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Chapter 2

High Level Language Nut 

Programming is still an art.  It requires skill which is acquired through a lot of 
practice.  Its foundation lays in mathematics.  The study of programs as an object 
in  itself  is  interesting  and  useful.   By  such  study  we  can  understand  more 
thoroughly  the  relationship  between  a  program and  the  result  we  want  it  to 
accomplish.  It is my intention in this chapter to introduce the study of programs. 
It  will  give  some  insight  into  programming  and  gives  an  appreciation  of 
programs as beautiful man-made objects. A particular high level language called 
Nut is defined. Nut is the language used to describe all  aspects of the system 
studied in this text.  Its syntax and semantic including the internal form will be 
studied in this chapter. 

2.1 Motivation

I will describe a language, Nut language.  Nut is inspired by a language defined 
by S. Kamin in the chapter 1 of his textbook [KAM90].   The beauty of this 
language stems from its smallness and its elegance.  There are 11 words which 
are already defined (called reserved words).  Only one form of syntactic rule is 
required,  using  only  two  characters  as  syntactic  features  (the  left  and  right 
parenthesis).  The grammar for this language can be written down in just a few 
lines.  Despite of its look of a toy-language, the beauty of its completeness can be 
illustrated by showing that the whole executable system including a parser and an 
evaluator can be completely written in this language.

2.2 Nut Language
Nut employs the same syntax as Kamin’s language.  It is actually originated in 
LISP [MCA65].  Nut has a few simple data types such as array and string.  The 
aim  of  Nut  language  is  for  teaching.  It  has  been  used  in  several  computer 
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architecture classes to teach how high level programming languages and machine 
codes are related. The whole language translation process is simple enough that 
students can modify it to generate code for their studies.  

Nut has a very simple syntax. It has only one form, (op arg*). It is designed to be 
minimal to make it easy to understand.  The intermediate code (or internal form) 
is called N-code.  N-code is the data structure representing a program in Nut 
language.  It has a simple static memory model for efficiency,  and it also has 
dynamic memory allocation for flexibility. 

The basic element in Nut is an expression. An expression returns a value, except 
for an assignment which does not return any value. A variable is evaluated to its 
value.  Nut has a very small set of operators as it is intended to be used as a 
teaching tool.  It has a small set of reserved words:

def, let, enum, if, while, do, set, setv, vec, new, sys.

The operators are:  +, −, =, <, and >.

Variables

Nut has three types of variable: global, local, and array. A global variable must 
be declared outside a function definition before it  is used, for example  (let v) 
declares  a  global  variable  v.  A  local  variable  is  defined  within  a  function 
definition.  A local variable’s scope is in its defined function.  An array variable 
is a variable that can hold a one-dimensional vector which can be accessed by an 
index.  An array variable has its space allocated by calling (new n) where n is the 
size of the array. (new n) returns an address which is stored in the array variable. 
An array is dynamically created.  Its space is allocated from the heap. 

Simple illustrative examples of Nut programs

The easiest way to introduce a new language is to illustrate many examples of the 
use of elements of language.  The following examples are expressions written in 
Nut language.  The expression is printed in Italics. The Nut language is printed in 
Arial font.

1. A simple expression   

b + c + d     (+ b (+ c d))
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2. An assignment

a = b - d     (set a (- b d))

3. A while loop

while i < 20
  i = i + 1

(while (< i 20) (set i (+ i 1)))

4. A conditional expression

if a > 2 then b = 3 else b = 4

(if (> a 2) (set b 3) (set b 4))

5. A sequence of expression

s = 0
a = a + 2
b = 3

(do (set s 0) (set a (+ a 2)) (set b 3))

6. Declaring and allocating an array. A global variable must be declared before 
its use.

ax[20]  

(let ax)
...
(set ax (new 20))

7. Getting a value of an element of an array

ax[i]    (vec ax i)

8. Setting a value of an element of an array

ax[k] = 4    (setv ax k 4)
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9. Defining a function

sq(x) is x * x

(def sq (x) () (* x x))

A function with local variables, swap interchanges ax[a] and ax[b] using a local 
variable t.

