/Pixar Animation Studios) ©
Disney/Pixar. Figure 10.6: “A scene from Shrek 2 by Dreamworks SKG. © Dreamworks/
Picture Desk Inc./Kobal collection. Figure 11.19: “Results of using a neural network to classify
pixels in an image.” Inspired by www.actapress.com. Chapter 11, Robots Making History
feature: a. “A soccer robot kicks a ball during the RoboCup German Open 2010 on April 15, 2010
in Magdeburg, eastern Germany.” © Jens Schlueter/AFP/ Getty Images/ Newscom. b. “Tartan
Racing’s “Boss—winner of the Urban Challenge, a contest sponsored by DARPA to have vehicles
drive themselves an urban environment.” © DARPA. c. “One of NASA’s rovers—a robot geologist
exploring the surface of Mars.” Courtesy of NASA/JPL-Caltech.

Copyright © 2012, 2009, 2007, 2005, 2003 Pearson Education, Inc., publishing as Addison-
Wesley. All rights reserved. Manufactured in the United States of America. This publication is
protected by Copyright, and permission should be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s)
to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Catologing-in-Publication Data available upon request.

10 9 8 7 6 5 4 3 2 1—EB—14 13 12 11 10

ISBN 10: 0-13-256903-5
ISBN 13: 978-0-13-256903-3

www.actapress.com
www.actapress.com

v

This book presents an introductory survey of computer science. It explores the
breadth of the subject while including enough depth to convey an honest appre-
ciation for the topics involved.

Audience
I wrote this text for students of computer science as well as students from
other disciplines. As for computer science students, most begin their studies
with the illusion that computer science is programming, Web browsing, and
Internet file sharing since that is essentially all they have seen. Yet computer
science is much more than this. In turn, beginning computer science stu-
dents need exposure to the breadth of the subject in which they are planning
to major. Providing this exposure is the theme of this book. It gives students
an overview of computer science—a foundation from which they can appreci-
ate the relevance and interrelationships of future courses in the field. This
survey approach is, in fact, the model used for introductory courses in the
natural sciences.

This broad background is also what students from other disciplines need if
they are to relate to the technical society in which they live. A computer science
course for this audience should provide a practical, realistic understanding of the
entire field rather than merely an introduction to using the Internet or training
in the use of some popular software packages. There is, of course, a proper place
for training, but this text is about educating.

Thus, while writing this text, maintaining accessibility for nontechnical stu-
dents was a major goal. The result is that previous editions have been used suc-
cessfully in courses for students over a wide range of disciplines and educational
levels, ranging from high school to graduate courses. This eleventh edition is
designed to continue that tradition.

New in the Eleventh Edition
The underlying theme during the development of this eleventh edition was to
update the text to include handheld mobile devices, in particular smartphones.
Thus, you will find that the text has been modified, and at times expanded, to

preface

present the relationship between the subject matter being discussed and smart-
phone technology. Specific topics include:

• Smartphone hardware
• The distinction between 3G and 4G networks
• Smartphone operating systems
• Smartphone software development
• The human/smartphone interface

These additions are most noticeable in Chapters 3 (Operating Systems) and
4 (Networking) but is also observable in Chapters 6 (Programming Languages),
and 7 (Software Engineering).

Other prominent changes to this edition include updates to the following
topics:

• Software ownership and liability: The material in Chapter 7 (Software
Engineering) pertaining to this topic has been rewritten and updated.

• Training artificial neural networks: This material, in Chapter 11 (Artificial
Intelligence), has been modernized.

Finally, you will find that the material throughout the text has been updated
to reflect the state of today’s technology. This is most prevalent in Chapter 0
(Introduction), Chapter 1 (Data Storage), and Chapter 2 (Data Manipulation).

Organization
This text follows a bottom-up arrangement of subjects that progresses from the
concrete to the abstract—an order that results in a sound pedagogical presentation
in which each topic leads to the next. It begins with the fundamentals of informa-
tion encoding, data storage, and computer architecture (Chapters 1 and 2); pro-
gresses to the study of operating systems (Chapter 3) and computer networks
(Chapter 4); investigates the topics of algorithms, programming languages, and
software development (Chapters 5 through 7); explores techniques for enhancing
the accessibility of information (Chapters 8 and 9); considers some major applica-
tions of computer technology via graphics (Chapter 10) and artificial intelligence
(Chapter 11); and closes with an introduction to the abstract theory of computa-
tion (Chapter 12).

Although the text follows this natural progression, the individual chapters
and sections are surprisingly independent and can usually be read as isolated
units or rearranged to form alternative sequences of study. Indeed, the book is
often used as a text for courses that cover the material in a variety of orders. One
of these alternatives begins with material from Chapters 5 and 6 (Algorithms and
Programming Languages) and returns to the earlier chapters as desired. In con-
trast, I know of one course that starts with the material on computability from
Chapter 12. In still other cases the text has been used in “senior capstone”
courses where it serves as merely a backbone from which to branch into projects
in different areas. Courses for less technically oriented audiences may want to
concentrate on Chapters 4 (Networking and the Internet), 9 (Database Systems),
10 (Computer Graphics), and 11 (Artificial Intelligence).

On the opening page of each chapter, I have used asterisks to mark some sec-
tions as optional. These are sections that cover topics of more specific interest or

vi Preface

perhaps explore traditional topics in more depth. My intention is merely to pro-
vide suggestions for alternative paths though the text. There are, of course, other
shortcuts. In particular, if you are looking for a quick read, I suggest the follow-
ing sequence:

Section Topic
1.1–1.4 Basics of data encoding and storage
2.1–2.3 Machine architecture and machine language
3.1–3.3 Operating systems
4.1–4.3 Networking and the Internet
5.1–5.4 Algorithms and algorithm design
6.1–6.4 Programming languages
7.1–7.2 Software engineering
8.1–8.3 Data abstractions
9.1–9.2 Database systems
10.1–10.2 Computer graphics
11.1–11.3 Artificial intelligence
12.1–12.2 Theory of computation

There are several themes woven throughout the text. One is that computer
science is dynamic. The text repeatedly presents topics in a historical perspec-
tive, discusses the current state of affairs, and indicates directions of research.
Another theme is the role of abstraction and the way in which abstract tools are
used to control complexity. This theme is introduced in Chapter 0 and then
echoed in the context of operating system architecture, networking, algorithm
development, programming language design, software engineering, data organi-
zation, and computer graphics.

To Instructors
There is more material in this text than can normally be covered in a single
semester so do not hesitate to skip topics that do not fit your course objectives or
to rearrange the order as you see fit. You will find that, although the text follows
a plot, the topics are covered in a largely independent manner that allows you to
pick and choose as you desire. The book is designed to be used as a course
resource—not as a course definition. I suggest encouraging students to read the
material not explicitly included in your course. I think we underrate students if
we assume that we have to explain everything in class. We should be helping
them learn to learn on their own.

I feel obliged to say a few words about the bottom-up, concrete-to-abstract
organization of the text. I think as academics we too often assume that students
will appreciate our perspective of a subject—often one that we have developed
over many years of working in a field. As teachers I think we do better by pre-
senting material from the student’s perspective. This is why the text starts with
data representation/storage, machine architecture, operating systems, and net-
working. These are topics to which students readily relate—they have most
likely heard terms such as JPEG and MP3; they have probably recorded data on
CDs and DVDs; they have purchased computer components; they have inter-
acted with an operating system; and they have used the Internet. By starting the
course with these topics, students discover answers to many of the “why” ques-
tions they have been carrying for years and learn to view the course as practical

viiTo Instructors

rather than theoretical. From this beginning it is natural to move on to the more
abstract issues of algorithms, algorithmic structures, programming languages,
software development methodologies, computability, and complexity that those
of us in the field view as the main topics in the science. As I’ve said before, the
topics are presented in a manner that does not force you to follow this bottom-up
sequence, but I encourage you to give it a try.

We are all aware that students learn a lot more than we teach them directly, and
the lessons they learn implicitly are often better absorbed than those that are studied
explicitly. This is significant when it comes to “teaching” problem solving. Students
do not become problem solvers by studying problem-solving methodologies. They
become problem solvers by solving problems—and not just carefully posed “textbook
problems.” So this text contains numerous problems, a few of which are intentionally
vague—meaning that there is not necessarily a single correct approach or a single
correct answer. I encourage you to use these and to expand on them.

Another topic in the “implicit learning” category is that of professionalism,
ethics, and social responsibility. I do not believe that this material should be pre-
sented as an isolated subject that is merely tacked on to the course. Instead, it
should be an integral part of the coverage that surfaces when it is relevant. This
is the approach followed in this text. You will find that Sections 3.5, 4.5, 7.8, 9.7,
and 11.7 present such topics as security, privacy, liability, and social awareness
in the context of operating systems, networking, database systems, software en-
gineering, and artificial intelligence. Moreover, Section 0.6 introduces this theme
by summarizing some of the more prominent theories that attempt to place eth-
ical decision making on a philosophically firm foundation. You will also find that
each chapter includes a collection of questions called Social Issues that challenge
students to think about the relationship between the material in the text and the
society in which they live.

Thank you for considering my text for your course. Whether you do or do
not decide that it is right for your situation, I hope that you find it to be a contri-
bution to the computer science education literature.

Pedagogical Features
This text is the product of many years of teaching. As a result, it is rich in peda-
gogical aids. Paramount is the abundance of problems to enhance the student’s
participation—over 1,000 in this eleventh edition. These are classified as Ques-
tions/Exercises, Chapter Review Problems, and Social Issues. The Questions/
Exercises appear at the end of each section (except for the introductory chapter).
They review the material just discussed, extend the previous discussion, or hint at
related topics to be covered later. These questions are answered in Appendix F.

The Chapter Review Problems appear at the end of each chapter (except for the
introductory chapter). They are designed to serve as “homework” problems in that
they cover the material from the entire chapter and are not answered in the text.

Also at the end of each chapter are the questions in the Social Issues cate-
gory. They are designed for thought and discussion. Many of them can be used
to launch research assignments culminating in short written or oral reports.

Each chapter also ends with a list called Additional Reading that contains ref-
erences to other material relating to the subject of the chapter. The Web sites
identified in this preface, in the text, and in the sidebars of the text are also good
places to look for related material.

viii Preface

Supplemental Resources
A variety of supplemental materials for this text are available at the book’s
Companion Website: www.pearsonhighered.com/brookshear. The following are
accessible to all readers:

• Chapter-by-chapter activities that extend topics in the text and provide
opportunities to explore related topics

• Chapter-by-chapter “self-tests” that help readers to rethink the material
covered in the text

• Manuals that teach the basics of Java and C++ in a pedagogical sequence
compatible with the text

In addition, the following supplements are available to qualified instruc-
tors at Pearson Education’s Instructor Resource Center. Please visit
www.pearsonhighered.com or contact your Pearson sales representative for
information on how to access them:

• Instructor’s Guide with answers to the Chapter Review Problems
• PowerPoint lecture slides
• Test bank

You may also want to check out my personal Web site at www.mscs.mu
.edu/~glennb. It is not very formal (and it is subject to my whims and sense of
humor), but I tend to keep some information there that you may find helpful. In
particular, you will find an errata page that lists corrections to errors in the text
that have been reported to me.

To Students
I’m a bit of a nonconformist (some of my friends would say more than a bit) so
when I set out to write this text I didn’t always follow the advice I received. In
particular, many argued that certain material was too advanced for beginning
students. But, I believe that if a topic is relevant, then it is relevant even if the ac-
ademic community considers it to be an “advanced topic.” You deserve a text that
presents a complete picture of computer science—not a watered-down version
containing artificially simplified presentations of only those topics that have
been deemed appropriate for introductory students. Thus, I have not avoided
topics. Instead I’ve sought better explanations. I’ve tried to provide enough depth
to give you an honest picture of what computer science is all about. As in the
case of spices in a recipe, you may choose to skip some of the topics in the fol-
lowing pages, but they are there for you to taste if you wish—and I encourage
you to do so.

I should also point out that in any course dealing with technology, the details
you learn today may not be the details you will need to know tomorrow. The
field is dynamic—that’s part of the excitement. This book will give you a current
picture of the subject as well as a historical perspective. With this background
you will be prepared to grow along with technology. I encourage you to start the
growing process now by exploring beyond this text. Learn to learn.

Thank you for the trust you have placed in me by choosing to read my book.
As an author I have an obligation to produce a manuscript that is worth your
time. I hope you find that I have lived up to this obligation.

ixTo Students

www.pearsonhighered.com/brookshear
www.pearsonhighered.com
www.mscs.mu.edu/~glennb
www.mscs.mu.edu/~glennb
www.pearsonhighered.com/brookshear
www.pearsonhighered.com
www.mscs.mu.edu/~glennb
www.mscs.mu.edu/~glennb

Acknowledgments
I first thank those of you who have supported this book by reading and using it in
previous editions. I am honored.

David T. Smith (Indiana University of Pennsylvania) and Dennis Brylow
(Marquette University) played significant roles in the production this eleventh
edition. David concentrated on Chapters 0, 1, 2, 7, and 11; and Dennis focused on
Chapters 3, 4, 6, and 10. Without their hard work this new edition would not exist
today. I sincerely thank them.

As mentioned in the preface to the tenth edition, I am indebted to Ed Angel,
John Carpinelli, Chris Fox, Jim Kurose, Gary Nutt, Greg Riccardi, and Patrick
Henry Winston for their assistance in the development of that edition. The
results of their efforts remain visible in this eleventh edition.

Others who have contributed in this or previous editions include J. M.
Adams, C. M. Allen, D. C. S. Allison, R. Ashmore, B. Auernheimer, P. Bankston, M.
Barnard, P. Bender, K. Bowyer, P. W. Brashear, C. M. Brown, H. M Brown, B. Cal-
loni, M. Clancy, R. T. Close, D. H. Cooley, L. D. Cornell, M. J. Crowley, F. Deek,
M. Dickerson, M. J. Duncan, S. Ezekiel, S. Fox, N. E. Gibbs, J. D. Harris, D. Has-
com, L. Heath, P. B. Henderson, L. Hunt, M. Hutchenreuther, L. A. Jehn, K. K.
Kolberg, K. Korb, G. Krenz, J. Liu, T. J. Long, C. May, J. J. McConnell, W. Mc-
Cown, S. J. Merrill, K. Messersmith, J. C. Moyer, M. Murphy, J. P. Myers, Jr., D. S.
Noonan, W. W. Oblitey, S. Olariu, G. Rice, N. Rickert, C. Riedesel, J. B. Rogers, G.
Saito, W. Savitch, R. Schlafly, J. C. Schlimmer, S. Sells, G. Sheppard, Z. Shen, J. C.
Simms, M. C. Slattery, J. Slimick, J. A. Slomka, D. Smith, J. Solderitsch, R. Steiger-
wald, L. Steinberg, C. A. Struble, C. L. Struble, W. J. Taffe, J. Talburt, P. Tonellato,
P. Tromovitch, E. D. Winter, E. Wright, M. Ziegler, and one anonymous. To these
individuals I give my sincere thanks.

As already mentioned, you will find Java and C++ manuals at the text’s
Companion Website that teach the basics of these languages in a format compat-
ible with the text. These were written by Diane Christie. Thank you Diane.
Another thank you goes to Roger Eastman who was the creative force behind the
chapter-by-chapter activities that you will also find at the Companion Website.

I also thank the people at Addison-Wesley who have contributed to this proj-
ect. They are a great bunch to work with—and good friends as well. If you are
thinking about writing a textbook, you should consider having it published by
Addison-Wesley.

I continue to be grateful to my wife Earlene and daughter Cheryl who have
been tremendous sources of encouragement over the years. Cheryl, of course,
grew up and left home several years ago. But Earlene is still here. I’m a lucky
man. On the morning of December 11, 1998, I survived a heart attack because
she got me to the hospital in time. (For those of you in the younger generation
I should explain that surviving a heart attack is sort of like getting an extension
on a homework assignment.)

Finally, I thank my parents, to whom this book is dedicated. I close with the
following endorsement whose source shall remain anonymous: “Our son’s book
is really good. Everyone should read it.”

J. G. B.

x Preface

Chapter 0 Introduction 1
0.1 The Role of Algorithms 2
0.2 The History of Computing 4
0.3 The Science of Algorithms 10
0.4 Abstraction 11
0.5 An Outline of Our Study 12
0.6 Social Repercussions 13

Chapter 1 Data Storage 19
1.1 Bits and Their Storage 20
1.2 Main Memory 26
1.3 Mass Storage 29
1.4 Representing Information as Bit Patterns 35

*1.5 The Binary System 42
*1.6 Storing Integers 47
*1.7 Storing Fractions 53
*1.8 Data Compression 58
*1.9 Communication Errors 63

Chapter 2 Data Manipulation 73
2.1 Computer Architecture 74
2.2 Machine Language 77
2.3 Program Execution 83

*2.4 Arithmetic/Logic Instructions 90
*2.5 Communicating with Other Devices 94
*2.6 Other Architectures 100

contents

*Asterisks indicate suggestions for optional sections.

xi

Chapter 3 Operating Systems 109
3.1 The History of Operating Systems 110
3.2 Operating System Architecture 114
3.3 Coordinating the Machine’s Activities 122

*3.4 Handling Competition Among Processes 125
3.5 Security 130

xii Contents

Chapter 4 Networking and the Internet 139
4.1 Network Fundamentals 140
4.2 The Internet 149
4.3 The World Wide Web 158

*4.4 Internet Protocols 167
4.5 Security 173

Chapter 5 Algorithms 187
5.1 The Concept of an Algorithm 188
5.2 Algorithm Representation 191
5.3 Algorithm Discovery 198
5.4 Iterative Structures 204
5.5 Recursive Structures 214
5.6 Efficiency and Correctness 222

Chapter 6 Programming Languages 239
6.1 Historical Perspective 240
6.2 Traditional Programming Concepts 248
6.3 Procedural Units 260
6.4 Language Implementation 268
6.5 Object-Oriented Programming 276

*6.6 Programming Concurrent Activities 283
*6.7 Declarative Programming 286

Chapter 7 Software Engineering 299
7.1 The Software Engineering Discipline 300
7.2 The Software Life Cycle 302
7.3 Software Engineering Methodologies 306
7.4 Modularity 308
7.5 Tools of the Trade 316
7.6 Quality Assurance 324
7.7 Documentation 328
7.8 The Human-Machine Interface 329
7.9 Software Ownership and Liability 332

Chapter 8 Data Abstractions 341
8.1 Basic Data Structures 342
8.2 Related Concepts 345
8.3 Implementing Data Structures 348
8.4 A Short Case Study 362
8.5 Customized Data Types 367

*8.6 Classes and Objects 371
*8.7 Pointers in Machine Language 372

Chapter 9 Database Systems 383
9.1 Database Fundamentals 384
9.2 The Relational Model 389

*9.3 Object-Oriented Databases 400
*9.4 Maintaining Database Integrity 402
*9.5 Traditional File Structures 406
9.6 Data Mining 414
9.7 Social Impact of Database Technology 416

Chapter 10 Computer Graphics 425
10.1 The Scope of Computer Graphics 426
10.2 Overview of 3D Graphics 428
10.3 Modeling 430
10.4 Rendering 439

*10.5 Dealing with Global Lighting 449
10.6 Animation 452

Chapter 11 Artificial Intelligence 461
11.1 Intelligence and Machines 462
11.2 Perception 467
11.3 Reasoning 473
11.4 Additional Areas of Research 484
11.5 Artificial Neural Networks 489
11.6 Robotics 497
11.7 Considering the Consequences 500

Chapter 12 Theory of Computation 509
12.1 Functions and Their Computation 510
12.2 Turing Machines 512
12.3 Universal Programming Languages 516
12.4 A Noncomputable Function 522
12.5 Complexity of Problems 527

*12.6 Public-Key Cryptography 536

xiiiContents

Appendixes 545
A ASCII 547
B Circuits to Manipulate Two’s Complement

Representations 548
C A Simple Machine Language 551
D High-Level Programming Languages 553
E The Equivalence of Iterative and Recursive Structures 555
F Answers to Questions & Exercises 557

Index 597

xiv Contents

Introduction

In this preliminary chapter we consider the scope of computer

science, develop a historical perspective, and establish a

foundation from which to launch our study.