(def swap (ax a b) (t) 
    (do
    (set t (vec ax a))
    (setv ax a (vec ax b))
    (setv ax b t)))

10. To help readability, the enum is used to create symbolic names.

(enum 10 xAdd xSub xLit)

The symbolic name xAdd is 10, xSub is 11, xLit is 12.

Some elegant examples: defining new logical operators using only if , =, and <.

(def and (x y)() (if x y 0))
(def or (x y)() (if x 1 y))
(def not (x)() (if x 0 1))
(def eq (x y)() (= x y))
(def neq (x y)() (not (= x y )))
(def lt (x y)() (< x y))
(def le (x y)() (or (< x y ) (= x y )))
(def gt (x y)() (not ( le x y )))
(def ge (x y)() (not (< x y )))

2.3 Nut syntax

Every sentence in Nut is an expression.  An expression has the form

(op e),

where  e denotes a list of expressions,  op can be any reserved word or a user-
defined word.  The control-op has the following syntax.

(set name e)
(if e1 e2 e3)
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(while e1 e2)
(do e1 e2 ... en)

The name of a variable and a user-defined word can be any string of characters 
except the reserved words.  The syntax for defining a user-defined function (not 
built-in) is

(def name (formals) (locals) e )

where formals is the list of formal parameters, locals is the list of local variables, 
and e is the body of the function.

The grammar for Nut is as follows.  (* denotes zero or more repetition, terminal 
symbols are in bold)

toplevel →   e | define-op
e →          name | control-op | value-op | data-op 
control-op → ( if e e e ) | 
              ( while e e ) | 
              ( do e* )
value-op →   ( op args )
data-op →    ( set name e ) |
              ( vec name e ) |
              ( setv name e e )
define-op →  ( def name ( formals ) ( locals ) e ) |
              ( let name*) |  
              ( enum number name name* )
op →         + | - | = | < | > | name
args →       name* | number*
formals →    name*
locals →     name*
number →     integer

A name is the identifier name.  There are three types of names: global, local and 
enumerate.  A global variable must be declared (using “let”) before its use.  A 
local variable  is  declared  inside  a  scope  of  the  function  definition.   The 
enumerate is used as a symbolic name referring to some constant value.  The 
define-op is the defining operator.  There are three define-ops:  def, let, and 
enum.  The value-op is the value producing operator.  The operators are +, -, 
=, <, and >.  The  control-op is the flow control operator:  if,  while, and  do. 
The data-op is the data access operator: set, setv, and vec. 
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2.4 Nut semantic

To understand the meaning of a program,  the meaning of each of its element 
must  be  understood.   The  arithmetic  operators  (value-op)  have  their  usual 
meaning on the domain of integer.  They evaluate all their arguments which must 
return integers then apply the operator to these arguments and return the value of 
integers.  The value-op including a function call evaluates all of its arguments 
before applying the operator.  This is called  call-by-value semantic.  The other 
possible meaning is the  call-by-reference, it is not used in this language.   The 
control-op treats its arguments in a different way.

(set name e)

“ set” is an assignment operator.   It  evaluates an expression  e and assigns the 
value to the variable “name”.  A variable can be local or global.  A variable is 
local when its name is listed in the formal  or local parameters of  the current 
function otherwise it is global.  A global variable must be declared by “let”.

(if e1 e2 e3)

“if” is a conditional operator.  It evaluates e1 and if the value is non-zero (true) it 
evaluates e2 otherwise evaluates e3.  The returned value is the value of the last 
expression it evaluates.

(while e1 e2)

“ while”  is  an  iterative  operator.   It  evaluates  e1,  if  the  value  is  non-zero  it 
evaluates e2.  This process is repeated until e1 returns zero.  The returned value 
is the value of e2 before the loop terminates.

(do e1 e2 ... en)

“do” is a sequencing operator.  It evaluates e1 e2 ... en sequentially and returns 
the value of en.  

(def name (formals) (locals) e )

The  define-op is used to define a user-defined function.  Recursion is quite 
natural  in  Nut.   For  example,  the  following  expression  defines  a  Fibonacci 
function.
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fib n is  
  if n < 3 then 
     return 1 
 else 
    return fib(n-1) + fib(n-2)

(def fib (n) ()
    (if (< n 3) 
        1
        (+ (fib (- n 1)) (fib (- n 2)))))

The following example shows a complete program to solve tower of Hanoi 
problem.

 (let num) ; a global array

; define function “mov” with 3 arguments: n, from, t
; and one local variable: other

(def mov (n from t) (other)
    (if (= n 1)
        (do
        (setv num from (vec num (- from 1)))
        (setv num t (+ (vec num t) 1))
        ; else
        (do
        (set other (- 6 (- from t)))
        (mov (- n 1) from other)
        (mov 1 from t)
        (mov (- n 1) other t))))

(def main () (disk)
    (do
    (set num (new 4))
    (set disk 6)
    (setv num 0 0)
    (setv num 1 disk)
    (setv num 2 0)
    (setv num 3 0)
    (mov disk 1 3))) 

The function “main” is the first function to be executed when run this program.

System calls

To enable input/output and other system functions, Nut uses a primitive “sys”. It 
has a variable number of arguments; the first one is a constant, the number that 
identifies  the  system function,  the  rest  is  the  actual  parameters  passed to  the 
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function.  “sys” is used to implement library functions such as print an integer, 
print a charactor, etc.  Its implementation is dependent on the platform.  For a PC 
platform,  our  implementation  used  C  language.   The  following is  the  list  of 
available system functions:

(sys 1 a)  evaluate a and print the returned value as an integer  
(sys 2 c) evaluate c and print the returned value as a character
(sys 3)  get a character from a standard input stream

Many system calls  are  introduced  in  the  later  chapters  to  facilitate  low-level 
system dependent functions.

2.5 Data structures

How can all  data structures be implemented in a system which provides only 
scalar values and arrays in integer domain?  For example, how to implement a 
pointer (so that we can have linked-list and other data structures)?  To provide an 
aggregate of data, an array is used as a general mechanism to provide an indirect 
access to memory. Accessing an array using the “base” address and the “index” 
can be regarded as an indirect access to memory. If we know the “base” of the 
data, then the reference to the data is just an offset (the index) from the base.  The 
index is an ordinary integer.  The index is started with zero for the first element 
of an array. To access an array we need 3 operators: new, setv, vec in this syntax:

(new size)
(vec name index)
(setv name index value)

“ new” allocates memory of “size”, where  size is an expression, for example  
(* 4 10) or  40.   “new” returns the base address of the allocated memory.  The 
following examples show how these operators are used.

(set ax (new 10)) ; set ax to be an array of size 10
(setv ax 1 20) ; set ax[1] = 20
(set a (vec ax 1)) ; a = ax[1]

What really is “name” (such as ax)?  It is a variable name.  It can be global, or 
local.  A variable name is associated with a reference to the memory that stored 
its value.  
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Figure 2.1  A name stored a reference to a memory

A scalar variable refers to only one location in the memory as opposed to an 
array variable which is  associated with a contiguous block of memory.   This 
block of memory is allocated from a part of memory called “heap”. To address 
anywhere in the heap we use “ref” which is an address of this memory block. 

Figure 2.2  A heap in a memory

“ vec” evaluates its argument (“name”), gets its value, which is the “ref” to the 
data segment and uses this reference (plus index) to get the value of the array 
variable.   This  indirection  is  called  dereferencing.   “setv” similarly  performs 
storing a value into an array variable indirectly.

With “vec” and “setv” you can define access functions to your user-defined data 
structure  by  implementing  the  data  structure  as  an  array.   A  calculation  on 
address a variable becomes an ordinary arithmetic on integer. 

name value

memor

. . .

. . .

ref variable

memory “heap”

. . .
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The following is a program illustrates how to manipulate array variables.  The 
function “array-copy” copies one array to another (in the example, it copies y to 
x).

(enum 10 N)  ; size of array
(let a1 a2)

(def ge (a b) (if (< b a) 1 0))

(def array-copy (x y n) ()
    (if (ge n 0) 
         (do
         (setv y n (vec x n))
         (array-copy x y (- n 1)))))

(def main () ()
    (do
    (set a1 (new N))
    (set a2 (new N))
    (array-copy a1 a2 (- N 1))))

2.6 Strings 

An array is used to store a string in Nut. A constant string is useful in a source 
program, for example to present an error message.  It is converted into a constant 
array at  compile  time.   Strings  in  Nut  are  implemented  with  a  word-aligned 
addressing in mind.  A string is an array of integer. The string is terminated by an 
integer 0.  See the following program for string manipulation, a string copy.