C H A P T E R

0

0.1 The Role of Algorithms

0.2 The History
of Computing

0.3 The Science
of Algorithms

0.4 Abstraction

0.5 An Outline of
Our Study

0.6 Social Repercussions

2 Chapter 0 Introduction

Computer science is the discipline that seeks to build a scientific foundation for
such topics as computer design, computer programming, information process-
ing, algorithmic solutions of problems, and the algorithmic process itself. It pro-
vides the underpinnings for today’s computer applications as well as the
foundations for tomorrow’s computing infrastructure.

This book provides a comprehensive introduction to this science. We will
investigate a wide range of topics including most of those that constitute a typi-
cal university computer science curriculum. We want to appreciate the full scope
and dynamics of the field. Thus, in addition to the topics themselves, we will be
interested in their historical development, the current state of research, and
prospects for the future. Our goal is to establish a functional understanding of
computer science—one that will support those who wish to pursue more special-
ized studies in the science as well as one that will enable those in other fields to
flourish in an increasingly technical society.

0.1 The Role of Algorithms
We begin with the most fundamental concept of computer science—that of an
algorithm. Informally, an algorithm is a set of steps that defines how a task is
performed. (We will be more precise later in Chapter 5.) For example, there are
algorithms for cooking (called recipes), for finding your way through a strange
city (more commonly called directions), for operating washing machines (usu-
ally displayed on the inside of the washer’s lid or perhaps on the wall of a laun-
dromat), for playing music (expressed in the form of sheet music), and for
performing magic tricks (Figure 0.1).

Before a machine such as a computer can perform a task, an algorithm for
performing that task must be discovered and represented in a form that is com-
patible with the machine. A representation of an algorithm is called a program.
For the convenience of humans, computer programs are usually printed on
paper or displayed on computer screens. For the convenience of machines, pro-
grams are encoded in a manner compatible with the technology of the machine.
The process of developing a program, encoding it in machine-compatible form,
and inserting it into a machine is called programming. Programs, and the algo-
rithms they represent, are collectively referred to as software, in contrast to the
machinery itself, which is known as hardware.

The study of algorithms began as a subject in mathematics. Indeed, the
search for algorithms was a significant activity of mathematicians long before
the development of today’s computers. The goal was to find a single set of direc-
tions that described how all problems of a particular type could be solved. One of
the best known examples of this early research is the long division algorithm for
finding the quotient of two multiple-digit numbers. Another example is the
Euclidean algorithm, discovered by the ancient Greek mathematician Euclid, for
finding the greatest common divisor of two positive integers (Figure 0.2).

Once an algorithm for performing a task has been found, the performance of
that task no longer requires an understanding of the principles on which the
algorithm is based. Instead, the performance of the task is reduced to the process
of merely following directions. (We can follow the long division algorithm to find
a quotient or the Euclidean algorithm to find a greatest common divisor without
understanding why the algorithm works.) In a sense, the intelligence required to
solve the problem at hand is encoded in the algorithm.

30.1 The Role of Algorithms

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Effect: The performer places some cards from a normal deck of playing cards face
down on a table and mixes them thoroughly while spreading them out on the table.
Then, as the audience requests either red or black cards, the performer turns over cards
of the requested color.

Secret and Patter:

From a normal deck of cards, select ten red cards and ten black cards. Deal these cards
face up in two piles on the table according to color.

Announce that you have selected some red cards and some black cards.

Pick up the red cards. Under the pretense of aligning them into a small deck, hold them
face down in your left hand and, with the thumb and first finger of your right hand, pull
back on each end of the deck so that each card is given a slightly backward curve. Then
place the deck of red cards face down on the table as you say, “Here are the red cards
in this stack.”

Pick up the black cards. In a manner similar to that in step 3, give these cards a slight
forward curve. Then return these cards to the table in a face-down deck as you say,
“And here are the black cards in this stack.”

Immediately after returning the black cards to the table, use both hands to mix the red
and black cards (still face down) as you spread them out on the tabletop. Explain that
you are thoroughy mixing the cards.

6.1. Ask the audience to request either a red or a black card.

6.2. If the color requested is red and there is a face-down card with a concave
 appearance, turn over such a card while saying, “Here is a red card.”

6.3. If the color requested is black and there is a face-down card with a convex
 appearance, turn over such a card while saying, “Here is a black card.”

6.4. Otherwise, state that there are no more cards of the requested color and turn over
 the remaining cards to prove your claim.

As long as there are face-down cards on the table, repeatedly
execute the following steps:

Figure 0.1 An algorithm for a magic trick

Description: This algorithm assumes that its input consists of two positive integers and
proceeds to compute the greatest common divisor of these two values.

Procedure:

Step 1. Assign M and N the value of the larger and smaller of the two input values, respectively.

Step 2. Divide M by N, and call the remainder R.

Step 3. If R is not 0, then assign M the value of N, assign N the value of R, and return to step 2;
 otherwise, the greatest common divisor is the value currently assigned to N.

Figure 0.2 The Euclidean algorithm for finding the greatest common divisor of two
positive integers

4 Chapter 0 Introduction

It is through this ability to capture and convey intelligence (or at least intel-
ligent behavior) by means of algorithms that we are able to build machines that
perform useful tasks. Consequently, the level of intelligence displayed by
machines is limited by the intelligence that can be conveyed through algorithms.
We can construct a machine to perform a task only if an algorithm exists for per-
forming that task. In turn, if no algorithm exists for solving a problem, then the
solution of that problem lies beyond the capabilities of machines.

Identifying the limitations of algorithmic capabilities solidified as a subject
in mathematics in the 1930s with the publication of Kurt Gödel’s incompleteness
theorem. This theorem essentially states that in any mathematical theory
encompassing our traditional arithmetic system, there are statements whose
truth or falseness cannot be established by algorithmic means. In short, any
complete study of our arithmetic system lies beyond the capabilities of algorith-
mic activities.

This realization shook the foundations of mathematics, and the study of algo-
rithmic capabilities that ensued was the beginning of the field known today as
computer science. Indeed, it is the study of algorithms that forms the core of
computer science.

0.2 The History of Computing
Today’s computers have an extensive genealogy. One of the earlier computing
devices was the abacus. History tells us that it most likely had its roots in ancient
China and was used in the early Greek and Roman civilizations. The machine is
quite simple, consisting of beads strung on rods that are in turn mounted in a
rectangular frame (Figure 0.3). As the beads are moved back and forth on the
rods, their positions represent stored values. It is in the positions of the beads
that this “computer” represents and stores data. For control of an algorithm’s exe-
cution, the machine relies on the human operator. Thus the abacus alone is
merely a data storage system; it must be combined with a human to create a
complete computational machine.

In the time period after the Middle Ages and before the Modern Era the quest
for more sophisticated computing machines was seeded. A few inventors began
to experiment with the technology of gears. Among these were Blaise Pascal
(1623–1662) of France, Gottfried Wilhelm Leibniz (1646–1716) of Germany, and
Charles Babbage (1792–1871) of England. These machines represented data
through gear positioning, with data being input mechanically by establishing ini-
tial gear positions. Output from Pascal’s and Leibniz’s machines was achieved by
observing the final gear positions. Babbage, on the other hand, envisioned
machines that would print results of computations on paper so that the possibil-
ity of transcription errors would be eliminated.

As for the ability to follow an algorithm, we can see a progression of flexibility
in these machines. Pascal’s machine was built to perform only addition.
Consequently, the appropriate sequence of steps was embedded into the structure
of the machine itself. In a similar manner, Leibniz’s machine had its algorithms
firmly embedded in its architecture, although it offered a variety of arithmetic
operations from which the operator could select. Babbage’s Difference Engine (of
which only a demonstration model was constructed) could be modified to perform
a variety of calculations, but his Analytical Engine (the construction for which he

50.2 The History of Computing

Figure 0.3 An abacus (photography by Wayne Chandler)

never received funding) was designed to read instructions in the form of holes in
paper cards. Thus Babbage’s Analytical Engine was programmable. In fact,
Augusta Ada Byron (Ada Lovelace), who published a paper in which she demon-
strated how Babbage’s Analytical Engine could be programmed to perform various
computations, is often identified today as the world’s first programmer.

The idea of communicating an algorithm via holes in paper was not origi-
nated by Babbage. He got the idea from Joseph Jacquard (1752–1834), who, in
1801, had developed a weaving loom in which the steps to be performed during
the weaving process were determined by patterns of holes in large thick cards
made of wood (or cardboard). In this manner, the algorithm followed by the loom
could be changed easily to produce different woven designs. Another beneficiary
of Jacquard’s idea was Herman Hollerith (1860–1929), who applied the concept of
representing information as holes in paper cards to speed up the tabulation
process in the 1890 U.S. census. (It was this work by Hollerith that led to the cre-
ation of IBM.) Such cards ultimately came to be known as punched cards and sur-
vived as a popular means of communicating with computers well into the 1970s.
Indeed, the technique lives on today, as witnessed by the voting issues raised in
the 2000 U.S. presidential election.

The technology of the time was unable to produce the complex gear-driven
machines of Pascal, Leibniz, and Babbage in a financially feasible manner. But
with the advances in electronics in the early 1900s, this barrier was overcome.
Examples of this progress include the electromechanical machine of George
Stibitz, completed in 1940 at Bell Laboratories, and the Mark I, completed in 1944

6 Chapter 0 Introduction

at Harvard University by Howard Aiken and a group of IBM engineers (Figure 0.4).
These machines made heavy use of electronically controlled mechanical relays. In
this sense they were obsolete almost as soon as they were built, because other
researchers were applying the technology of vacuum tubes to construct totally
electronic computers. The first of these machines was apparently the Atanasoff-
Berry machine, constructed during the period from 1937 to 1941 at Iowa State
College (now Iowa State University) by John Atanasoff and his assistant, Clifford
Berry. Another was a machine called Colossus, built under the direction of Tommy

0

1

2

3

4

5

0

1

4

9

16

1

3

5

7

2

2

2

2

First
difference

Second
difference

x x2

Babbage’s Difference Engine
The machines designed by Charles Babbage were truly the forerunners of modern
computer design. If technology had been able to produce his machines in an eco-
nomically feasible manner and if the data processing demands of commerce and gov-
ernment had been on the scale of today’s requirements, Babbage’s ideas could have
led to a computer revolution in the 1800s. As it was, only a demonstration model of
his Difference Engine was constructed in his lifetime. This machine determined
numerical values by computing “successive differences.” We can gain an insight to
this technique by considering the problem of computing the squares of the integers.
We begin with the knowledge that the square of 0 is 0, the square of 1 is 1, the
square of 2 is 4, and the square of 3 is 9. With this, we can determine the square of 4
in the following manner (see the following diagram). We first compute the differ-
ences of the squares we already know: 12 � 02 � 1, 22 � 12 � 3, and 32 � 22 � 5.
Then we compute the differences of these results: 3 � 1 � 2, and 5 � 3 � 2. Note
that these differences are both 2. Assuming that this consistency continues (mathe-
matics can show that it does) we conclude that the difference between the value
(42 � 32) and the value (32 � 22) must also be 2. Hence (42 � 32) must be 2 greater
than (32 � 22), so 42 � 32 � 7 and thus 42 � 32 � 7 � 16. Now that we know the
square of 4, we could continue our procedure to compute the square of 5 based on the
values of 12, 22, 32, and 42. (Although a more in-depth discussion of successive differ-
ences is beyond the scope of our current study, students of calculus may wish to
observe that the preceding example is based on the fact that the derivative of y � x2 is
a straight line with a slope of 2.)

70.2 The History of Computing

Flowers in England to decode German messages during the latter part of World
War II. (Actually, as many as ten of these machines were apparently built, but mil-
itary secrecy and issues of national security kept their existence from becoming
part of the “computer family tree.”) Other, more flexible machines, such as the
ENIAC (electronic numerical integrator and calculator) developed by John
Mauchly and J. Presper Eckert at the Moore School of Electrical Engineering,
University of Pennsylvania, soon followed.

From that point on, the history of computing machines has been closely
linked to advancing technology, including the invention of transistors (for which
physicists William Shockley, John Bardeen, and Walter Brattain were awarded a
Nobel Prize) and the subsequent development of complete circuits constructed
as single units, called integrated circuits (for which Jack Kilby also won a Nobel
Prize in physics). With these developments, the room-sized machines of the
1940s were reduced over the decades to the size of single cabinets. At the same
time, the processing power of computing machines began to double every two
years (a trend that has continued to this day). As work on integrated circuitry
progressed, many of the circuits within a computer became readily available on
the open market as integrated circuits encased in toy-sized blocks of plastic
called chips.

A major step toward popularizing computing was the development of desk-
top computers. The origins of these machines can be traced to the computer hob-
byists who built homemade computers from combinations of chips. It was within
this “underground” of hobby activity that Steve Jobs and Stephen Wozniak built a
commercially viable home computer and, in 1976, established Apple Computer,
Inc. (now Apple Inc.) to manufacture and market their products. Other compa-
nies that marketed similar products were Commodore, Heathkit, and Radio
Shack. Although these products were popular among computer hobbyists, they

Figure 0.4 The Mark I computer (Courtesy of IBM archives. Unauthorized use is not permitted.)

8 Chapter 0 Introduction

were not widely accepted by the business community, which continued to look
to the well-established IBM for the majority of its computing needs.

In 1981, IBM introduced its first desktop computer, called the personal com-
puter, or PC, whose underlying software was developed by a newly formed com-
pany known as Microsoft. The PC was an instant success and legitimized the
desktop computer as an established commodity in the minds of the business
community. Today, the term PC is widely used to refer to all those machines
(from various manufacturers) whose design has evolved from IBM’s initial desk-
top computer, most of which continue to be marketed with software from
Microsoft. At times, however, the term PC is used interchangeably with the
generic terms desktop or laptop.

As the twentieth century drew to a close, the ability to connect individual
computers in a world-wide system called the Internet was revolutionizing com-
munication. In this context, Tim Berners-Lee (a British scientist) proposed a sys-
tem by which documents stored on computers throughout the Internet could be
linked together producing a maze of linked information called the World Wide
Web (often shortened to “Web”). To make the information on the Web accessible,
software systems, called search engines, were developed to “sift through” the
Web, “categorize” their findings, and then use the results to assist users research-
ing particular topics. Major players in this field are Google, Yahoo, and Microsoft.
These companies continue to expand their Web-related activities, often in direc-
tions that challenge our traditional way of thinking.

Augusta Ada Byron
Augusta Ada Byron, Countess of Lovelace, has been the subject of much commentary
in the computing community. She lived a somewhat tragic life of less than 37 years
(1815–1852) that was complicated by poor health and the fact that she was a non-
conformist in a society that limited the professional role of women. Although she was
interested in a wide range of science, she concentrated her studies in mathematics.
Her interest in “compute science” began when she became fascinated by the
machines of Charles Babbage at a demonstration of a prototype of his Difference
Engine in 1833. Her contribution to computer science stems from her translation
from French into English of a paper discussing Babbage’s designs for the Analytical
Engine. To this translation, Babbage encouraged her to attach an addendum describ-
ing applications of the engine and containing examples of how the engine could be
programmed to perform various tasks. Babbage’s enthusiasm for Ada Byron’s work
was apparently motivated by his hope that its publication would lead to financial
backing for the construction of his Analytical Engine. (As the daughter of Lord Byron,
Ada Byron held celebrity status with potentially significant financial connections.)
This backing never materialized, but Ada Byron’s addendum has survived and is con-
sidered to contain the first examples of computer programs. The degree to which
Babbage influenced Ada Byron’s work is debated by historians. Some argue that
Babbage made major contributions whereas others contend that he was more of an
obstacle than an aid. Nonetheless, Augusta Ada Byron is recognized today as the
world’s first programmer, a status that was certified by the U.S. Department of
Defense when it named a prominent programming language (Ada) in her honor.

90.2 The History of Computing

At the same time that desktop computers (and the newer mobile laptop
computers) were being accepted and used in homes, the miniaturization of
computing machines continued. Today, tiny computers are embedded within
various devices. For example, automobiles now contain small computers run-
ning Global Positioning Systems (GPS), monitoring the function of the engine,
and providing voice command services for controlling the car’s audio and phone
communication systems.

Perhaps the most potentially revolutionary application of computer miniatur-
ization is found in the expanding capabilities of portable telephones. Indeed, what
was recently merely a telephone has evolved into a small hand-held general-
purpose computer known as a smartphone on which telephony is only one of
many applications. These “phones” are equipped with a rich array of sensors
and interfaces including cameras, microphones, compasses, touch screens,
accelerometers (to detect the phone’s orientation and motion), and a number of
wireless technologies to communicate with other smartphones and computers.
The potential is enormous. Indeed, many argue that the smartphone will have a
greater effect on society than the PC.

The miniaturization of computers and their expanding capabilities have
brought computer technology to the forefront of today’s society. Computer tech-
nology is so prevalent now that familiarity with it is fundamental to being a
member of modern society. Computing technology has altered the ability of
governments to exert control; had enormous impact on global economics; led to
startling advances in scientific research; revolutionized the role of data collec-
tion, storage, and applications; provided new means for people to communicate
and interact; and has repeatedly challenged society’s status quo. The result is a
proliferation of subjects surrounding computer science, each of which is now a
significant field of study in its own right. Moreover, as with mechanical engi-
neering and physics, it is often difficult to draw a line between these fields and

Google
Founded in 1998, Google Inc. has become one of the world’s most recoginzed techol-
ogy companies. Its core service, the Google search engine, is used by millions of peo-
ple to find documents on the World Wide Web. In addition, Google provides
electronic mail service (called Gmail), an Internet based video sharing service (called
YouTube), and a host of other Internet services (including Google Maps, Google
Calendar, Google Earth, Google Books, and Google Translate).