; copy s1 = s2
(def strcpy (s1 s2) (i)
    (do  
    (set i 0)
    (while (neq (vec s2 i) 0)
        (do    
        (setv s1 i (vec s2 i)
        (set i (+ i 1))))
    (setv s1 i 0)))

(def main () (s1)
    (do
    (set s1 (new 20))
    (strcpy s1 “test string”)))

The compiler translated a constant string “test string” in the program text into a 
constant pointed to data segment storing the string.
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2.7 Readability

How easy  it  is  to  read  a  program?   This  is  very  much  dependent  on  prior 
experience.  It is a matter of syntax or form of the language.  Three major types 
of syntax (based on the concept of operator) are: prefix, infix, and postfix.  Most 
of us grow up to be familiar with infix syntax; (a * 2) + b.  For us, this is easier to 
read than prefix syntax; (* a (+ 2 b)), or postfix syntax; a 2 b + *.   The meaning 
of three forms is the same.  However, the difficulty of parsing them is different. 
The  infix  syntax  requires  specifying  precedence  of  operators  for  the  correct 
association  and  needs  parentheses  in  places  where  that  precedence  must  be 
overridden.  A grammar can be written to deal with the precedence.  On the other 
hand, parsing of a prefix and a postfix expression is trivial.  Parsing the infix and 
prefix  expression  naturally  results  in  a  structure  of  tree  while  the  postfix 
expression can be transformed into a linear structure easily.  However, although a 
prefix language is trivial to parse, it tends to need a lot of parentheses especially 
on the far right-hand of the expression which is hard to get it right without the 
help from an editor that can match parentheses automatically.

The model of language also affects its form.  The current language distinguishes 
between statement and expression. An expression has well-defined mathematical 
meaning,  evaluating  an  expression  returns  a  value.   A  language  can  have 
expression as the only basic unit.  This will make it more compact.  Consider the 
following example:

(if x y 0)    is the same as    if( x ) then return y; else return 0;  

We are more familiar with the right-hand side than the left-hand side (LISP). 
However you can notice that the left-hand side is much more compact than the 
right-hand side. The meaning is “evaluate x, if true then evaluate y else evaluate 
0”.  The value returned is the value of the last evaluated expression.  There is no 
need to explicitly “return”.  The examples of real languages with different syntax 
are; prefix language, LISP [MCA65], postfix language, FORTH [MOO70] and 
Postscript.

Let us consider an example of adding one to a variable.

infix syntax a = a + 1

prefix syntax (= a (+ a 1))

postfix syntax &a a 1 + =
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For the infix and prefix syntax, the operator “=” (assign) treats its first argument 
“a” as special, it is an address.   For postfix syntax this must be done explicitly 
using another operator “&”.  You can not write it the other way.   The postfix 
expression must be understood using the model of stack.  The central concept is 
the evaluation stack.  Evaluating a variable pushes its value into the stack.  An 
operator takes its argument from the stack and pushes its result back. Form also 
affects the way an operator works.  This is an infix language (C):

a[1] = a[2] + 1;

It actually means  *(&a + 1) = *(&a + 2) + 1;

The “=“ here does not have the same meaning as in a = a + 1 because it takes the 
left-hand argument as an expression which must be evaluated to give a value as 
address where as the “=“ in a = a + 1 takes a simple value directly.  The parser 
must know this difference.

2.8 Iteration versus Recursion

Programs can be written in iterative or recursive style.  The following examples 
contrast two styles. 