However, in addition to being a prime example of the entrepreneurial spirit,
Google also provides examples of how expanding technology is challenging soci-
ety. For example, Google’s search engine has led to questions regarding the extent
to which an international company should comply with the wishes of individual
governments; YouTube has raised questions regarding the extent to which a com-
pany should be liable for information that others distribute through its services as
well as the degree to which the company can claim ownership of that information;
Google Books has generated concerns regarding the scope and limitations of
intelectual property rights; and Google Maps has been accused of violating
privacy rights.

10 Chapter 0 Introduction

computer science itself. Thus, to gain a proper perspective, our study will not
only cover topics central to the core of computer science but will also explore a
variety of disciplines dealing with both applications and consequences of the
science. Indeed, an introduction to computer science is an interdisciplinary
undertaking.

0.3 The Science of Algorithms
Conditions such as limited data storage capabilities and intricate, time-consuming
programming procedures restricted the complexity of the algorithms utilized in
early computing machines. However, as these limitations began to disappear,
machines were applied to increasingly larger and more complex tasks. As
attempts to express the composition of these tasks in algorithmic form began to
tax the abilities of the human mind, more and more research efforts were
directed toward the study of algorithms and the programming process.

It was in this context that the theoretical work of mathematicians began to
pay dividends. As a consequence of Gödel’s incompleteness theorem, mathe-
maticians had already been investigating those questions regarding algorithmic
processes that advancing technology was now raising. With that, the stage was
set for the emergence of a new discipline known as computer science.

Today, computer science has established itself as the science of algorithms. The
scope of this science is broad, drawing from such diverse subjects as mathematics,
engineering, psychology, biology, business administration, and linguistics. Indeed,
researchers in different branches of computer science may have very distinct defi-
nitions of the science. For example, a researcher in the field of computer architec-
ture may focus on the task of miniaturizing circuitry and thus view computer
science as the advancement and application of technology. But, a researcher in the
field of database systems may see computer science as seeking ways to make infor-
mation systems more useful. And, a researcher in the field of artificial intelligence
may regard computer science as the study of intelligence and intelligent behavior.

Thus, an introduction to computer science must include a variety of topics,
which is a task that we will pursue in the following chapters. In each case, our
goal will be to introduce the central ideas in the subject, the current topics of
research, and some of the techniques being applied to advance knowledge in the
area. With such a variety of topics, it is easy to lose track of the overall picture.
We therefore pause to collect our thoughts by identifying some questions that
provide a focus for its study.

• Which problems can be solved by algorithmic processes?
• How can the discovery of algorithms be made easier?
• How can the techniques of representing and communicating algorithms

be improved?
• How can the characteristics of different algorithms be analyzed

and compared?
• How can algorithms be used to manipulate information?
• How can algorithms be applied to produce intelligent behavior?
• How does the application of algorithms affect society?

Note that the theme common to all these questions is the study of algorithms
(Figure 0.5).

110.4 Abstraction

0.4 Abstraction
The concept of abstraction so permeates the study of computer science and the
design of computer systems that it behooves us to address it in this preliminary
chapter. The term abstraction, as we are using it here, refers to the distinction
between the external properties of an entity and the details of the entity’s inter-
nal composition. It is abstraction that allows us to ignore the internal details of a
complex device such as a computer, automobile, or microwave oven and use it as
a single, comprehensible unit. Moreover, it is by means of abstraction that such
complex systems are designed and manufactured in the first place. Computers,
automobiles, and microwave ovens are constructed from components, each of
which is constructed from smaller components. Each component represents a
level of abstraction at which the use of the component is isolated from the details
of the component’s internal composition.

It is by applying abstraction, then, that we are able to construct, analyze, and
manage large, complex computer systems, which would be overwhelming if
viewed in their entirety at a detailed level. At each level of abstraction, we view
the system in terms of components, called abstract tools, whose internal com-
position we ignore. This allows us to concentrate on how each component inter-
acts with other components at the same level and how the collection as a whole
forms a higher-level component. Thus we are able to comprehend the part of the
system that is relevant to the task at hand rather than being lost in a sea of details.

We emphasize that abstraction is not limited to science and technology. It is
an important simplification technique with which our society has created a
lifestyle that would otherwise be impossible. Few of us understand how the var-
ious conveniences of daily life are actually implemented. We eat food and wear
clothes that we cannot produce by ourselves. We use electrical devices and com-
munication systems without understanding the underlying technology. We use
the services of others without knowing the details of their professions. With
each new advancement, a small part of society chooses to specialize in its
implementation while the rest of us learn to use the results as abstract tools. In
this manner, society’s warehouse of abstract tools expands, and society’s ability
to progress increases.

Limitations of

Application of

Analysis of

Execution of

Representation ofDiscovery of

Communication of
Algorithms

Figure 0.5 The central role of algorithms in computer science

12 Chapter 0 Introduction

Abstraction is a recurring theme in our study. We will learn that computing
equipment is constructed in levels of abstract tools. We will also see that the
development of large software systems is accomplished in a modular fashion in
which each module is used as an abstract tool in larger modules. Moreover,
abstraction plays an important role in the task of advancing computer science
itself, allowing researchers to focus attention on particular areas within a com-
plex field. In fact, the organization of this text reflects this characteristic of the
science. Each chapter, which focuses on a particular area within the science, is
often surprisingly independent of the others, yet together the chapters form a
comprehensive overview of a vast field of study.

0.5 An Outline of Our Study
This text follows a bottom up approach to the study of computer science, begin-
ning with such hands-on topics as computer hardware and leading to the more
abstract topics such as algorithm complexity and computability. The result is
that our study follows a pattern of building larger and larger abstract tools as our
understanding of the subject expands.

We begin by considering topics dealing with the design and construction of
machines for executing algorithms. In Chapter 1 (Data Storage) we look at how
information is encoded and stored within modern computers, and in Chapter 2
(Data Manipulation) we investigate the basic internal operation of a simple com-
puter. Although part of this study involves technology, the general theme is tech-
nology independent. That is, such topics as digital circuit design, data encoding
and compression systems, and computer architecture are relevant over a wide
range of technology and promise to remain relevant regardless of the direction of
future technology.

In Chapter 3 (Operating Systems) we study the software that controls the
overall operation of a computer. This software is called an operating system. It is
a computer’s operating system that controls the interface between the machine
and its outside world, protecting the machine and the data stored within from
unauthorized access, allowing a computer user to request the execution of vari-
ous programs, and coordinating the internal activities required to fulfill the
user’s requests.

In Chapter 4 (Networking and the Internet) we study how computers are
connected to each other to form computer networks and how networks are con-
nected to form internets. This study leads to topics such as network protocols,
the Internet’s structure and internal operation, the World Wide Web, and numer-
ous issues of security.

Chapter 5 (Algorithms) introduces the study of algorithms from a more for-
mal perspective. We investigate how algorithms are discovered, identify sev-
eral fundamental algorithmic structures, develop elementary techniques for
representing algorithms, and introduce the subjects of algorithm efficiency
and correctness.

In Chapter 6 (Programming Languages) we consider the subject of algorithm
representation and the program development process. Here we find that the
search for better programming techniques has led to a variety of programming
methodologies or paradigms, each with its own set of programming languages.
We investigate these paradigms and languages as well as consider issues of gram-
mar and language translation.

130.6 Social Repercussions

Chapter 7 (Software Engineering) introduces the branch of computer science
known as software engineering, which deals with the problems encountered
when developing large software systems. The underlying theme is that the
design of large software systems is a complex task that embraces problems
beyond those of traditional engineering. Thus, the subject of software engineer-
ing has become an important field of research within computer science, drawing
from such diverse fields as engineering, project management, personnel man-
agement, programming language design, and even architecture.

In next two chapters we look at ways data can be organized within a com-
puter system. In Chapter 8 (Data Abstractions) we introduce techniques tradi-
tionally used for organizing data in a computer’s main memory and then trace
the evolution of data abstraction from the concept of primitives to today’s object-
oriented techniques. In Chapter 9 (Database Systems) we consider methods tra-
ditionally used for organizing data in a computer’s mass storage and investigate
how extremely large and complex database systems are implemented.

In Chapter 10 (Computer Graphics) we explore the subject of graphics and
animation, a field that deals with creating and photographing virtual worlds.
Based on advancements in the more traditional areas of computer science such
as machine architecture, algorithm design, data structures, and software engi-
neering, the discipline of graphics and animation has seen significant progress
and has now blossomed into an exciting, dynamic subject. Moreover, the field
exemplifies how various components of computer science combine with other
disciplines such as physics, art, and photography to produce striking results.

In Chapter 11 (Artificial Intelligence) we learn that in order to develop more
useful machines computer science has turned to the study of human intelli-
gence for leadership. The hope is that by understanding how our own minds rea-
son and perceive, researchers will be able to design algorithms that mimic these
processes and thus transfer these capabilities to machines. The result is the area
of computer science known as artificial intelligence, which leans heavily on
research in such areas as psychology, biology, and linguistics.

We close our study with Chapter 12 (Theory of Computation) by investigat-
ing the theoretical foundations of computer science—a subject that allows us to
understand the limitations of algorithms (and thus machines). Here we identify
some problems that cannot be solved algorithmically (and therefore lie beyond
the capabilities of machines) as well as learn that the solutions to many other
problems require such enormous time or space that they are also unsolvable
from a practical perspective. Thus, it is through this study that we are able to
grasp the scope and limitations of algorithmic systems.

In each chapter our goal is to explore to a depth that leads to a true under-
standing of the subject. We want to develop a working knowledge of computer
science—a knowledge that will allow you to understand the technical society in
which you live and to provide a foundation from which you can learn on your
own as science and technology advance.

0.6 Social Repercussions
Progress in computer science is blurring many distinctions on which our society
has based decisions in the past and is challenging many of society’s long-held
principles. In law, it generates questions regarding the degree to which intellec-
tual property can be owned and the rights and liabilities that accompany that

14 Chapter 0 Introduction

ownership. In ethics, it generates numerous options that challenge the traditional
principles on which social behavior is based. In government, it generates debates
regarding the extent to which computer technology and its applications should be
regulated. In philosophy, it generates contention between the presence of intelli-
gent behavior and the presence of intelligence itself. And, throughout society, it
generates disputes concerning whether new applications represent new free-
doms or new controls.

Although not a part of computer science itself, such topics are important for
those contemplating careers in computing or computer-related fields. Revelations
within science have sometimes found controversial applications, causing serious
discontent for the researchers involved. Moreover, an otherwise successful career
can quickly be derailed by an ethical misstep.

The ability to deal with the dilemmas posed by advancing computer technol-
ogy is also important for those outside its immediate realm. Indeed, technology is
infiltrating society so rapidly that few, if any, are independent of its effects.

This text provides the technical background needed to approach the dilem-
mas generated by computer science in a rational manner. However, technical
knowledge of the science alone does not provide solutions to all the questions
involved. With this in mind, this text includes several sections that are devoted to
social, ethical, and legal issues. These include security concerns, issues of soft-
ware ownership and liability, the social impact of database technology, and the
consequences of advances in artificial intelligence.

Moreover, there is often no definitive correct answer to a problem, and
many valid solutions are compromises between opposing (and perhaps equally
valid) views. Finding solutions in these cases often requires the ability to listen,
to recognize other points of view, to carry on a rational debate, and to alter one’s
own opinion as new insights are gained. Thus, each chapter of this text ends
with a collection of questions under the heading “Social Issues” that investigate
the relationship between computer science and society. These are not neces-
sarily questions to be answered. Instead, they are questions to be considered. In
many cases, an answer that may appear obvious at first will cease to satisfy you
as you explore alternatives. In short, the purpose of these questions is not to
lead you to a “correct” answer but rather to increase your awareness, including
your awareness of the various stakeholders in an issue, your awareness of alter-
natives, and your awareness of both the short- and long-term consequences of
those alternatives.

We close this section by introducing some of the approaches to ethics that
have been proposed by philosophers in their search for fundamental theories
that lead to principles for guiding decisions and behavior. Most of these theories
can be classified under the headings of consequence-based ethics, duty-based
ethics, contract-based ethics, and character-based ethics. You may wish to use
these theories as a means of approaching the ethical issues presented in the text.
In particular, you may find that different theories lead to contrasting conclusions
and thus expose hidden alternatives.

Consequence-based ethics attempts to analyze issues based on the conse-
quences of the various options. A leading example is utilitarianism that proposes
that the “correct” decision or action is the one that leads to the greatest good for
the largest portion of society. At first glance utilitarianism appears to be a fair
way of resolving ethical dilemmas. But, in its unqualified form, utilitarianism

150.6 Social Repercussions

leads to numerous unacceptable conclusions. For example, it would allow the
majority of a society to enslave a small minority. Moreover, many argue that
consequence-based approaches to ethical theories, which inherently emphasize
consequences, tend to view a human as merely a means to an end rather than as
a worthwhile individual. This, they continue, constitutes a fundamental flaw in
all consequence-based ethical theories.

In contrast to consequence-based ethics, duty-based ethics does not consider
the consequences of decisions and actions but instead proposes that members of
a society have certain intrinsic duties or obligations that in turn form the foun-
dation on which ethical questions should be resolved. For example, if one
accepts the obligation to respect the rights of others, then one must reject slav-
ery regardless of its consequences. On the other hand, opponents of duty-based
ethics argue that it fails to provide solutions to problems involving conflicting
duties. Should you tell the truth even if doing so destroys a colleague’s confi-
dence? Should a nation defend itself in war even though the ensuing battles will
lead to the death of many of its citizens?

Contract-based ethical theory begins by imagining society with no ethical
foundation at all. In this “state of nature” setting, anything goes—a situation in
which individuals must fend for themselves and constantly be on guard against
aggression from others. Under these circumstances, contract-based ethical the-
ory proposes that the members of the society would develop “contracts” among
themselves. For example, I won’t steal from you if you won’t steal from me. In
turn, these “contracts” would become the foundation for determining ethical
behavior. Note that contract-based ethical theory provides a motivation for ethi-
cal behavior—we should obey the “contracts of ethics” because we would other-
wise live an unpleasant life. However, opponents of contract-based ethical
theory argue that it does not provide a broad enough basis for resolving ethical
dilemmas since it provides guidance only in those cases in which contracts have
been established. (I can behave anyway I want in situations not covered by an
existing contract.) In particular, new technologies may present uncharted terri-
tory in which existing ethical contracts may not apply.

Character-based ethics (sometimes called virtue ethics), which was pro-
moted by Plato and Aristotle, argues that “good behavior” is not the result of
applying identifiable rules but instead is a natural consequence of “good char-
acter.” Whereas consequence-based ethics, duty-based ethics, and contract-
based ethics propose that a person resolve an ethical dilemma by asking, “What
are the consequences?”; “What are my duties?”; or “What contracts do I have?”
character-based ethics proposes that dilemmas be resolved by asking, “Who do
I want to be?” Thus, good behavior is obtained by building good character,
which is typically the result of sound upbringing and the development of vir-
tuous habits.

It is character-based ethics that underlies the approach normally taken when
“teaching” ethics to professionals in various fields. Rather than presenting specific
ethical theories, the approach is to introduce case studies that expose a variety of
ethical questions in the professionals’ area of expertise. Then, by discussing the
pros and cons in these cases, the professionals become more aware, insightful,
and sensitive to the perils lurking in their professional lives and thus grow in
character. This is the spirit in which the questions regarding social issues at the
end of each chapter are presented.

16 Chapter 0 Introduction

The following questions are intended as a guide to the ethical/social/legal issues
associated with the field of computing. The goal is not merely to answer these
questions. You should also consider why you answered as you did and whether
your justifications are consistent from one question to the next.

1. The premise that our society is different from what it would have been with-
out the computer revolution is generally accepted. Is our society better than
it would have been without the revolution? Is our society worse? Would your
answer differ if your position within society were different?

2. Is it acceptable to participate in today’s technical society without making an
effort to understand the basics of that technology? For instance, do members
of a democracy, whose votes often determine how technology will be sup-
ported and used, have an obligation to try to understand that technology?
Does your answer depend on which technology is being considered? For
example, is your answer the same when considering nuclear technology as
when considering computer technology?

3. By using cash in financial transactions, individuals have traditionally had the
option to manage their financial affairs without service charges. However, as
more of our economy is becoming automated, financial institutions are
implementing service charges for access to these automated systems. Is
there a point at which these charges unfairly restrict an individual’s access to
the economy? For example, suppose an employer pays employees only by
check, and all financial institutions were to place a service charge on check
cashing and depositing. Would the employees be unfairly treated? What if an
employer insists on paying only via direct deposit?

4. In the context of interactive television, to what extent should a company be
allowed to retrieve information from children (perhaps via an interactive
game format)? For example, should a company be allowed to obtain a child’s
report on his or her parents’ buying patterns? What about information about
the child?

5. To what extent should a government regulate computer technology and its
applications? Consider, for example, the issues mentioned in Questions 3
and 4. What justifies governmental regulation?

6. To what extent will our decisions regarding technology in general, and com-
puter technology in particular, affect future generations?

7. As technology advances, our educational system is constantly challenged to
reconsider the level of abstraction at which topics are presented. Many ques-
tions take the form of whether a skill is still necessary or whether students
should be allowed to rely on an abstract tool. Students of trigonometry are no
longer taught how to find the values of trigonometric functions using tables.
Instead, they use calculators as abstract tools to find these values. Some
argue that long division should also give way to abstraction. What other sub-
jects are involved with similar controversies? Do modern word processors
eliminate the need to develop spelling skills? Will the use of video technol-
ogy someday remove the need to read?

Social Issues

Goldstine, J. J. The Computer from Pascal to von Neumann. Princeton: Princeton
University Press, 1972.

Kizza, J. M. Ethical and Social Issues in the Information Age, 3rd ed. London:
Springer-Verlag, 2007.

17Additional Reading

8. The concept of public libraries is largely based on the premise that all citi-
zens in a democracy must have access to information. As more information
is stored and disseminated via computer technology, does access to this tech-
nology become a right of every individual? If so, should public libraries be
the channel by which this access is provided?

9. What ethical concerns arise in a society that relies on the use of abstract
tools? Are there cases in which it is unethical to use a product or service
without understanding how it works? Without knowing how it is produced?
Or, without understanding the byproducts of its use?

10. As our society becomes more automated, it becomes easier for governments
to monitor their citizens’ activities. Is that good or bad?

11. Which technologies that were imagined by George Orwell (Eric Blair) in his
novel 1984 have become reality? Are they being used in the manner in
which Orwell predicted?

12. If you had a time machine, in which period of history would you like to live?
Are there current technologies that you would like to take with you? Could
your choice of technologies be taken with you without taking others? To what
extent can one technology be separated from another? Is it consistent to
protest against global warming yet accept modern medical treatment?

13. Suppose your job requires that you reside in another culture. Should you
continue to practice the ethics of your native culture or adopt the ethics of
your host culture? Does your answer depend on whether the issue involves
dress code or human rights? Which ethical standards should prevail if you
continue to reside in your native culture but conduct business with a for-
eign culture?

14. Has society become too dependent on computer applications for commerce,
communications, or social interactions? For example, what would be the
consequences of a long-term interruption in Internet and/or cellular tele-
phone service?

15. Most smartphones are able to identify the phone’s location by means of GPS.
This allows applications to provide location-specific information (such as the
local news, local weather, or the presence of businesses in the immediate
area) based on the phone’s current location. However, such GPS capabilities
may also allow other applications to broadcast the phone’s location to other
parties. Is this good? How could knowledge of the phone’s location (thus
your location) be abused?

16. On the basis of your initial answers to the preceding questions, to which eth-
ical theory presented in Section 0.6 do you tend to subscribe?

Additional Reading

18 Chapter 0 Introduction

Mollenhoff, C. R. Atanasoff: Forgotten Father of the Computer. Ames: Iowa State
University Press, 1988.

Neumann, P. G. Computer Related Risks. Boston, MA: Addison-Wesley, 1995.

Ni, L. Smart Phone and Next Generation Mobile Computing. San Francisco: Morgan
Kaufmann, 2006.

Quinn, M. J. Ethics for the Information Age, 2nd ed. Boston, MA: Addison-
Wesley, 2006.

Randell, B. The Origins of Digital Computers, 3rd ed. New York: Springer-
Verlag, 1982.

Spinello, R. A. and H. T. Tavani. Readings in CyberEthics, 2nd ed. Sudbury, MA:
Jones and Bartlett, 2004.

Swade, D. The Difference Engine. New York: Viking, 2000.

Tavani, H. T. Ethics and Technology: Ethical Issues in an Age of Information and
Communication Technology, 3rd ed. New York: Wiley, 2011.

Woolley, B. The Bride of Science, Romance, Reason, and Byron’s Daughter. New
York: McGraw-Hill, 1999.

Data Storage

In this chapter, we consider topics associated with data represen-

tation and the storage of data within a computer. The types of data

we will consider include text, numeric values, images, audio, and

video. Much of the information in this chapter is also relevant to

fields other than traditional computing, such as digital photogra-

phy, audio/video recording and reproduction, and long-distance

communication.

C H A P T E R

1

1.1 Bits and Their Storage
Boolean Operations
Gates and Flip-Flops
Hexadecimal Notation

1.2 Main Memory
Memory Organization
Measuring Memory Capacity

1.3 Mass Storage
Magnetic Systems
Optical Systems
Flash Drives
File Storage and Retrieval

1.4 Representing
Information as Bit Patterns
Representing Text
Representing Numeric Values
Representing Images
Representing Sound

*1.5 The Binary System
Binary Notation
Binary Addition
Fractions in Binary

*1.6 Storing Integers
Two’s Complement Notation
Excess Notation

*1.7 Storing Fractions
Floating-Point Notation
Truncation Errors

*1.8 Data Compression
Generic Data Compression

Techniques
Compressing Images
Compressing Audio and Video

*1.9 Communication Errors
Parity Bits
Error-Correcting Codes

*Asterisks indicate suggestions for
optional sections.

20 Chapter 1 Data Storage

We begin our study of computer science by considering how information is
encoded and stored inside computers. Our first step is to discuss the basics of a
computer’s data storage devices and then to consider how information is
encoded for storage in these systems. We will explore the ramifications of today’s
data storage systems and how such techniques as data compression and error
handling are used to overcome their shortfalls.

1.1 Bits and Their Storage
Inside today’s computers information is encoded as patterns of 0s and 1s. These
digits are called bits (short for binary digits). Although you may be inclined to
associate bits with numeric values, they are really only symbols whose meaning
depends on the application at hand. Sometimes patterns of bits are used to rep-
resent numeric values; sometimes they represent characters in an alphabet and
punctuation marks; sometimes they represent images; and sometimes they rep-
resent sounds.

Boolean Operations
To understand how individual bits are stored and manipulated inside a com-
puter, it is convenient to imagine that the bit 0 represents the value false and
the bit 1 represents the value true because that allows us to think of manipulat-
ing bits as manipulating true/false values. Operations that manipulate
true/false values are called Boolean operations, in honor of the mathemati-
cian George Boole (1815–1864), who was a pioneer in the field of mathematics
called logic. Three of the basic Boolean operations are AND, OR, and XOR
(exclusive or) as summarized in Figure 1.1. These operations are similar to the
arithmetic operations TIMES and PLUS because they combine a pair of values
(the operation’s input) to produce a third value (the output). In contrast to
arithmetic operations, however, Boolean operations combine true/false values
rather than numeric values.

The Boolean operation AND is designed to reflect the truth or falseness of a
statement formed by combining two smaller, or simpler, statements with the
conjunction and. Such statements have the generic form

P AND Q

where P represents one statement and Q represents another—for example,

Kermit is a frog AND Miss Piggy is an actress.

The inputs to the AND operation represent the truth or falseness of the compound
statement’s components; the output represents the truth or falseness of the com-
pound statement itself. Since a statement of the form P AND Q is true only when
both of its components are true, we conclude that 1 AND 1 should be 1, whereas all
other cases should produce an output of 0, in agreement with Figure 1.1.

In a similar manner, the OR operation is based on compound statements of
the form

P OR Q

211.1 Bits and Their Storage

The AND operation

0
0
0

AND
0
1
0

AND
1
0
0

AND
1
1
1

AND

The OR operation

0
0
0

OR
0
1
1

OR
1
0
1

OR
1
1
1

OR

The XOR operation

0
0
0

XOR
0
1
1

XOR
1
0
1

XOR
1
1
0

XOR

Figure 1.1 The Boolean operations AND, OR, and XOR (exclusive or)

where, again, P represents one statement and Q represents another. Such state-
ments are true when at least one of their components is true, which agrees with
the OR operation depicted in Figure 1.1.

There is not a single conjunction in the English language that captures the
meaning of the XOR operation. XOR produces an output of 1 (true) when one of
its inputs is 1 (true) and the other is 0 (false). For example, a statement of the
form P XOR Q means “either P or Q but not both.” (In short, the XOR operation
produces an output of 1 when its inputs are different.)

The operation NOT is another Boolean operation. It differs from AND,
OR, and XOR because it has only one input. Its output is the opposite of that
input; if the input of the operation NOT is true, then the output is false, and
vice versa. Thus, if the input of the NOT operation is the truth or falseness of
the statement

Fozzie is a bear.

then the output would represent the truth or falseness of the statement

Fozzie is not a bear.

Gates and Flip-Flops
A device that produces the output of a Boolean operation when given the opera-
tion’s input values is called a gate. Gates can be constructed from a variety of
technologies such as gears, relays, and optic devices. Inside today’s computers,
gates are usually implemented as small electronic circuits in which the digits 0
and 1 are represented as voltage levels. We need not concern ourselves with such
details, however. For our purposes, it suffices to represent gates in their symbolic

22 Chapter 1 Data Storage

AND

Inputs Output

Inputs

0 0
0 1
1 0
1 1

Output

0
0
0
1

XOR

Inputs Output

Inputs

0 0
0 1
1 0
1 1

Output

0
1
1
0

OR

Inputs Output

Inputs

0 0
0 1
1 0
1 1

Output

0
1
1
1

NOT

Inputs Output

Inputs

0
1

Output

1
0

Figure 1.2 A pictorial representation of AND, OR, XOR, and NOT gates as well as their input
and output values

form, as shown in Figure 1.2. Note that the AND, OR, XOR, and NOT gates are
represented by distinctively shaped symbols, with the input values entering on
one side and the output exiting on the other.

Gates provide the building blocks from which computers are constructed.
One important step in this direction is depicted in the circuit in Figure 1.3. This is
a particular example from a collection of circuits known as a flip-flop. A flip-flop
is a circuit that produces an output value of 0 or 1, which remains constant until a
pulse (a temporary change to a 1 that returns to 0) from another circuit causes it
to shift to the other value. In other words, the output will flip or flop between two
values under control of external stimuli. As long as both inputs in the circuit in
Figure 1.3 remain 0, the output (whether 0 or 1) will not change. However, tem-
porarily placing a 1 on the upper input will force the output to be 1, whereas tem-
porarily placing a 1 on the lower input will force the output to be 0.

Let us consider this claim in more detail. Without knowing the current output
of the circuit in Figure 1.3, suppose that the upper input is changed to 1 while the
lower input remains 0 (Figure 1.4a). This will cause the output of the OR gate to
be 1, regardless of the other input to this gate. In turn, both inputs to the AND
gate will now be 1, since the other input to this gate is already 1 (the output pro-
duced by the NOT gate whenever the lower input of the flip-flop is at 0). The out-
put of the AND gate will then become 1, which means that the second input to

231.1 Bits and Their Storage

Input

Input

Output

Figure 1.3 A simple flip-flop circuit

the OR gate will now be 1 (Figure 1.4b). This guarantees that the output of the
OR gate will remain 1, even when the upper input to the flip-flop is changed
back to 0 (Figure 1.4c). In summary, the flip-flop’s output has become 1, and this
output value will remain after the upper input returns to 0.

In a similar manner, temporarily placing the value 1 on the lower input will
force the flip-flop’s output to be 0, and this output will persist after the input
value returns to 0.

c. The 1 from the AND gate keeps the OR gate from
 changing after the upper input returns to 0.

0

0

1

1

1

1

a. 1 is placed on the upper input.

0

1

b. This causes the output of the OR gate to be 1 and,
 in turn, the output of the AND gate to be 1.

0

1

1

1

1

1

Figure 1.4 Setting the output of a flip-flop to 1

24 Chapter 1 Data Storage

Our purpose in introducing the flip-flop circuit in Figures 1.3 and 1.4 is
threefold. First, it demonstrates how devices can be constructed from gates, a
process known as digital circuit design, which is an important topic in computer
engineering. Indeed, the flip-flop is only one of many circuits that are basic tools
in computer engineering.

Second, the concept of a flip-flop provides an example of abstraction and the
use of abstract tools. Actually, there are other ways to build a flip-flop. One alter-
native is shown in Figure 1.5. If you experiment with this circuit, you will find
that, although it has a different internal structure, its external properties are the
same as those of Figure 1.3. A computer engineer does not need to know which
circuit is actually used within a flip-flop. Instead, only an understanding of the
flip-flop’s external properties is needed to use it as an abstract tool. A flip-flop,
along with other well-defined circuits, forms a set of building blocks from which
an engineer can construct more complex circuitry. In turn, the design of com-
puter circuitry takes on a hierarchical structure, each level of which uses the
lower level components as abstract tools.

The third purpose for introducing the flip-flop is that it is one means of stor-
ing a bit within a modern computer. More precisely, a flip-flop can be set to have
the output value of either 0 or 1. Other circuits can adjust this value by sending
pulses to the flip-flop’s inputs, and still other circuits can respond to the stored
value by using the flip-flop’s output as their inputs. Thus, many flip-flops, con-
structed as very small electrical circuits, can be used inside a computer as a
means of recording information that is encoded as patterns of 0s and 1s. Indeed,
technology known as very large-scale integration (VLSI), which allows mil-
lions of electrical components to be constructed on a wafer (called a chip), is
used to create miniature devices containing millions of flip-flops along with their
controlling circuitry. In turn, these chips are used as abstract tools in the con-
struction of computer systems. In fact, in some cases VLSI is used to create an
entire computer system on a single chip.

Hexadecimal Notation
When considering the internal activities of a computer, we must deal with pat-
terns of bits, which we will refer to as a string of bits, some of which can be quite
long. A long string of bits is often called a stream. Unfortunately, streams are
difficult for the human mind to comprehend. Merely transcribing the pattern
101101010011 is tedious and error prone. To simplify the representation of such
bit patterns, therefore, we usually use a shorthand notation called hexadecimal

Input

Input
Output

Figure 1.5 Another way of constructing a flip-flop

251.1 Bits and Their Storage

notation, which takes advantage of the fact that bit patterns within a machine
tend to have lengths in multiples of four. In particular, hexadecimal notation uses
a single symbol to represent a pattern of four bits. For example, a string of twelve
bits can be represented by three hexadecimal symbols.

Figure 1.6 presents the hexadecimal encoding system. The left column dis-
plays all possible bit patterns of length four; the right column shows the symbol
used in hexadecimal notation to represent the bit pattern to its left. Using this
system, the bit pattern 10110101 is represented as B5. This is obtained by dividing
the bit pattern into substrings of length four and then representing each sub-
string by its hexadecimal equivalent—1011 is represented by B, and 0101 is repre-
sented by 5. In this manner, the 16-bit pattern 1010010011001000 can be reduced
to the more palatable form A4C8.

We will use hexadecimal notation extensively in the next chapter. There you
will come to appreciate its efficiency.

Figure 1.6 The hexadecimal encoding system

Questions & Exercises

1. What input bit patterns will cause the following circuit to produce an
output of 1?

2. In the text, we claimed that placing a 1 on the lower input of the flip-flop
in Figure 1.3 (while holding the upper input at 0) will force the flip-flop’s
output to be 0. Describe the sequence of events that occurs within the
flip-flop in this case.

Inputs Output

3. Assuming that both inputs to the flip-flop in Figure 1.5 are 0, describe the
sequence of events that occurs when the upper input is temporarily set to 1.

4. a. If the output of an AND gate is passed through a NOT gate, the com-
bination computes the Boolean operation called NAND, which has an
output of 0 only when both its inputs are 1. The symbol for a NAND
gate is the same as an AND gate except that it has a circle at its output.
The following is a circuit containing a NAND gate. What Boolean oper-
ation does the circuit compute?

26 Chapter 1 Data Storage

1.2 Main Memory
For the purpose of storing data, a computer contains a large collection of circuits
(such as flip-flops), each capable of storing a single bit. This bit reservoir is
known as the machine’s main memory.

Memory Organization
A computer’s main memory is organized in manageable units called cells, with
a typical cell size being eight bits. (A string of eight bits is called a byte. Thus, a
typical memory cell has a capacity of one byte.) Small computers used in such
household devices as microwave ovens may have main memories consisting of
only a few hundred cells, whereas large computers may have billions of cells in
their main memories.

Input

Input

Input

Output

Input

b. If the output of an OR gate is passed through a NOT gate, the combi-
nation computes the Boolean operation called NOR that has an output
of 1 only when both its inputs are 0. The symbol for a NOR gate is the
same as an OR gate except that it has a circle at its output. The fol-
lowing is a circuit containing an AND gate and two NOR gates. What
Boolean operation does the circuit compute?

5. Use hexadecimal notation to represent the following bit patterns:

a. 0110101011110010 b. 111010000101010100010111
c. 01001000

6. What bit patterns are represented by the following hexadecimal patterns?

a. 5FD97 b. 610A c. ABCD d. 0100

271.2 Main Memory

Although there is no left or right within a computer, we normally envision the
bits within a memory cell as being arranged in a row. The left end of this row is
called the high-order end, and the right end is called the low-order end. The left-
most bit is called either the high-order bit or the most significant bit in reference
to the fact that if the contents of the cell were interpreted as representing a numeric
value, this bit would be the most significant digit in the number. Similarly, the right-
most bit is referred to as the low-order bit or the least significant bit. Thus we may
represent the contents of a byte-size memory cell as shown in Figure 1.7.

To identify individual cells in a computer’s main memory, each cell is
assigned a unique “name,” called its address. The system is analogous to the tech-
nique of identifying houses in a city by addresses. In the case of memory cells,
however, the addresses used are entirely numeric. To be more precise, we envi-
sion all the cells being placed in a single row and numbered in this order starting
with the value zero. Such an addressing system not only gives us a way of
uniquely identifying each cell but also associates an order to the cells (Figure 1.8),
giving us phrases such as “the next cell” or “the previous cell.”

An important consequence of assigning an order to both the cells in main
memory and the bits within each cell is that the entire collection of bits within a
computer’s main memory is essentially ordered in one long row. Pieces of this
long row can therefore be used to store bit patterns that may be longer than the
length of a single cell. In particular, we can still store a string of 16 bits merely by
using two consecutive memory cells.

To complete the main memory of a computer, the circuitry that actually
holds the bits is combined with the circuitry required to allow other circuits to

High-order end Low-order end0 1 0 1 1 0 1 0

Most
significant
bit

Least
significant
bit

Figure 1.7 The organization of a byte-size memory cell

10111110
00011110

10000110
01110010

Cell
7

11110001

Cell
6

00110111

Cell
5

10110001

Cell
4

10100001

Cell
3

01011110

Cell
2

01101101

Cell
1

10001101

Cell
0

10111010

Cell
11

Cell
10

Cell
9

Cell
8

Figure 1.8 Memory cells arranged by address

28 Chapter 1 Data Storage

store and retrieve data from the memory cells. In this way, other circuits can get
data from the memory by electronically asking for the contents of a certain
address (called a read operation), or they can record information in the memory
by requesting that a certain bit pattern be placed in the cell at a particular
address (called a write operation).

Because a computer’s main memory is organized as individual, addressable
cells, the cells can be accessed independently as required. To reflect the ability to
access cells in any order, a computer’s main memory is often called random
access memory (RAM). This random access feature of main memory is in
stark contrast to the mass storage systems that we will discuss in the next sec-
tion, in which long strings of bits are manipulated as amalgamated blocks.

Although we have introduced flip-flops as a means of storing bits, the RAM in
most modern computers is constructed using other technologies that provide
greater miniaturization and faster response time. Many of these technologies store
bits as tiny electric charges that dissipate quickly. Thus these devices require addi-
tional circuitry, known as a refresh circuit, that repeatedly replenishes the charges
many times a second. In recognition of this volatility, computer memory con-
structed from such technology is often called dynamic memory, leading to the
term DRAM (pronounced “DEE–ram”) meaning Dynamic RAM. Or, at times the
term SDRAM (pronounced “ES-DEE-ram”), meaning Synchronous DRAM, is used
in reference to DRAM that applies additional techniques to decrease the time
needed to retrieve the contents from its memory cells.

Measuring Memory Capacity
As we will learn in the next chapter, it is convenient to design main memory systems
in which the total number of cells is a power of two. In turn, the size of the memo-
ries in early computers were often measured in 1024 (which is 210) cell units. Since
1024 is close to the value 1000, the computing community adopted the prefix kilo in
reference to this unit. That is, the term kilobyte (abbreviated KB) was used to refer to
1024 bytes. Thus, a machine with 4096 memory cells was said to have a 4KB mem-
ory (4096 � 4 � 1024). As memories became larger, this terminology grew to include
MB (megabyte), GB (gigabyte), and TB (terabyte). Unfortunately, this application of
prefixes kilo-, mega-, and so on, represents a misuse of terminology because these
are already used in other fields in reference to units that are powers of a thousand.
For example, when measuring distance, kilometer refers to 1000 meters, and when
measuring radio frequencies, megahertz refers to 1,000,000 hertz. Thus, a word of
caution is in order when using this terminology. As a general rule, terms such as
kilo-, mega-, etc. refer to powers of two when used in the context of a computer’s
memory, but they refer to powers of a thousand when used in other contexts.

Questions & Exercises

1. If the memory cell whose address is 5 contains the value 8, what is the
difference between writing the value 5 into cell number 6 and moving
the contents of cell number 5 into cell number 6?

2. Suppose you want to interchange the values stored in memory cells 2
and 3. What is wrong with the following sequence of steps:
Step 1. Move the contents of cell number 2 to cell number 3.
Step 2. Move the contents of cell number 3 to cell number 2.