(def findName2 (name i) (found)
    (do
    (set found 0)
    (while (and (<= i numNames) (not found))
        (if (streq (def-name-at i) name)
            (set found 1)
            (set i (+ 1 i))))
    (if found i 0)))

(def findName3 (name i)
    (if (> i numNames) 0
    (if (streq (def-name-at i) name) i
    (findName3 name (+ 1 i)))))

“findName2” performs a linear search for a name in the symbol table (def-name). 
“findName2” is iterative and uses “found” to break the while loop.  “i” is set to “i 
+ 1” for  the next  iteration.   “findName3” is  recursive,  “i  +  1” is  passed as a 
parameter to the next recursion.  Please note the absence of “set” in the recursive 
version.
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The next example is the function “atoi” which converts a string such as “-1234” 
into its value -1234.

(def atoi4 (s1 i) (m)
    (do
    (set m 0)
    (if (= 45 (vec s1 0)) (set i 1) 0)
    (while (!= 0 (vec s1 i))
        (do
        (set m (+ (* 10 m) (- (vec s1 i) 48)))
        (set i (+ 1 i))))
    (if (= 45 (vec s1 0))
        (- 0 m)
        m)))

(def atoi (s1) ()
    (if (= 45 (vec s1 0))
        (- 0 (atoi2 (+ 1 s1) 0))
        (atoi2 s1 0)))

(def atoi2 (s1 m) ()
    (if (= 0 (vec s1 0))
        m
        (atoi2 (+ 1 s1) (+ (* 10 m) (- (vec s1 0) 48)))))

“atoi4” uses iteration with “i” as an index of character and “m” as a local variable 
storing the converted value.  “atoi” and “atoi2” are the recursive version.  “atoi” 
handles the negative sign and calls “atoi2” to convert the string.  You can see the 
simplicity of the structure in the recursive version and the lack of “set”.

You may think  that  recursion  consumes  more  memory  and  runs  slower  than 
iteration.   Let  us  expose  more  details  of  this  argument.   First,  the  memory 
concern,  most  procedural  languages  use  stack to  store  all  local  variables  and 
actual  parameters.   Recursive call  will  consumes this  stack where as iteration 
does  not.   However,  for  the  case  that  the  recursive  call  is  the  last  function 
executed in a user-defined function, so called  tail-recursion,  this stack growth 
can be eliminated.  

We can eliminate the activation record of the next call (n+1) by realising that the 
call is the last function executed hence all local variables and parameters of the 
current activation record need not to be saved (as they are not used anymore). 
The  actual  parameters  of  the  next  recursive  call  can  substitute  the  current  
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Figure 2.3   A nested call (including recursion) causes growing of activation 
records

activation record in-place.  A parser or a compiler can recognise tail-recursion 
and performs this optimisation.  

Second, the speed concern, the speed of recursive call can be slow due to the 
overhead of a function call.   A function call  requires calculating a number of 
pointers to adjust the stack.  Where as for the iteration the loop can be achieved 
by  “jumping”  which  is  a  cheaper  operation  than  a  call.   It  depends  on  the 
implementation how much this difference will be.  

2.9 Internal forms

When an expression (in a source language) is processed, it is transformed into an 
internal form before it is evaluated (the internal form is also used to generate 
executable codes).  This internal form has the structure in the form of a tree.  This 
internal form is distinct from the surface language.  One surface language may 
have different internal forms and different surface languages may have the same 
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internal form. You can think of an internal form as a machine language and a 
surface language as a high level language.  However, an internal form is not a 
machine language. It is not directly executable by any processor (except when 
you want to design a special processor for it).  There is a program that takes an 
internal form and runs it.  This program is called in many names: an interpreter, a 
virtual machine or an evaluator.

Suppose we have a function power(x, y) which raises x to the power of y.

(def power (x y) ()
    (if (= 0 y) 1
    (if (= 1 y) x
    (* x (power x (- y 1))))))

The expression defining the body of power can be drawn as Fig. 2.4. A general 
purpose linked structure is used to represent this tree structure, called list.  List 
composed from two kinds of nodes: dot-pair and atom (Fig. 2.5).   A dot-pair 
stores two components; first component is a pointer to an element of the list and 
second component  is  a  link to other dot-pair.  An atom stores information (or 
element of list).  In the following example, an atom is shown in CAPITAL letter 
and a list is enclosed in parentheses.  The “/” is a NULL pointer signifying the 
end of a list.