291.3 Mass Storage

1.3 Mass Storage
Due to the volatility and limited size of a computer’s main memory, most computers
have additional memory devices called mass storage (or secondary storage) sys-
tems, including magnetic disks, CDs, DVDs, magnetic tapes, and flash drives (all of
which we will discuss shortly). The advantages of mass storage systems over main
memory include less volatility, large storage capacities, low cost, and in many cases,
the ability to remove the storage medium from the machine for archival purposes.

The terms on-line and off-line are often used to describe devices that can be
either attached to or detached from a machine. On-line means that the device or
information is connected and readily available to the machine without human
intervention. Off-line means that human intervention is required before the
device or information can be accessed by the machine—perhaps because the
device must be turned on, or the medium holding the information must be
inserted into some mechanism.

A major disadvantage of mass storage systems is that they typically require
mechanical motion and therefore require significantly more time to store and
retrieve data than a machine’s main memory, where all activities are per-
formed electronically.

Magnetic Systems
For years, magnetic technology has dominated the mass storage arena. The most
common example in use today is the magnetic disk, in which a thin spinning
disk with magnetic coating is used to hold data (Figure 1.9). Read/write heads are
placed above and/or below the disk so that as the disk spins, each head traverses
a circle, called a track. By repositioning the read/write heads, different concen-
tric tracks can be accessed. In many cases, a disk storage system consists of sev-
eral disks mounted on a common spindle, one on top of the other, with enough
space for the read/write heads to slip between the platters. In such cases, the

Design a sequence of steps that correctly interchanges the contents of
these cells. If needed, you may use additional cells.

3. How many bits would be in the memory of a computer with 4KB memory?

Track divided
into sectors

Disk
Read/write head

Disk motion

Arm motion

Access arm

Figure 1.9 A disk storage system

30 Chapter 1 Data Storage

read/write heads move in unison. Each time the read/write heads are reposi-
tioned, a new set of tracks—which is called a cylinder—becomes accessible.

Since a track can contain more information than we would normally want
to manipulate at any one time, each track is divided into small arcs called
sectors on which information is recorded as a continuous string of bits. All sec-
tors on a disk contain the same number of bits (typical capacities are in the
range of 512 bytes to a few KB), and in the simplest disk storage systems each
track contains the same number of sectors. Thus, the bits within a sector on a
track near the outer edge of the disk are less compactly stored than those on the
tracks near the center, since the outer tracks are longer than the inner ones. In
fact, in high capacity disk storage systems, the tracks near the outer edge are
capable of containing significantly more sectors than those near the center, and
this capability is often utilized by applying a technique called zoned-bit
recording. Using zoned-bit recording, several adjacent tracks are collectively
known as zones, with a typical disk containing approximately ten zones. All
tracks within a zone have the same number of sectors, but each zone has more
sectors per track than the zone inside of it. In this manner, efficient utilization
of the entire disk surface is achieved. Regardless of the details, a disk storage
system consists of many individual sectors, each of which can be accessed as an
independent string of bits.

The location of tracks and sectors is not a permanent part of a disk’s physical
structure. Instead, they are marked magnetically through a process called
formatting (or initializing) the disk. This process is usually performed by the
disk’s manufacturer, resulting in what are known as formatted disks. Most com-
puter systems can also perform this task. Thus, if the format information on a
disk is damaged, the disk can be reformatted, although this process destroys all
the information that was previously recorded on the disk.

The capacity of a disk storage system depends on the number of platters
used and the density in which the tracks and sectors are placed. Lower-capacity
systems may consist of a single platter. High-capacity disk systems, capable of
holding many gigabytes, or even terabytes, consist of perhaps three to six plat-
ters mounted on a common spindle. Furthermore, data may be stored on both
the upper and lower surfaces of each platter.

Several measurements are used to evaluate a disk system’s performance: (1)
seek time (the time required to move the read/write heads from one track to
another); (2) rotation delay or latency time (half the time required for the disk
to make a complete rotation, which is the average amount of time required for
the desired data to rotate around to the read/write head once the head has been
positioned over the desired track); (3) access time (the sum of seek time and
rotation delay); and (4) transfer rate (the rate at which data can be transferred
to or from the disk). (Note that in the case of zone-bit recording, the amount of
data passing a read/write head in a single disk rotation is greater for tracks in an
outer zone than for an inner zone, and therefore the data transfer rate varies
depending on the portion of the disk being used.)

A factor limiting the access time and transfer rate is the speed at which a
disk system rotates. To facilitate fast rotation speeds, the read/write heads in
these systems do not touch the disk but instead “float” just off the surface. The
spacing is so close that even a single particle of dust could become jammed
between the head and disk surface, destroying both (a phenomenon known as a
head crash). Thus, disk systems are typically housed in cases that are sealed at
the factory. With this construction, disk systems are able to rotate at speeds of

311.3 Mass Storage

several thousands times per second, achieving transfer rates that are measured
in MB per second.

Since disk systems require physical motion for their operation, these sys-
tems suffer when compared to speeds within electronic circuitry. Delay times
within an electronic circuit are measured in units of nanoseconds (billionths of a
second) or less, whereas seek times, latency times, and access times of disk sys-
tems are measured in milliseconds (thousandths of a second). Thus the time
required to retrieve information from a disk system can seem like an eternity to
an electronic circuit awaiting a result.

Disk storage systems are not the only mass storage devices that apply mag-
netic technology. An older form of mass storage using magnetic technology is
magnetic tape (Figure 1.10). In these systems, information is recorded on the
magnetic coating of a thin plastic tape that is wound on a reel for storage. To
access the data, the tape is mounted in a device called a tape drive that typically
can read, write, and rewind the tape under control of the computer. Tape drives
range in size from small cartridge units, called streaming tape units, which use
tape similar in appearance to that in stereo systems to older, large reel-to-reel
units. Although the capacity of these devices depends on the format used, most
can hold many GB.

A major disadvantage of magnetic tape is that moving between different posi-
tions on a tape can be very time-consuming owing to the significant amount of
tape that must be moved between the reels. Thus tape systems have much longer
data access times than magnetic disk systems in which different sectors can be
accessed by short movements of the read/write head. In turn, tape systems are not
popular for on-line data storage. Instead, magnetic tape technology is reserved for
off-line archival data storage applications where its high capacity, reliability, and
cost efficiency are beneficial, although advances in alternatives, such as DVDs and
flash drives, are rapidly challenging this last vestige of magnetic tape.

Optical Systems
Another class of mass storage systems applies optical technology. An example is
the compact disk (CD). These disks are 12 centimeters (approximately 5 inches)
in diameter and consist of reflective material covered with a clear protective
coating. Information is recorded on them by creating variations in their reflective

Tape reel

Tape Tape

Take-up reel

Read/write
head

Tape motion

Figure 1.10 A magnetic tape storage mechanism

32 Chapter 1 Data Storage

surfaces. This information can then be retrieved by means of a laser beam that
detects irregularities on the reflective surface of the CD as it spins.

CD technology was originally applied to audio recordings using a recording
format known as CD-DA (compact disk-digital audio), and the CDs used today
for computer data storage use essentially the same format. In particular, informa-
tion on these CDs is stored on a single track that spirals around the CD like a
groove in an old-fashioned record, however, unlike old-fashioned records, the track
on a CD spirals from the inside out (Figure 1.11). This track is divided into units
called sectors, each with its own identifying markings and a capacity of 2KB of
data, which equates to 1⁄75 of a second of music in the case of audio recordings.

Note that the distance around the spiraled track is greater toward the outer
edge of the disk than at the inner portion. To maximize the capacity of a CD,
information is stored at a uniform linear density over the entire spiraled track,
which means that more information is stored in a loop around the outer portion
of the spiral than in a loop around the inner portion. In turn, more sectors will be
read in a single revolution of the disk when the laser beam is scanning the outer
portion of the spiraled track than when the beam is scanning the inner portion of
the track. Thus, to obtain a uniform rate of data transfer, CD-DA players are
designed to vary the rotation speed depending on the location of the laser beam.
However, most CD systems used for computer data storage spin at a faster, con-
stant speed and thus must accommodate variations in data transfer rates.

As a consequence of such design decisions, CD storage systems perform best
when dealing with long, continuous strings of data, as when reproducing music. In
contrast, when an application requires access to items of data in a random manner,
the approach used in magnetic disk storage (individual, concentric tracks divided
into individually accessible sectors) outperforms the spiral approach used in CDs.

Traditional CDs have capacities in the range of 600 to 700MB. However,
DVDs (Digital Versatile Disks), which are constructed from multiple, semi-
transparent layers that serve as distinct surfaces when viewed by a precisely
focused laser, provide storage capacities of several GB. Such disks are capable of
storing lengthy multimedia presentations, including entire motion pictures.
Finally, Blu-ray technology, which uses a laser in the blue-violet spectrum of
light (instead of red), is able to focus its laser beam with very fine precision. As a

Disk motion

CD

Data recorded on a single track,
consisting of individual sectors,
that spirals toward the outer edge

Figure 1.11 CD storage format

331.3 Mass Storage

result, BDs (Blu-ray Disks) provides over five times the capacity of a DVD.
This seemingly vast amount of storage is needed to meet the demands of high
definition video.

Flash Drives
A common property of mass storage systems based on magnetic or optic tech-
nology is that physical motion, such as spinning disks, moving read/write heads,
and aiming laser beams, is required to store and retrieve data. This means that
data storage and retrieval is slow compared to the speed of electronic circuitry.
Flash memory technology has the potential of alleviating this drawback. In a
flash memory system, bits are stored by sending electronic signals directly to the
storage medium where they cause electrons to be trapped in tiny chambers of
silicon dioxide, thus altering the characteristics of small electronic circuits. Since
these chambers are able to hold their captive electrons for many years, this tech-
nology is suitable for off-line storage of data.

Although data stored in flash memory systems can be accessed in small
byte-size units as in RAM applications, current technology dictates that stored
data be erased in large blocks. Moreover, repeated erasing slowly damages the
silicon dioxide chambers, meaning that current flash memory technology is not
suitable for general main memory applications where its contents might be
altered many times a second. However, in those applications in which alter-
ations can be controlled to a reasonable level, such as in digital cameras, cellu-
lar telephones, and hand-held PDAs, flash memory has become the mass
storage technology of choice. Indeed, since flash memory is not sensitive to
physical shock (in contrast to magnetic and optic systems) its potential in
portable applications is enticing.

Flash memory devices called flash drives, with capacities of up to a few
hundred GBs, are available for general mass storage applications. These units are
packaged in small plastic cases approximately three inches long with a remov-
able cap on one end to protect the unit’s electrical connector when the drive is
off-line. The high capacity of these portable units as well as the fact that they are
easily connected to and disconnected from a computer make them ideal for off-
line data storage. However, the vulnerability of their tiny storage chambers dic-
tates that they are not as reliable as optical disks for truly long term applications.

Another application of flash technology is found in SD (Secure Digital)
memory cards (or just SD Card). These provide up to two GBs of storage and are
packaged in a plastic rigged wafer about the size a postage stamp (SD cards are also
available in smaller mini and micro sizes), SDHC (High Capacity) memory
cards can provide up to 32 GBs and the next generation SDXC (Extended
Capacity) memory cards may exceed a TB. Given their compact physical size,
these cards conveniently slip into slots of small electronic devices. Thus, they are
ideal for digital cameras, smartphones, music players, car navigation systems, and
a host of other electronic appliances.

File Storage and Retrieval
Information stored in a mass storage system is conceptually grouped into large
units called files. A typical file may consist of a complete text document, a photo-
graph, a program, a music recording, or a collection of data about the employees in

34 Chapter 1 Data Storage

a company. We have seen that mass storage devices dictate that these files be
stored and retrieved in smaller, multiple byte units. For example, a file stored on a
magnetic disk must be manipulated by sectors, each of which is a fixed predeter-
mined size. A block of data conforming to the specific characteristics of a storage
device is called a physical record. Thus, a large file stored in mass storage will
typically consist of many physical records.

In contrast to this division into physical records, a file often has natural divi-
sions determined by the information represented. For example, a file containing
information regarding a company’s employees would consist of multiple units,
each consisting of the information about one employee. Or, a file containing a
text document would consist of paragraphs or pages. These naturally occurring
blocks of data are called logical records.

Logical records often consist of smaller units called fields. For example, a
logical record containing information about an employee would probably consist
of fields such as name, address, employee identification number, etc. Sometimes
each logical record within a file is uniquely identified by means of a particular
field within the record (perhaps an employee’s identification number, a part
number, or a catalogue item number). Such an identifying field is called a key
field. The value held in a key field is called a key.

Logical record sizes rarely match the physical record size dictated by a mass
storage device. In turn, one may find several logical records residing within a sin-
gle physical record or perhaps a logical record split between two or more physical
records (Figure 1.12). The result is that a certain amount of unscrambling is asso-
ciated with retrieving data from mass storage systems. A common solution to this
problem is to set aside an area of main memory that is large enough to hold sev-
eral physical records and to use this memory space as a regrouping area. That is,
blocks of data compatible with physical records can be transferred between this
main memory area and the mass storage system, while the data residing in the
main memory area can be referenced in terms of logical records.

An area of memory used in this manner is called a buffer. In general, a
buffer is a storage area used to hold data on a temporary basis, usually during the
process of being transferred from one device to another. For example, modern

Logical records correspond
to natural divisions within the data

Physical records correspond
to the size of a sector

Figure 1.12 Logical records versus physical records on a disk

351.4 Representing Information as Bit Patterns

printers contain memory circuitry of their own, a large part of which is used as a
buffer for holding portions of a document that have been received by the printer
but not yet printed.

Questions & Exercises

1. What is gained by increasing the rotation speed of a disk or CD?
2. When recording data on a multiple-disk storage system, should we fill a

complete disk surface before starting on another surface, or should we
first fill an entire cylinder before starting on another cylinder?

3. Why should the data in a reservation system that is constantly being
updated be stored on a magnetic disk instead of a CD or DVD?

4. Sometimes, when modifying a document with a word processor, adding
text does not increase the apparent size of the file in mass storage, but at
other times the addition of a single symbol can increase the apparent
size of the file by several hundred bytes. Why?

5. What advantage do flash drives have over the other mass storage systems
introduced in this section?

6. What is a buffer?

1.4 Representing Information as Bit Patterns
Having considered techniques for storing bits, we now consider how information
can be encoded as bit patterns. Our study focuses on popular methods for encod-
ing text, numerical data, images, and sound. Each of these systems has repercus-
sions that are often visible to a typical computer user. Our goal is to understand
enough about these techniques so that we can recognize their consequences for
what they are.

Representing Text
Information in the form of text is normally represented by means of a code in
which each of the different symbols in the text (such as the letters of the alpha-
bet and punctuation marks) is assigned a unique bit pattern. The text is then rep-
resented as a long string of bits in which the successive patterns represent the
successive symbols in the original text.

In the 1940s and 1950s, many such codes were designed and used in con-
nection with different pieces of equipment, producing a corresponding prolifera-
tion of communication problems. To alleviate this situation, the American
National Standards Institute (ANSI, pronounced “AN–see”) adopted the
American Standard Code for Information Interchange (ASCII, pronounced
“AS–kee”). This code uses bit patterns of length seven to represent the upper-
and lowercase letters of the English alphabet, punctuation symbols, the digits 0
through 9, and certain control information such as line feeds, carriage returns,
and tabs. ASCII is extended to an eight-bit-per-symbol format by adding a 0 at the
most significant end of each of the seven-bit patterns. This technique not only

36 Chapter 1 Data Storage

produces a code in which each pattern fits conveniently into a typical byte-size
memory cell but also provides 128 additional bit patterns (those obtained by
assigning the extra bit the value 1) that can be used to represent symbols beyond
the English alphabet and associated punctuation.

A portion of ASCII in its eight-bit-per-symbol format is shown in Appendix A.
By referring to this appendix, we can decode the bit pattern

01001000 01100101 01101100 01101100 01101111 00101110

as the message “Hello.” as demonstrated in Figure 1.13.
The International Organization for Standardization (also known as ISO,

in reference to the Greek word isos, meaning equal) has developed a number of
extensions to ASCII, each of which were designed to accommodate a major lan-
guage group. For example, one standard provides the symbols needed to express
the text of most Western European languages. Included in its 128 additional pat-
terns are symbols for the British pound and the German vowels ä, ö, and ü.

The ISO extended ASCII standards made tremendous headway toward sup-
porting all of the world’s multilingual communication; however, two major obsta-
cles surfaced. First, the number of extra bit patterns available in extended ASCII
is simply insufficient to accommodate the alphabet of many Asian and some
Eastern European languages. Second, because a given document was con-
strained to using symbols in just the one selected standard, documents contain-
ing text of languages from disparate language groups could not be supported.
Both proved to be a significant detriment to international use. To address this
deficiency, Unicode, was developed through the cooperation of several of the
leading manufacturers of hardware and software and has rapidly gained the sup-
port in the computing community. This code uses a unique pattern of 16 bits
to represent each symbol. As a result, Unicode consists of 65,536 different bit
patterns—enough to allow text written in such languages as Chinese, Japanese,
and Hebrew to be represented.

A file consisting of a long sequence of symbols encoded using ASCII or
Unicode is often called a text file. It is important to distinguish between simple
text files that are manipulated by utility programs called text editors (or often
simply editors) and the more elaborate files produced by word processors such
as Microsoft’s Word. Both consist of textual material. However, a text file contains
only a character-by-character encoding of the text, whereas a file produced by a
word processor contains numerous proprietary codes representing changes in
fonts, alignment information, etc.

Representing Numeric Values
Storing information in terms of encoded characters is inefficient when the infor-
mation being recorded is purely numeric. To see why, consider the problem of
storing the value 25. If we insist on storing it as encoded symbols in ASCII using
one byte per symbol, we need a total of 16 bits. Moreover, the largest number

01001000

H

01101100

I

01101100

I

01101111

o

00101110

.

01100101

e

Figure 1.13 The message “Hello.” in ASCII

371.4 Representing Information as Bit Patterns

The American National Standards Institute
The American National Standards Institute (ANSI) was founded in 1918 by a small
consortium of engineering societies and government agencies as a nonprofit federa-
tion to coordinate the development of voluntary standards in the private sector.
Today, ANSI membership includes more than 1300 businesses, professional organi-
zations, trade associations, and government agencies. ANSI is headquartered in New
York and represents the United States as a member body in the ISO. The Web site for
the American National Standards Institute is at http://www.ansi.org.

Similar organizations in other countries include Standards Australia (Australia),
Standards Council of Canada (Canada), China State Bureau of Quality and Technical
Supervision (China), Deutsches Institut für Normung (Germany), Japanese Industrial
Standards Committee (Japan), Dirección General de Normas (Mexico), State Committee
of the Russian Federation for Standardization and Metrology (Russia), Swiss
Association for Standardization (Switzerland), and British Standards Institution
(United Kingdom).

we could store using 16 bits is 99. However, as we will shortly see, by using
binary notation we can store any integer in the range from 0 to 65535 in these
16 bits. Thus, binary notation (or variations of it) is used extensively for encoded
numeric data for computer storage.