Figure 2.4  The tree represents an expression

if
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Figure 2.5   Lists can be represented by linked dot-pairs and atoms

The internal form composed of the linked-list nodes with two fields: head and 
tail.  Now we will draw the previous program (power) in this concrete form. 

Figure 2.6   The internal form showing the function (power x y)

How this internal form is implemented depends on the choice of data structure. 
In the next section we will discuss this implementation issue in more details.
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2.10 N-code

N-code is the internal form of Nut language. The structure of program is a list, 
composed of dot-pairs.  An instruction has the form (op a1... an) represented by
 

“op” is an atom. Arguments can be either atom or list.  A dot-pair composed of a 
pair of head and tail cells:

 

The head stores an atom or a pointer to other cell. If it is an atom, the first bit is 
“1”, otherwise it is a dot-pair (a pointer to other cell), and the first bit is “0”. The 
tail stores a pointer to other cell, called “link”.  The basic data structure is a pair 
of consecutive cells which each cell is large enough to store an atom or a link. 
There are two kinds of pairs: dot-pair/link and atom/link.

 

An atom encodes an instruction and one argument.
 

For a 32-bit system, a cell is 32 bits. A pointer to cell is 31 bits (as one bit is used 
to encode atom/dot-pair). The field “op” is 7 bits; the field “arg” is 24 bits.

op a
1

a
2 … a

n /

head tail

0 dot-pair 0 link

1 atom 0 link

1 op arg

 1   7       24
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2.11 N-code instruction set

N-code  instruction  set  is  a  definition  for  the  internal  representation  of  Nut 
language.   The  instruction  follows  from the  Nut  language  pluses  some  extra 
instructions  to  implement  precise operational  semantic  of  Nut  language.   The 
instruction set is divided into four groups: control, value, arithmetic and system. 
Each instruction has the form of an atom with 7-bit opcode and 24-bit argument.

Control if while do call fun
Value get put ld st ldx stx ldy sty lit str 
Arithmetic + - = < >
System new sys

Encoding

Table 2.1   N-code and its encoding

1     if 2     while 3     do 5     new 6     add
7     sub 10   eq 11   lt 12   gt 13   call
14   get 15   put 16   lit 17   ldx 18   stx
19   fun 20   sys 25   ld 26   st 27   ldy
28   sty 32   str

Totally  there  are  22  instructions  in  N-code  instruction  set.   Only  value-
instructions have arguments, denoted by “op.arg”. “fun” has special arguments 
(to be explained later). “call” has a pointer to its body of a function (the N-code) 
as its argument.

To  understand  its  operational  semantic,  we  need  to  know  its  run-time 
environment.  The run-time environment consists of an evaluation stack and the 
data segment which provides the place to hold all global, strings and array data.

The evaluation (execution) of a program employs a stack data structure.  This 
evaluation stack has two purposes, one is to store a dynamic local context, called 
activation record, and the second purpose is to be a temporary stack to store the 
intermediate  results.   All  local  variables  are  accessed  through  the  activation 
record.  When a function is evaluated, it has its local environment (local variables 
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and stack area).  The activation record is maintained through two global pointers: 
FP (frame pointer), and SP (stack pointer).  FP points to the activation record.  SP 
points to the temporary stack area.  SP is on top of FP.

An activation record has the following structure.  At FP, the previous FP (FP’) is 
stored so that the old context can be restored after the current context is complete 
at the end of a function call.  The return address is stored next on the top of FP. 
This return address is used to restore the instruction pointer (or so called program

Figure 2.8  An activation record

counter) to enable a program to return to its caller.  Storing a return address in the 
context is necessary in a real processor which implements a data path based on 
traditional architecture.  It is not necessary if we implement an evaluator of N-
code as software because the evaluator can be implemented as recursive calls to 
evaluate  each  instruction  and  follows  the  “link”  field  without  using  any 
instruction pointer (the next chapter discusses this Nut-evaluator)1.  

1 Another possibility is to implement a special processor to execute N-code directly 
using  the  recursive  evaluation  style  (with  recursive  microprogramming).   This 
alternative also does not need to store a return address in the context.
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To access local variables,   the argument of value-instruction is an index relative 
to  the  frame pointer.   For  example,  to  get  a value of  a  local  variable  3,  the 
instruction  “get.3”  accesses  Mem[FP-3]  where  Mem[.]  is  the  N-machine 
memory.  Usually this part of memory is called stack segment.   