Binary notation is a way of representing numeric values using only the digits
0 and 1 rather than the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 as in the traditional dec-
imal, or base ten, system. We will study the binary system more thoroughly in
Section 1.5. For now, all we need is an elementary understanding of the system.
For this purpose consider an old-fashioned car odometer whose display wheels
contain only the digits 0 and 1 rather than the traditional digits 0 through 9. The
odometer starts with a reading of all 0s, and as the car is driven for the first few
miles, the rightmost wheel rotates from a 0 to a 1. Then, as that 1 rotates back to
a 0, it causes a 1 to appear to its left, producing the pattern 10. The 0 on the right
then rotates to a 1, producing 11. Now the rightmost wheel rotates from 1 back to
0, causing the 1 to its left to rotate to a 0 as well. This in turn causes another 1 to
appear in the third column, producing the pattern 100. In short, as we drive the
car we see the following sequence of odometer readings:

0000

0001

0010

0011

0100

0101

0110

0111

1000

This sequence consists of the binary representations of the integers zero
through eight. Although tedious, we could extend this counting technique to dis-
cover that the bit pattern consisting of sixteen 1s represents the value 65535,

http://www.ansi.org
http://www.ansi.org

38 Chapter 1 Data Storage

which confirms our claim that any integer in the range from 0 to 65535 can be
encoded using 16 bits.

Due to this efficiency, it is common to store numeric information in a form of
binary notation rather than in encoded symbols. We say “a form of binary nota-
tion” because the straightforward binary system just described is only the basis for
several numeric storage techniques used within machines. Some of these varia-
tions of the binary system are discussed later in this chapter. For now, we merely
note that a system called two’s complement notation (see Section 1.6) is com-
mon for storing whole numbers because it provides a convenient method for rep-
resenting negative numbers as well as positive. For representing numbers with
fractional parts such as 41⁄2 or 3⁄4, another technique, called floating-point nota-
tion (see Section 1.7), is used.

Representing Images
One means of representing an image is to interpret the image as a collection of
dots, each of which is called a pixel, short for “picture element.” The appearance
of each pixel is then encoded and the entire image is represented as a collection
of these encoded pixels. Such a collection is called a bit map. This approach is
popular because many display devices, such as printers and display screens,
operate on the pixel concept. In turn, images in bit map form are easily format-
ted for display.

The method of encoding the pixels in a bit map varies among applications.
In the case of a simple black and white image, each pixel can be represented by
a single bit whose value depends on whether the corresponding pixel is black or
white. This is the approach used by most facsimile machines. For more elaborate
back and white photographs, each pixel can be represented by a collection of bits
(usually eight), which allows a variety of shades of grayness to be represented.

In the case of color images, each pixel is encoded by more complex system.
Two approaches are common. In one, which we will call RGB encoding, each
pixel is represented as three color components—a red component, a green com-
ponent, and a blue component—corresponding to the three primary colors of
light. One byte is normally used to represent the intensity of each color compo-
nent. In turn, three bytes of storage are required to represent a single pixel in the
original image.

ISO—The International Organization for Standardization
The International Organization for Standardization (more commonly called ISO) was
established in 1947 as a worldwide federation of standardization bodies, one from
each country. Today, it is headquartered in Geneva, Switzerland and has more than
100 member bodies as well as numerous correspondent members. (A correspondent
member is usually a standardization body from a country that does not have a
nationally recognized standardization body. Such members cannot participate
directly in the development of standards but are kept informed of ISO activities.) ISO
maintains a Web site at http://www.iso.org.

http://www.iso.org
http://www.iso.org

391.4 Representing Information as Bit Patterns

An alternative to simple RGB encoding is to use a “brightness” component
and two color components. In this case the “brightness” component, which is
called the pixel’s luminance, is essentially the sum of the red, green, and blue
components. (Actually, it is considered to be the amount of white light in the
pixel, but these details need not concern us here.) The other two components,
called the blue chrominance and the red chrominance, are determined by com-
puting the difference between the pixel’s luminance and the amount of blue or
red light, respectively, in the pixel. Together these three components contain the
information required to reproduce the pixel.

The popularity of encoding images using luminance and chrominance com-
ponents originated in the field of color television broadcast because this
approach provided a means of encoding color images that was also compatible
with older black-and-white television receivers. Indeed, a gray-scale version of
an image can be produced by using only the luminance components of the
encoded color image.

A disadvantage of representing images as bit maps is that an image cannot
be rescaled easily to any arbitrary size. Essentially, the only way to enlarge the
image is to make the pixels bigger, which leads to a grainy appearance. (This is
the technique called “digital zoom” used in digital cameras as opposed to “optical
zoom” that is obtained by adjusting the camera lens.)

An alternate way of representing images that avoids this scaling problem is to
describe the image as a collection of geometric structures, such as lines and
curves, that can be encoded using techniques of analytic geometry. Such a
description allows the device that ultimately displays the image to decide how the
geometric structures should be displayed rather than insisting that the device
reproduce a particular pixel pattern. This is the approach used to produce the
scalable fonts that are available via today’s word processing systems. For example,
TrueType (developed by Microsoft and Apple) is a system for geometrically
describing text symbols. Likewise, PostScript (developed by Adobe Systems) pro-
vides a means of describing characters as well as more general pictorial data. This
geometric means of representing images is also popular in computer-aided
design (CAD) systems in which drawings of three-dimensional objects are dis-
played and manipulated on computer display screens.

The distinction between representing an image in the form of geometric
structures as opposed to bit maps is evident to users of many drawing software
systems (such as Microsoft’s Paint utility) that allow the user to draw pictures
consisting of preestablished shapes such as rectangles, ovals, and elementary
curves. The user simply selects the desired geometric shape from a menu and
then directs the drawing of that shape via a mouse. During the drawing
process, the software maintains a geometric description of the shape being
drawn. As directions are given by the mouse, the internal geometric represen-
tation is modified, reconverted to bit map form, and displayed. This allows for
easy scaling and shaping of the image. Once the drawing process is complete,
however, the underlying geometric description is discarded and only the bit
map is preserved, meaning that additional alterations require a tedious pixel-
by-pixel modification process. On the other hand, some drawing systems pre-
serve the description as geometric shapes, which can be modified later. With
these systems, the shapes can be easily resized, maintaining a crisp display at
any dimension.

Representing Sound
The most generic method of encoding audio information for computer storage
and manipulation is to sample the amplitude of the sound wave at regular inter-
vals and record the series of values obtained. For instance, the series 0, 1.5, 2.0,
1.5, 2.0, 3.0, 4.0, 3.0, 0 would represent a sound wave that rises in amplitude, falls
briefly, rises to a higher level, and then drops back to 0 (Figure 1.14). This tech-
nique, using a sample rate of 8000 samples per second, has been used for years
in long-distance voice telephone communication. The voice at one end of the
communication is encoded as numeric values representing the amplitude of the
voice every eight-thousandth of a second. These numeric values are then trans-
mitted over the communication line to the receiving end, where they are used to
reproduce the sound of the voice.

Although 8000 samples per second may seem to be a rapid rate, it is not suf-
ficient for high-fidelity music recordings. To obtain the quality sound reproduc-
tion obtained by today’s musical CDs, a sample rate of 44,100 samples per second
is used. The data obtained from each sample are represented in 16 bits (32 bits
for stereo recordings). Consequently, each second of music recorded in stereo
requires more than a million bits.

An alternative encoding system known as Musical Instrument Digital
Interface (MIDI, pronounced “MID–ee”) is widely used in the music synthesiz-
ers found in electronic keyboards, for video game sound, and for sound effects
accompanying Web sites. By encoding directions for producing music on a syn-
thesizer rather than encoding the sound itself, MIDI avoids the large storage
requirements of the sampling technique. More precisely, MIDI encodes what
instrument is to play which note for what duration of time, which means that a
clarinet playing the note D for two seconds can be encoding in three bytes
rather than more than two million bits when sampled at a rate of 44,100 sam-
ples per second.

In short, MIDI can be thought of as a way of encoding the sheet music read
by a performer rather than the performance itself, and in turn, a MIDI “record-
ing” can sound significantly different when performed on different synthesizers.

40 Chapter 1 Data Storage

0 1.5 2.0 1.5 2.0 3.0 4.0 3.0 0

Amplitudes

Encoded sound wave

Figure 1.14 The sound wave represented by the sequence 0, 1.5, 2.0, 1.5, 2.0, 3.0, 4.0, 3.0, 0

411.4 Representing Information as Bit Patterns

Questions & Exercises

1. Here is a message encoded in ASCII using 8 bits per symbol. What does
it say? (See Appendix A)

2. In the ASCII code, what is the relationship between the codes for an
uppercase letter and the same letter in lowercase? (See Appendix A.)

3. Encode these sentences in ASCII:

a. “Stop!” Cheryl shouted. b. Does 2 � 3 � 5?

4. Describe a device from everyday life that can be in either of two states,
such as a flag on a flagpole that is either up or down. Assign the symbol 1
to one of the states and 0 to the other, and show how the ASCII repre-
sentation for the letter b would appear when stored with such bits.

5. Convert each of the following binary representations to its equivalent
base ten form:

a. 0101 b. 1001 c. 1011
d. 0110 e. 10000 f. 10010

6. Convert each of the following base ten representations to its equivalent
binary form:

a. 6 b. 13 c. 11
d. 18 e. 27 f. 4

7. What is the largest numeric value that could be represented with three
bytes if each digit were encoded using one ASCII pattern per byte? What
if binary notation were used?

8. An alternative to hexadecimal notation for representing bit patterns is
dotted decimal notation in which each byte in the pattern is repre-
sented by its base ten equivalent. In turn, these byte representations are
separated by periods. For example, 12.5 represents the pattern
0000110000000101 (the byte 00001100 is represented by 12, and 00000101
is represented by 5), and the pattern 100010000001000000000111 is repre-
sented by 136.16.7. Represent each of the following bit patterns in dotted
decimal notation.

a. 0000111100001111 b. 001100110000000010000000
c. 0000101010100000

9. What is an advantage of representing images via geometric structures as
opposed to bit maps? What about bit map techniques as opposed to geo-
metric structures?

10. Suppose a stereo recording of one hour of music is encoded using a sam-
ple rate of 44,100 samples per second as discussed in the text. How does
the size of the encoded version compare to the storage capacity of a CD?

01000011 01101111 01101101 01110000 01110101 01110100
01100101 01110010 00100000 01010011 01100011 01101001
01100101 01101110 01100011 01100101

42 Chapter 1 Data Storage

1.5 The Binary System
In Section 1.4 we saw that binary notation is a means of representing numeric
values using only the digits 0 and 1 rather than the ten digits 0 through 9 that are
used in the more common base ten notational system. It is time now to look at
binary notation more thoroughly.

Binary Notation
Recall that in the base ten system, each position in a representation is associated
with a quantity. In the representation 375, the 5 is in the position associated with
the quantity one, the 7 is in the position associated with ten, and the 3 is in the
position associated with the quantity one hundred (Figure 1.15a). Each quantity
is ten times that of the quantity to its right. The value represented by the entire
expression is obtained by multiplying the value of each digit by the quantity
associated with that digit’s position and then adding those products. To illustrate,
the pattern 375 represents (3 � hundred) � (7 � ten) � (5 � one), which, in
more technical notation, is (3 � 102) � (7 � 101) � (5 � 100).

The position of each digit in binary notation is also associated with a
quantity, except that the quantity associated with each position is twice the
quantity associated with the position to its right. More precisely, the rightmost
digit in a binary representation is associated with the quantity one (20), the
next position to the left is associated with two (21), the next is associated with
four (22), the next with eight (23), and so on. For example, in the binary repre-
sentation 1011, the rightmost 1 is in the position associated with the quantity
one, the 1 next to it is in the position associated with two, the 0 is in the posi-
tion associated with four, and the leftmost 1 is in the position associated with
eight (Figure 1.15b).

To extract the value represented by a binary representation, we follow the
same procedure as in base ten—we multiply the value of each digit by the quan-
tity associated with its position and add the results. For example, the value rep-
resented by 100101 is 37, as shown in Figure 1.16. Note that since binary notation
uses only the digits 0 and 1, this multiply-and-add process reduces merely to
adding the quantities associated with the positions occupied by 1s. Thus the
binary pattern 1011 represents the value eleven, because the 1s are found in the
positions associated with the quantities one, two, and eight.

In Section 1.4 we learned how to count in binary notation, which allowed us
to encode small integers. For finding binary representations of large values, you
may prefer the approach described by the algorithm in Figure 1.17. Let us apply
this algorithm to the value thirteen (Figure 1.18). We first divide thirteen by two,

Representation

Position’s quantity

3 7 5

O
neTe
n

H
un

dr
ed

a. Base ten system

Representation

Position’s quantity

01 1 1

Tw
o

O
ne

Fo
ur

b. Base two system

Ei
gh

t

Figure 1.15 The base ten and binary systems

431.5 The Binary System

Binary
pattern

Value
of bit

Total
Position’s
quantity

1 x one
0 x two
1 x four
0 x eight
0 x sixteen
1 x thirty-two

 1

 0
 4
 0
 0

 32

1 1 10 0 0

37

=
=
=
=
=
=

Figure 1.16 Decoding the binary representation 100101

Step 1. Divide the value by two and record the remainder.

Step 2. As long as the quotient obtained is not zero, continue to divide
the newest quotient by two and record the remainder.

Step 3. Now that a quotient of zero has been obtained, the binary
representation of the original value consists of the remainders
listed from right to left in the order they were recorded.

Figure 1.17 An algorithm for finding the binary representation of a positive integer

2
0
1

Remainder 1

2
1
3

Remainder 1

2
3
6

Remainder 0

2
6
13

Remainder 1

Binary representation1 1 0 1

Figure 1.18 Applying the algorithm in Figure 1.17 to obtain the binary representation
of thirteen

obtaining a quotient of six and a remainder of one. Since the quotient was not
zero, Step 2 tells us to divide the quotient (six) by two, obtaining a new quotient
of three and a remainder of zero. The newest quotient is still not zero, so we
divide it by two, obtaining a quotient of one and a remainder of one. Once again,
we divide the newest quotient (one) by two, this time obtaining a quotient of
zero and a remainder of one. Since we have now acquired a quotient of zero, we
move on to Step 3, where we learn that the binary representation of the original
value (thirteen) is 1101, obtained from the list of remainders.

44 Chapter 1 Data Storage

Binary Addition
To understand the process of adding two integers that are represented in binary,
let us first recall the process of adding values that are represented in traditional
base ten notation. Consider, for example, the following problem:

58
� 27

We begin by adding the 8 and the 7 in the rightmost column to obtain the sum 15.
We record the 5 at the bottom of that column and carry the 1 to the next column,
producing

1
58

� 27
5

We now add the 5 and 2 in the next column along with the 1 that was carried
to obtain the sum 8, which we record at the bottom of the column. The result
is as follows:

58
� 27
85

In short, the procedure is to progress from right to left as we add the digits in
each column, write the least significant digit of that sum under the column, and
carry the more significant digit of the sum (if there is one) to the next column.

To add two integers represented in binary notation, we follow the same pro-
cedure except that all sums are computed using the addition facts shown in
Figure 1.19 rather than the traditional base ten facts that you learned in elemen-
tary school. For example, to solve the problem

111010
� 11011

we begin by adding the rightmost 0 and 1; we obtain 1, which we write below the
column. Now we add the 1 and 1 from the next column, obtaining 10. We write
the 0 from this 10 under the column and carry the 1 to the top of the next col-
umn. At this point, our solution looks like this:

1
111010

� 11011
01

0
0
0

�
1
0
1

�
0
1
1

�
1
1
10
+

Figure 1.19 The binary addition facts

451.5 The Binary System

We add the 1, 0, and 0 in the next column, obtain 1, and write the 1 under this
column. The 1 and 1 from the next column total 10; we write the 0 under the col-
umn and carry the 1 to the next column. Now our solution looks like this:

1
111010

� 11011
0101

The 1, 1, and 1 in the next column total 11 (binary notation for the value three);
we write the low-order 1 under the column and carry the other 1 to the top of the
next column. We add that 1 to the 1 already in that column to obtain 10. Again,
we record the low-order 0 and carry the 1 to the next column. We now have

1
111010

� 11011
010101

The only entry in the next column is the 1 that we carried from the previous col-
umn so we record it in the answer. Our final solution is this:

111010
� 11011
1010101

Fractions in Binary
To extend binary notation to accommodate fractional values, we use a radix
point in the same role as the decimal point in decimal notation. That is, the dig-
its to the left of the point represent the integer part (whole part) of the value and
are interpreted as in the binary system discussed previously. The digits to its
right represent the fractional part of the value and are interpreted in a manner
similar to the other bits, except their positions are assigned fractional quanti-
ties. That is, the first position to the right of the radix is assigned the quantity
1⁄2 (which is 2�1), the next position the quantity 1⁄4 (which is 2�2), the next 1⁄8

(which is 2�3), and so on. Note that this is merely a continuation of the rule
stated previously: Each position is assigned a quantity twice the size of the one
to its right. With these quantities assigned to the bit positions, decoding a
binary representation containing a radix point requires the same procedure as
used without a radix point. More precisely, we multiply each bit value by the
quantity assigned to that bit’s position in the representation. To illustrate, the
binary representation 101.101 decodes to 55⁄8, as shown in Figure 1.20.

Binary
pattern

Value
of bit

Total
Position’s
quantity

1 x one-eighth
0 x one-fourth
1 x one-half
1 x one
0 x two
1 x four

 0

 1
 0
 4

1 1 10 1 0

5

=
=
=
=
=
=

.

5
8

18

12

Figure 1.20 Decoding the binary representation 101.101

46 Chapter 1 Data Storage

For addition, the techniques applied in the base ten system are also applica-
ble in binary. That is, to add two binary representations having radix points, we
merely align the radix points and apply the same addition process as before. For
example, 10.011 added to 100.11 produces 111.001, as shown here:

10.011
� 100.110

111.001

Analog Versus Digital
Prior to the twenty-first century, many researchers debated the pros and cons of dig-
ital versus analog technology. In a digital system, a value is encoded as a series of
digits and then stored using several devices, each representing one of the digits. In
an analog system, each value is stored in a single device that can represent any value
within a continuous range.

Let us compare the two approaches using buckets of water as the storage devices. To
simulate a digital system, we could agree to let an empty bucket represent the digit 0 and
a full bucket represent the digit 1. Then we could store a numeric value in a row of buckets
using floating-point notation (see Section 1.7). In contrast, we could simulate an analog
system by partially filling a single bucket to the point at which the water level represented
the numeric value being represented. At first glance, the analog system may appear to be
more accurate since it would not suffer from the truncation errors inherent in the digital
system (again see Section 1.7). However, any movement of the bucket in the analog sys-
tem could cause errors in detecting the water level, whereas a significant amount of
sloshing would have to occur in the digital system before the distinction between a full
bucket and an empty bucket would be blurred. Thus the digital system would be less
sensitive to error than the analog system. This robustness is a major reason why many
applications that were originally based on analog technology (such as telephone commu-
nication, audio recordings, and television) are shifting to digital technology.

Questions & Exercises

1. Convert each of the following binary representations to its equivalent
base ten form:

a. 101010 b. 100001 c. 10111 d. 0110 e. 11111

2. Convert each of the following base ten representations to its equivalent
binary form:

a. 32 b. 64 c. 96 d. 15 e. 27

3. Convert each of the following binary representations to its equivalent
base ten form:

a. 11.01 b. 101.111 c. 10.1 d. 110.011 e. 0.101

4. Express the following values in binary notation:

a. 41⁄2 b. 23⁄4 c. 11⁄8 d. 5⁄16 e. 55⁄8

471.6 Storing Integers

1.6 Storing Integers
Mathematicians have long been interested in numeric notational systems, and
many of their ideas have turned out to be very compatible with the design of dig-
ital circuitry. In this section we consider two of these notational systems, two’s
complement notation and excess notation, which are used for representing inte-
ger values in computing equipment. These systems are based on the binary sys-
tem but have additional properties that make them more compatible with
computer design. With these advantages, however, come disadvantages as well.
Our goal is to understand these properties and how they affect computer usage.

Two’s Complement Notation
The most popular system for representing integers within today’s computers is
two’s complement notation. This system uses a fixed number of bits to repre-
sent each of the values in the system. In today’s equipment, it is common to use
a two’s complement system in which each value is represented by a pattern of
32 bits. Such a large system allows a wide range of numbers to be represented
but is awkward for demonstration purposes. Thus, to study the properties of
two’s complement systems, we will concentrate on smaller systems.

Figure 1.21 shows two complete two’s complement systems—one based on
bit patterns of length three, the other based on bit patterns of length four. Such a

5. Perform the following additions in binary notation:
a. 11011 b. 1010.001 c. 11111 d. 111.11

�1100 � 1.101 � 0001 � 00.01

a. Using patterns of length three b. Using patterns of length four

�

�

�

�

�

�

�

�

�

�

�

�

Figure 1.21 Two’s complement notation systems

48 Chapter 1 Data Storage

system is constructed by starting with a string of 0s of the appropriate length and
then counting in binary until the pattern consisting of a single 0 followed by 1s is
reached. These patterns represent the values 0, 1, 2, 3, The patterns repre-
senting negative values are obtained by starting with a string of 1s of the appro-
priate length and then counting backward in binary until the pattern consisting
of a single 1 followed by 0s is reached. These patterns represent the values �1,
�2, �3, (If counting backward in binary is difficult for you, merely start at
the very bottom of the table with the pattern consisting of a single 1 followed by
0s, and count up to the pattern consisting of all 1s.)

Note that in a two’s complement system, the leftmost bit of a bit pattern indi-
cates the sign of the value represented. Thus, the leftmost bit is often called the
sign bit. In a two’s complement system, negative values are represented by the
patterns whose sign bits are 1; nonnegative values are represented by patterns
whose sign bits are 0.

In a two’s complement system, there is a convenient relationship between
the patterns representing positive and negative values of the same magnitude.
They are identical when read from right to left, up to and including the first 1.
From there on, the patterns are complements of one another. (The
complement of a pattern is the pattern obtained by changing all the 0s to 1s
and all the 1s to 0s; 0110 and 1001 are complements.) For example, in the 4-bit
system in Figure 1.21 the patterns representing 2 and �2 both end with 10, but
the pattern representing 2 begins with 00, whereas the pattern representing �2
begins with 11. This observation leads to an algorithm for converting back and
forth between bit patterns representing positive and negative values of the same
magnitude. We merely copy the original pattern from right to left until a 1 has
been copied, then we complement the remaining bits as they are transferred to
the final bit pattern (Figure 1.22).

Understanding these basic properties of two’s complement systems also
leads to an algorithm for decoding two’s complement representations. If the
pattern to be decoded has a sign bit of 0, we need merely read the value as

Two’s complement notation
for 6 using four bits

Two’s complement notation
for –6 using four bits

Copy the bits from
right to left until a
1 has been copied

Complement the
remaining bits

0 1 1 0

1 0 1 0

Figure 1.22 Encoding the value �6 in two’s complement notation using 4 bits

491.6 Storing Integers

though the pattern were a binary representation. For example, 0110 represents the
value 6, because 110 is binary for 6. If the pattern to be decoded has a sign bit of
1, we know the value represented is negative, and all that remains is to find the
magnitude of the value. We do this by applying the “copy and complement” pro-
cedure in Figure 1.22 and then decoding the pattern obtained as though it were a
straightforward binary representation. For example, to decode the pattern 1010,
we first recognize that since the sign bit is 1, the value represented is negative.
Hence, we apply the “copy and complement” procedure to obtain the pattern
0110, recognize that this is the binary representation for 6, and conclude that the
original pattern represents �6.

Addition in Two’s Complement Notation To add values represented in two’s comple-
ment notation, we apply the same algorithm that we used for binary addition,
except that all bit patterns, including the answer, are the same length. This
means that when adding in a two’s complement system, any extra bit generated
on the left of the answer by a final carry must be truncated. Thus “adding” 0101
and 0010 produces 0111, and “adding” 0111 and 1011 results in 0010 (0111 � 1011 �
10010, which is truncated to 0010).

With this understanding, consider the three addition problems in Figure 1.23.
In each case, we have translated the problem into two’s complement notation
(using bit patterns of length four), performed the addition process previously
described, and decoded the result back into our usual base ten notation.

Observe that the third problem in Figure 1.23 involves the addition of a pos-
itive number to a negative number, which demonstrates a major benefit of two’s
complement notation: Addition of any combination of signed numbers can be
accomplished using the same algorithm and thus the same circuitry. This is in
stark contrast to how humans traditionally perform arithmetic computations.
Whereas elementary school children are first taught to add and later taught to
subtract, a machine using two’s complement notation needs to know only how
to add.

Problem in
base ten

Answer in
base ten

Problem in
two's complement

�

� �

� �

�

�

�

�

�

Figure 1.23 Addition problems converted to two’s complement notation

50 Chapter 1 Data Storage

For example, the subtraction problem 7 � 5 is the same as the addition prob-
lem 7 � (�5). Consequently, if a machine were asked to subtract 5 (stored as
0101) from 7 (stored as 0111), it would first change the 5 to �5 (represented as
1011) and then perform the addition process of 0111 � 1011 to obtain 0010, which
represents 2, as follows:

7 0111 0111
�5 S � 0101 S � 1011

0010 S 2

We see, then, that when two’s complement notation is used to represent numeric
values, a circuit for addition combined with a circuit for negating a value is suffi-
cient for solving both addition and subtraction problems. (Such circuits are
shown and explained in Appendix B.)

The Problem of Overflow One problem we have avoided in the preceding examples
is that in any two’s complement system there is a limit to the size of the values
that can be represented. When using two’s complement with patterns of 4 bits,
the largest positive integer that can be represented is 7, and the most negative
integer is �8. In particular, the value 9 can not be represented, which means that
we cannot hope to obtain the correct answer to the problem 5 � 4. In fact, the
result would appear as �7. This phenomenon is called overflow. That is, over-
flow is the problem that occurs when a computation produces a value that falls
outside the range of values that can be represented. When using two’s comple-
ment notation, this might occur when adding two positive values or when adding
two negative values. In either case, the condition can be detected by checking
the sign bit of the answer. An overflow is indicated if the addition of two positive
values results in the pattern for a negative value or if the sum of two negative
values appears to be positive.

Of course, because most computers use two’s complement systems with
longer bit patterns than we have used in our examples, larger values can be
manipulated without causing an overflow. Today, it is common to use patterns of
32 bits for storing values in two’s complement notation, allowing for positive val-
ues as large as 2,147,483,647 to accumulate before overflow occurs. If still larger
values are needed, longer bit patterns can be used or perhaps the units of meas-
ure can be changed. For instance, finding a solution in terms of miles instead of
inches results in smaller numbers being used and might still provide the accu-
racy required.

The point is that computers can make mistakes. So, the person using the
machine must be aware of the dangers involved. One problem is that computer
programmers and users become complacent and ignore the fact that small values
can accumulate to produce large numbers. For example, in the past it was com-
mon to use patterns of 16 bits for representing values in two’s complement nota-
tion, which meant that overflow would occur when values of 215 � 32,768 or
larger were reached. On September 19, 1989, a hospital computer system mal-
functioned after years of reliable service. Close inspection revealed that this date
was 32,768 days after January 1, 1900, and the machine was programmed to com-
pute dates based on that starting date. Thus, because of overflow, September 19,
1989, produced a negative value—a phenomenon for which the computer’s pro-
gram was not designed to handle.

511.6 Storing Integers

Excess Notation
Another method of representing integer values is excess notation. As is the
case with two’s complement notation, each of the values in an excess nota-
tion system is represented by a bit pattern of the same length. To establish
an excess system, we first select the pattern length to be used, then write
down all the different bit patterns of that length in the order they would
appear if we were counting in binary. Next, we observe that the first pattern
with a 1 as its most significant bit appears approximately halfway through
the list. We pick this pattern to represent zero; the patterns following this are
used to represent 1, 2, 3, . . .; and the patterns preceding it are used for �1,
�2, �3, The resulting code, when using patterns of length four, is
shown in Figure 1.24. There we see that the value 5 is represented by the
pattern 1101 and �5 is represented by 0011. (Note that the difference
between an excess system and a two’s complement system is that the sign
bits are reversed.)

The system represented in Figure 1.24 is known as excess eight notation.
To understand why, first interpret each of the patterns in the code using the
traditional binary system and then compare these results to the values repre-
sented in the excess notation. In each case, you will find that the binary inter-
pretation exceeds the excess notation interpretation by the value 8. For
example, the pattern 1100 in binary notation represents the value 12, but in
our excess system it represents 4; 0000 in binary notation represents 0, but in
the excess system it represents negative 8. In a similar manner, an excess sys-
tem based on patterns of length five would be called excess 16 notation,

Figure 1.24 An excess eight conversion table

52 Chapter 1 Data Storage

Questions & Exercises

1. Convert each of the following two’s complement representations to its
equivalent base ten form:

a. 00011 b. 01111 c. 11100
d. 11010 e. 00000 f. 10000

2. Convert each of the following base ten representations to its equivalent
two’s complement form using patterns of 8 bits:

a. 6 b. �6 c. �17
d. 13 e. �1 f. 0

3. Suppose the following bit patterns represent values stored in two’s com-
plement notation. Find the two’s complement representation of the neg-
ative of each value:

a. 00000001 b. 01010101 c. 11111100
d. 11111110 e. 00000000 f. 01111111

4. Suppose a machine stores numbers in two’s complement notation. What
are the largest and smallest numbers that can be stored if the machine
uses bit patterns of the following lengths?

a. four b. six c. eight
5. In the following problems, each bit pattern represents a value stored in

two’s complement notation. Find the answer to each problem in two’s
complement notation by performing the addition process described in

Figure 1.25 An excess notation system using bit patterns of length three

because the pattern 10000, for instance, would be used to represent zero
rather than representing its usual value of 16. Likewise, you may want to
confirm that the three-bit excess system would be known as excess four nota-
tion (Figure 1.25).

531.7 Storing Fractions

the text. Then check your work by translating the problem and your
answer into base ten notation.
a. 0101 b. 0011 c. 0101 d. 1110 e. 1010

� 0010 � 0001 � 1010 � 0011 � 1110

6. Solve each of the following problems in two’s complement notation, but
this time watch for overflow and indicate which answers are incorrect
because of this phenomenon.
a. 0100 b. 0101 c. 1010 d. 1010 e. 0111

� 0011 � 0110 � 1010 � 0111 � 0001

7. Translate each of the following problems from base ten notation into
two’s complement notation using bit patterns of length four, then con-
vert each problem to an equivalent addition problem (as a machine
might do), and perform the addition. Check your answers by converting
them back to base ten notation.
a. 6 b. 3 c. 4 d. 2 e. 1

�(�1) �2 �6 �(�4) �5

8. Can overflow ever occur when values are added in two’s complement nota-
tion with one value positive and the other negative? Explain your answer.

9. Convert each of the following excess eight representations to its equiva-
lent base ten form without referring to the table in the text:

a. 1110 b. 0111 c. 1000
d. 0010 e. 0000 f. 1001

10. Convert each of the following base ten representations to its equivalent
excess eight form without referring to the table in the text:

a. 5 b. �5 c. 3
d. 0 e. 7 f. �8

11. Can the value 9 be represented in excess eight notation? What about rep-
resenting 6 in excess four notation? Explain your answer.

1.7 Storing Fractions
In contrast to the storage of integers, the storage of a value with a fractional part
requires that we store not only the pattern of 0s and 1s representing its binary
representation but also the position of the radix point. A popular way of doing
this is based on scientific notation and is called floating-point notation.

Floating-Point Notation
Let us explain floating-point notation with an example using only one byte of
storage. Although machines normally use much longer patterns, this 8-bit format
is representative of actual systems and serves to demonstrate the important con-
cepts without the clutter of long bit patterns.

We first designate the high-order bit of the byte as the sign bit. Once again, a
0 in the sign bit will mean that the value stored is nonnegative, and a 1 will mean
that the value is negative. Next, we divide the remaining 7 bits of the byte into

54 Chapter 1 Data Storage

two groups, or fields: the exponent field and the mantissa field. Let us desig-
nate the 3 bits following the sign bit as the exponent field and the remaining
4 bits as the mantissa field. Figure 1.26 illustrates how the byte is divided.

We can explain the meaning of the fields by considering the following exam-
ple. Suppose a byte consists of the bit pattern 01101011. Analyzing this pattern
with the preceding format, we see that the sign bit is 0, the exponent is 110, and
the mantissa is 1011. To decode the byte, we first extract the mantissa and place a
radix point on its left side, obtaining

.1011

Next, we extract the contents of the exponent field (110) and interpret it as an
integer stored using the 3-bit excess method (see again Figure 1.25). Thus the
pattern in the exponent field in our example represents a positive 2. This tells us
to move the radix in our solution to the right by 2 bits. (A negative exponent
would mean to move the radix to the left.) Consequently, we obtain

10.11

which is the binary representation for 23⁄4. Next, we note that the sign bit in our
example is 0; the value represented is thus nonnegative. We conclude that the
byte 01101011 represents 23⁄4. Had the pattern been 11101011 (which is the same as
before except for the sign bit), the value represented would have been �23⁄4.

As another example, consider the byte 00111100. We extract the mantissa
to obtain

.1100

and move the radix 1 bit to the left, since the exponent field (011) represents the
value �1. We therefore have

.01100

which represents 3⁄8. Since the sign bit in the original pattern is 0, the value
stored is nonnegative. We conclude that the pattern 00111100 represents 3⁄8.

To store a value using floating-point notation, we reverse the preceding
process. For example, to encode 11⁄8, first we express it in binary notation and
obtain 1.001. Next, we copy the bit pattern into the mantissa field from left to
right, starting with the leftmost 1 in the binary representation. At this point, the
byte looks like this:

1 0 0 1

We must now fill in the exponent field. To this end, we imagine the contents
of the mantissa field with a radix point at its left and determine the number of bits
and the direction the radix must be moved to obtain the original binary number.

Sign bit

Exponent
Mantissa

Bit positions
— — —— — — — —

Figure 1.26 Floating-point notation components

551.7 Storing Fractions

In our example, we see that the radix in .1001 must be moved 1 bit to the right to
obtain 1.001. The exponent should therefore be a positive one, so we place 101
(which is positive one in excess four notation as shown in Figure 1.25) in the
exponent field. Finally, we fill the sign bit with 0 because the value being stored is
nonnegative. The finished byte looks like this:

0 1 0 1 1 0 0 1

There is a subtle point you may have missed when filling in the mantissa field.
The rule is to copy the bit pattern appearing in the binary representation from left
to right, starting with the leftmost 1. To clarify, consider the process of storing the
value 3⁄8, which is .011 in binary notation. In this case the mantissa will be

1 1 0 0

It will not be

0 1 1 0

This is because we fill in the mantissa field starting with the leftmost 1 that
appears in the binary representation. Representations that conform to this rule
are said to be in normalized form.

Using normalized form eliminates the possibility of multiple representations
for the same value. For example, both 00111100 and 01000110 would decode to the
value 3⁄8, but only the first pattern is in normalized form. Complying with nor-
malized form also means that the representation for all nonzero values will have
a mantissa that starts with 1. The value zero, however, is a special case; its
floating-point representation is a bit pattern of all 0s.

Truncation Errors
Let us consider the annoying problem that occurs if we try to store the value 25⁄8

with our one-byte floating-point system. We first write 25⁄8 in binary, which gives
us 10.101. But when we copy this into the mantissa field, we run out of room, and
the rightmost 1 (which represents the last 1⁄8) is lost (Figure 1.27). If we ignore

Lost bit

1 0 . 1 0 1

25/8

1 0 1 0 1

1 0 1 0

Original representation

Base two representation

Raw bit pattern

Sign bit

Exponent
Mantissa

— — — — — — —

Figure 1.27 Encoding the value 25⁄8

this problem for now and continue by filling in the exponent field and the sign
bit, we end up with the bit pattern 01101010, which represents 21⁄2 instead of
25⁄8. What has occurred is called a truncation error, or round-off error—
meaning that part of the value being stored is lost because the mantissa field is
not large enough.

The significance of such errors can be reduced by using a longer mantissa
field. In fact, most computers manufactured today use at least 32 bits for storing
values in floating-point notation instead of the 8 bits we have used here. This
also allows for a longer exponent field at the same time. Even with these longer
formats, however, there are still times when more accuracy is required.

Another source of truncation errors is a phenomenon that you are already
accustomed to in base ten notation: the problem of nonterminating expan-
sions, such as those found when trying to express 1⁄3 in decimal form. Some val-
ues cannot be accurately expressed regardless of how many digits we use. The
difference between our traditional base ten notation and binary notation is that
more values have nonterminating representations in binary than in decimal
notation. For example, the value one-tenth is nonterminating when expressed
in binary. Imagine the problems this might cause the unwary person using
floating-point notation to store and manipulate dollars and cents. In particular,
if the dollar is used as the unit of measure, the value of a dime could not be
stored accurately. A solution in this case is to manipulate the data in units of
pennies so that all values are integers that can be accurately stored using a
method such as two’s complement.

Truncation errors and their related problems are an everyday concern for
people working in the area of numerical analysis. This branch of mathematics
deals with the problems involved when doing actual computations that are often
massive and require significant accuracy.

The following is an example that would warm the heart of any numerical
analyst. Suppose we are asked to add the following three values using our one-
byte floating-point notation defined previously:

21⁄2 � 1⁄8 � 1⁄8

56 Chapter 1 Data Storage

Single Precision Floating Point
The floating-point notation introduced in this chapter (Section 1.7) is far too simplis-
tic to be used in an actual computer. After all, with just 8 bits only 256 numbers out of
set of all real numbers can be expressed. Our discussion has used 8 bits to keep the
examples simple, yet still cover the important underlying concepts.

Many of today’s computers support a 32 bit form of this notation called Single
Precision Floating Point. This format uses 1 bit for the sign, 8 bits for the exponent
(in an excess notation), and 23 bits for the mantissa. Thus, single precision floating
point is capable of expressing very large numbers (order of 1038) down to very small
numbers (order of 10�37) with the precision of 7 decimal digits. That is to say, the
first 7 digits of a given decimal number can be stored with very good accuracy (a
small amount of error may still be present). Any digits passed the first 7 will certainly
be lost by truncation error (although the magnitude of the number is retained).
Another form, called Double Precision Floating Point, uses 64 bits and provides a
precision of 15 decimal digits.

571.7 Storing Fractions

If we add the values in the order listed, we first add 21⁄2 to 1⁄8 and obtain 25⁄8,
which in binary is 10.101. Unfortunately, because this value cannot be stored
accurately (as seen previously), the result of our first step ends up being stored
as 21⁄2 (which is the same as one of the values we were adding). The next step is
to add this result to the last 1⁄8. Here again a truncation error occurs, and our final
result turns out to be the incorrect answer 21⁄2 .

Now let us add the values in the opposite order. We first add 1⁄8 to 1⁄8 to obtain
1⁄4. In binary this is .01; so the result of our first step is stored in a byte as
00111000, which is accurate. We now add this 1⁄4 to the next value in the list, 21⁄2 ,
and obtain 23⁄4 , which we can accurately store in a byte as 01101011. The result
this time is the correct answer.

To summarize, in adding numeric values represented in floating-point nota-
tion, the order in which they are added can be important. The problem is that if
a very large number is added to a very small number, the small number may be
truncated. Thus, the general rule for adding multiple values is to add the smaller
values together first, in hopes that they will accumulate to a value that is signifi-
cant when added to the larger values. This was the phenomenon experienced in
the preceding example.

Designers of today’s commercial software packages do a good job of shielding
the uneducated user from problems such as this. In a typical spreadsheet sys-
tem, correct answers will be obtained unless the values being added differ in size
by a factor of 1016 or more. Thus, if you found it necessary to add one to the value

10,000,000,000,000,000

you might get the answer

10,000,000,000,000,000

rather than

10,000,000,000,000,001

Such problems are significant in applications (such as navigational systems) in
which minor errors can be compounded in additional computations and ulti-
mately produce significant consequences, but for the typical PC user the degree
of accuracy offered by most commercial software is sufficient.

Questions & Exercises

1. Decode the following bit patterns using the floating-point format dis-
cussed in the text:

a. 01001010 b. 01101101 c. 00111001 d. 11011100 e. 10101011

2. Encode the following values into the floating-point format discussed in
the text. Indicate the occurrence of truncation errors.

a. 23⁄4 b. 51⁄4 c. 3⁄4 d. �31⁄2 e. �43⁄8

3. In terms of the floating-point format discussed in the text, which of the
patterns 01001001 and 00111101 represents the larger value? Describe a

58 Chapter 1 Data Storage

1.8 Data Compression
For the purpose of storing or transferring data, it is often helpful (and sometimes
mandatory) to reduce the size of the data involved while retaining the underlying
information. The technique for accomplishing this is called data compression.
We begin this section by considering some generic data compression methods
and then look at some approaches designed for specific applications.

Generic Data Compression Techniques
Data compression schemes fall into two categories. Some are lossless, others are
lossy. Lossless schemes are those that do not lose information in the compres-
sion process. Lossy schemes are those that may lead to the loss of information.
Lossy techniques often provide more compression than lossless ones and are
therefore popular in settings in which minor errors can be tolerated, as in the
case of images and audio.

In cases where the data being compressed consist of long sequences of the
same value, the compression technique called run-length encoding, which is a
lossless method, is popular. It is the process of replacing sequences of identical
data elements with a code indicating the element that is repeated and the num-
ber of times it occurs in the sequence. For example, less space is required to indi-
cate that a bit pattern consists of 253 ones, followed by 118 zeros, followed by
87 ones than to actually list all 458 bits.

Another lossless data compression technique is frequency-dependent
encoding, a system in which the length of the bit pattern used to represent a data
item is inversely related to the frequency of the item’s use. Such codes are exam-
ples of variable-length codes, meaning that items are represented by patterns of
different lengths as opposed to codes such as Unicode, in which all symbols are
represented by 16 bits. David Huffman is credited with discovering an algorithm
that is commonly used for developing frequency-dependent codes, and it is com-
mon practice to refer to codes developed in this manner as Huffman codes. In
turn, most frequency-dependent codes in use today are Huffman codes.

As an example of frequency-dependent encoding, consider the task of
encoded English language text. In the English language the letters e, t, a, and i
are used more frequently than the letters z, q, and x. So, when constructing a
code for text in the English language, space can be saved by using short bit pat-
terns to represent the former letters and longer bit patterns to represent the lat-
ter ones. The result would be a code in which English text would have shorter
representations than would be obtained with uniform-length codes.

In some cases, the stream of data to be compressed consists of units, each of
which differs only slightly from the preceding one. An example would be con-
secutive frames of a motion picture. In these cases, techniques using relative

simple procedure for determining which of two patterns represents the
larger value.

4. When using the floating-point format discussed in the text, what is the
largest value that can be represented? What is the smallest positive value
that can be represented?

591.8 Data Compression

encoding, also known as differential encoding, are helpful. These techniques
record the differences between consecutive data units rather than entire units;
that is, each unit is encoded in terms of its relationship to the previous unit.
Relative encoding can be implemented in either lossless or lossy form depending
on whether the differences between consecutive data units are encoded pre-
cisely or approximated.

Still other popular compression systems are based on dictionary encoding
techniques. Here the term dictionary refers to a collection of building blocks
from which the message being compressed is constructed, and the message itself
is encoded as a sequence of references to the dictionary. We normally think of
dictionary encoding systems as lossless systems, but as we will see in our dis-
cussion of image compression, there are times when the entries in the dictionary
are only approximations of the correct data elements, resulting in a lossy com-
pression system.

Dictionary encoding can be used by word processors to compress text docu-
ments because the dictionaries already contained in these processors for the
purpose of spell checking make excellent compression dictionaries. In particu-
lar, an entire word can be encoded as a single reference to this dictionary rather
than as a sequence of individual characters encoded using a system such as
ASCII or Unicode. A typical dictionary in a word processor contains approxi-
mately 25,000 entries, which means an individual entry can be identified by an
integer in the range of 0 to 24,999. This means that a particular entry in the dic-
tionary can be identified by a pattern of only 15 bits. In contrast, if the word
being referenced consisted of six letters, its character-by-character encoding
would require 48 bits using 8-bit ASCII or 96 bits using Unicode.

A variation of dictionary encoding is adaptive dictionary encoding (also
known as dynamic dictionary encoding). In an adaptive dictionary encoding sys-
tem, the dictionary is allowed to change during the encoding process. A popular
example is Lempel-Ziv-Welsh (LZW) encoding (named after its creators,
Abraham Lempel, Jacob Ziv, and Terry Welsh). To encode a message using LZW,
one starts with a dictionary containing the basic building blocks from which the
message is constructed, but as larger units are found in the message, they are
added to the dictionary—meaning that future occurrences of those units can be
encoded as single, rather than multiple, dictionary references. For example,
when encoding English text, one could start with a dictionary containing indi-
vidual characters, digits, and punctuation marks. But as words in the message
are identified, they could be added to the dictionary. Thus, the dictionary would
grow as the message is encoded, and as the dictionary grows, more words (or
recurring patterns of words) in the message could be encoded as single refer-
ences to the dictionary.

The result would be a message encoded in terms of a rather large dictionary
that is unique to that particular message. But this large dictionary would not
have to be present to decode the message. Only the original small dictionary
would be needed. Indeed, the decoding process could begin with the same small
dictionary with which the encoding process started. Then, as the decoding
process continues, it would encounter the same units found during the encoding
process, and thus be able to add them to the dictionary for future reference just
as in the encoding process.

To clarify, consider applying LZW encoding to the message

xyx xyx xyx xyx

60 Chapter 1 Data Storage

starting with a dictionary with three entries, the first being x, the second being y,
and the third being a space. We would begin by encoding xyx as 121, meaning
that the message starts with the pattern consisting of the first dictionary entry,
followed by the second, followed by the first. Then the space is encoded to pro-
duce 1213. But, having reached a space, we know that the preceding string of
characters forms a word, and so we add the pattern xyx to the dictionary as the
fourth entry. Continuing in this manner, the entire message would be encoded
as 121343434.

If we were now asked to decode this message, starting with the original
three-entry dictionary, we would begin by decoding the initial string 1213 as xyx
followed by a space. At this point we would recognize that the string xyx forms a
word and add it to the dictionary as the fourth entry, just as we did during the
encoding process. We would then continue decoding the message by recognizing
that the 4 in the message refers to this new fourth entry and decode it as the
word xyx, producing the pattern

xyx xyx

Continuing in this manner we would ultimately decode the string 121343434 as

xyx xyx xyx xyx

which is the original message.

Compressing Images
In Section 1.4, we saw how images are encoded using bit map techniques.
Unfortunately, the bit maps produced are often very large. In turn, numerous
compression schemes have been developed specifically for image representations.

One system known as GIF (short for Graphic Interchange Format and pro-
nounced “Giff” by some and “Jiff” by others) is a dictionary encoding system that
was developed by CompuServe. It approaches the compression problem by
reducing the number of colors that can be assigned to a pixel to only 256. The
red-green-blue combination for each of these colors is encoded using three bytes,
and these 256 encodings are stored in a table (a dictionary) called the palette.
Each pixel in an image can then be represented by a single byte whose value
indicates which of the 256 palette entries represents the pixel’s color. (Recall that
a single byte can contain any one of 256 different bit patterns.) Note that GIF is a
lossy compression system when applied to arbitrary images because the colors
in the palette may not be identical to the colors in the original image.

GIF can obtain additional compression by extending this simple dictionary
system to an adaptive dictionary system using LZW techniques. In particular, as
patterns of pixels are encountered during the encoding process, they are added
to the dictionary so that future occurrences of these patterns can be encoded
more efficiently. Thus, the final dictionary consists of the original palette and a
collection of pixel patterns.

One of the colors in a GIF palette is normally assigned the value “transpar-
ent,” which means that the background is allowed to show through each region
assigned that “color.” This option, combined with the relative simplicity of the
GIF system, makes GIF a logical choice in simple animation applications in
which multiple images must move around on a computer screen. On the other
hand, its ability to encode only 256 colors renders it unsuitable for applications
in which higher precision is required, as in the field of photography.

611.8 Data Compression

Another popular compression system for images is JPEG (pronounced “JAY-
peg”). It is a standard developed by the Joint Photographic Experts Group
(hence the standard’s name) within ISO. JPEG has proved to be an effective stan-
dard for compressing color photographs and is widely used in the photography
industry, as witnessed by the fact that most digital cameras use JPEG as their
default compression technique.

The JPEG standard actually encompasses several methods of image com-
pression, each with its own goals. In those situations that require the utmost in
precision, JPEG provides a lossless mode. However, JPEG’s lossless mode does
not produce high levels of compression when compared to other JPEG options.
Moreover, other JPEG options have proven very successful, meaning that JPEG’s
lossless mode is rarely used. Instead, the option known as JPEG’s baseline stan-
dard (also known as JPEG’s lossy sequential mode) has become the standard of
choice in many applications.

Image compression using the JPEG baseline standard requires a sequence of
steps, some of which are designed to take advantage of a human eye’s limita-
tions. In particular, the human eye is more sensitive to changes in brightness
than to changes in color. So, starting from an image that is encoded in terms of
luminance and chrominance components, the first step is to average the chromi-
nance values over two-by-two pixel squares. This reduces the size of the chromi-
nance information by a factor of four while preserving all the original brightness
information. The result is a significant degree of compression without a notice-
able loss of image quality.

The next step is to divide the image into eight-by-eight pixel blocks and to
compress the information in each block as a unit. This is done by applying a
mathematical technique known as the discrete cosine transform, whose details
need not concern us here. The important point is that this transformation con-
verts the original eight-by-eight block into another block whose entries reflect
how the pixels in the original block relate to each other rather than the actual
pixel values. Within this new block, values below a predetermined threshold are
then replaced by zeros, reflecting the fact that the changes represented by these
values are too subtle to be detected by the human eye. For example, if the origi-
nal block contained a checkerboard pattern, the new block might reflect a uni-
form average color. (A typical eight-by-eight pixel block would represent a very
small square within the image so the human eye would not identify the checker-
board appearance anyway.)

At this point, more traditional run-length encoding, relative encoding, and
variable-length encoding techniques are applied to obtain additional compression.
All together, JPEG’s baseline standard normally compresses color images by a fac-
tor of at least 10, and often by as much as 30, without noticeable loss of quality.

Still another data compression system associated with images is TIFF (short
for Tagged Image File Format). However, the most popular use of TIFF is not as
a means of data compression but instead as a standardized format for storing
photographs along with related information such as date, time, and camera set-
tings. In this context, the image itself is normally stored as red, green, and blue
pixel components without compression.

The TIFF collection of standards does include data compression techniques,
most of which are designed for compressing images of text documents in fac-
simile applications. These use variations of run-length encoding to take advan-
tage of the fact that text documents consist of long strings of white pixels. The

62 Chapter 1 Data Storage

color image compression option included in the TIFF standards is based on
techniques similar to those used by GIF, and are therefore not widely used in
the photography community.

Compressing Audio and Video
The most commonly used standards for encoding and compressing audio and
video were developed by the Motion Picture Experts Group (MPEG) under
the leadership of ISO. In turn, these standards themselves are called MPEG.

MPEG encompasses a variety of standards for different applications. For
example, the demands for high definition television (HDTV) broadcast are dis-
tinct from those for video conferencing in which the broadcast signal must find
its way over a variety of communication paths that may have limited capabili-
ties. And, both of these applications differ from that of storing video in such a
manner that sections can be replayed or skipped over.

The techniques employed by MPEG are well beyond the scope of this text,
but in general, video compression techniques are based on video being con-
structed as a sequence of pictures in much the same way that motion pictures
are recorded on film. To compress such sequences, only some of the pictures,
called I-frames, are encoded in their entirety. The pictures between the I-frames
are encoded using relative encoding techniques. That is, rather than encode the
entire picture, only its distinctions from the prior image are recorded. The
I-frames themselves are usually compressed with techniques similar to JPEG.

The best known system for compressing audio is MP3, which was developed
within the MPEG standards. In fact, the acronym MP3 is short for MPEG layer 3.
Among other compression techniques, MP3 takes advantage of the properties of
the human ear, removing those details that the human ear cannot perceive. One
such property, called temporal masking, is that for a short period after a loud
sound, the human ear cannot detect softer sounds that would otherwise be audi-
ble. Another, called frequency masking, is that a sound at one frequency tends
to mask softer sounds at nearby frequencies. By taking advantage of such char-
acteristics, MP3 can be used to obtain significant compression of audio while
maintaining near CD quality sound.

Using MPEG and MP3 compression techniques, video cameras are able to
record as much as an hour’s worth of video within 128MB of storage and portable
music players can store as many as 400 popular songs in a single GB. But, in con-
trast to the goals of compression in other settings, the goal of compressing audio
and video is not necessarily to save storage space. Just as important is the goal of
obtaining encodings that allow information to be transmitted over today’s commu-
nication systems fast enough to provide timely presentation. If each video frame
required a MB of storage and the frames had to be transmitted over a communica-
tion path that could relay only one KB per second, there would be no hope of suc-
cessful video conferencing. Thus, in addition to the quality of reproduction
allowed, audio and video compression systems are often judged by the transmis-
sion speeds required for timely data communication. These speeds are normally
measured in bits per second (bps). Common units include Kbps (kilo-bps, equal
to one thousand bps), Mbps (mega-bps, equal to one million bps), and Gbps (giga-
bps, equal to one billion bps). Using MPEG techniques, video presentations can
be successfully relayed over communication paths that provide transfer rates of
40 Mbps. MP3 recordings generally require transfer rates of no more than 64 Kbps.

631.9 Communication Errors

1.9 Communication Errors
When information is transferred back and forth among the various parts of a
computer, or transmitted from the earth to the moon and back, or, for that mat-
ter, merely left in storage, a chance exists that the bit pattern ultimately retrieved
may not be identical to the original one. Particles of dirt or grease on a magnetic
recording surface or a malfunctioning circuit may cause data to be incorrectly
recorded or read. Static on a transmission path may corrupt portions of the data.
And, in the case of some technologies, normal background radiation can alter
patterns stored in a machine’s main memory.

To resolve such problems, a variety of encoding techniques have been devel-
oped to allow the detection and even the correction of errors. Today, because
these techniques are largely built into the internal components of a computer
system, they are not apparent to the personnel using the machine. Nonetheless,
their presence is important and represents a significant contribution to scientific
research. It is fitting, therefore, that we investigate some of these techniques that
lie behind the reliability of today’s equipment.

Parity Bits
A simple method of detecting errors is based on the principle that if each bit
pattern being manipulated has an odd number of 1s and a pattern with an
even number of 1s is encountered, an error must have occurred. To use this
principle, we need an encoding system in which each pattern contains an odd
number of 1s. This is easily obtained by first adding an additional bit, called a
parity bit, to each pattern in an encoding system already available (perhaps
at the high-order end). In each case, we assign the value 1 or 0 to this new bit

Questions & Exercises

1. List four generic compression techniques.
2. What would be the encoded version of the message

xyx yxxxy xyx yxxxy yxxxy

if LZW compression, starting with the dictionary containing x, y, and a
space (as described in the text), were used?

3. Why would GIF be better than JPEG when encoding color cartoons?
4. Suppose you were part of a team designing a spacecraft that will travel

to other planets and send back photographs. Would it be a good idea to
compress the photographs using GIF or JPEG’s baseline standard to
reduce the resources required to store and transmit the images?

5. What characteristic of the human eye does JPEG’s baseline standard
exploit?

6. What characteristic of the human ear does MP3 exploit?
7. Identify a troubling phenomenon that is common when encoding

numeric information, images, and sound as bit patterns.

	Cover
	Title Page
	Copyright Page
	Preface
	Acknowledgments
	Contents
	Chapter 0 Introduction
	0.1 The Role of Algorithms
	0.2 The History of Computing
	0.3 The Science of Algorithms
	0.4 Abstraction
	0.5 An Outline of Our Study
	0.6 Social Repercussions

	Chapter 1 Data Storage
	1.1 Bits and Their Storage
	Boolean Operations
	Gates and Flip-Flops
	Hexadecimal Notation

	1.2 Main Memory
	Memory Organization
	Measuring Memory Capacity

	1.3 Mass Storage
	Magnetic Systems
	Optical Systems
	Flash Drives
	File Storage and Retrieval

	1.4 Representing Information as Bit Patterns
	Representing Text
	Representing Numeric Values
	Representing Images
	Representing Sound

	1.5 The Binary System
	Binary Notation
	Binary Addition
	Fractions in Binary

	1.6 Storing Integers
	Two’s Complement Notation
	Excess Notation

	1.7 Storing Fractions
	Floating-Point Notation
	Truncation Errors

	1.8 Data Compression
	Generic Data Compression Techniques
	Compressing Images
	Compressing Audio and Video

	1.9 Communication Errors

	Parity Bits