The program written in N-code is presented as a list of N-code.  It looks similar 
to the source language Nut but the node values are the operational codes not the 
tokens of the high level language.
Here is a simple example.  A program in Nut to compute a Fibonacci value is 
shown below.

(def fib (n) ()
    (if (< n 3) 
        1
        (+ (fib (- n 1)) (fib (- n 2)))))

This program when translated into N-code will look like this (N-code is printed 
in Italics).

(fun.1 
    (if (lt get.1 lit.3)
        lit.1
        (add (call.fib (sub get.1 lit.1)) (call.fib (sub get.1 lit.2)))))

The object code represented in the code segment is shown below.  The format of 
object code is as follows.  Each line of object code represent one pair of cells 
written as a tuple of {address tag op arg link}  where address denotes 
the address of this cell in the code segment, tag denotes the first bit – 0 for dot-
pair, 1 for atom, op denotes the operation code, arg denotes its argument, link 
denotes the address of the next cell.  The code is generated using the preorder 
traversal of the source expression; hence the code is generated with the left-most, 
depth-first order.  The last line of the object is the entry point of the expression. 

2 1 16 3 0
4 1 14 1 2
6 1 11 0 4
8 1 16 1 0
10 1 14 1 8
12 1 7 0 10
14 0 0 12 0
16 1 13 44 14
18 1 16 2 0
20 1 14 1 18
22 1 7 0 20
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24 0 0 22 0
26 1 13 44 24
28 0 0 26 0
30 0 0 16 28
32 1 6 0 30
34 0 0 32 0
36 1 16 1 34
38 0 0 6 36
40 1 1 0 38
42 0 0 40 0
44 1 19 257 42

The code above can be read as follows.  

44 1 19 257 42

It is an atom “fun”, the next link pointed to Mem[42].  

42 0 0 40 0

This is a dot-pair with the Mem[40] as the first element and the only element of 
this list as the next link contains 0 signified the end of list.  This 0 is usually 
called a NIL atom.

40 1 1 0 38

This is an atom “if”, the next link pointed to Mem[38].

38 0 0 6 36

This is a dot-pair, the first element is Mem[6], the next link pointed to Mem[36].

6 1 11 0 4

This is an atom “lt”, with its argument at Mem[4].

4 1 14 1 2

This is an atom “get.1” and the next argument is Mem[2].

2 1 16 3 0
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This is an atom “get.3” and the list of argument ends here.  These three lines can 
be written out as:

(lt get.1 get.3)

Other lines of object code can be read similarly.   We will not pursue reading the 
object code of the argument of “if” at Mem[36] any further.

2.12 Meaning of instructions

Now we discuss the  meaning  of each instruction with respect  to its  run-time 
environment.  Mem[.] denotes the memory.   SS[.] denotes part of the memory 
that is designated for the stack segment.  The code and data are stored in Mem[.] 
and are called the code segment and the data segment respectively.  

The notion of meaning is best explained as the effect of each instruction on its 
environment.   This  style  of  describing  the  meaning  to  a  program  is  called 
operational  semantic (other  ways  to  describe  semantic  are  axiomatic, 
denotational and functional).  This can be presented as a function “eval()” which 
takes a valid expression of N-code and produces its result.  This function eval() is 
the evaluator of N-code.  It can be implemented both in software (as a virtual 
machine) or hardware (a special processor that executes N-code directly).

Control-instruction

(if e1 e2 e3)   

“if” does a conditional execution.  If eval(e1) is true then eval(e2) else eval(e3)

(while e1 e2)

“while” performs a repeat loop.  While eval(e1) is true eval(e2) repeatedly, it 
returns the last eval(e2)

(do e1 ... en)

“do” is a sequencing operator.  eval(e1) then eval(e2) ... eval(en)  return eval(en)

(call.x e1 e2..en)
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The  above  expression  calls  a  function  with  the  argument  list  (e1..en).   The 
element of this list is evaluated one-by-one, eval(e1)... eval(en), the results are 
pushes to the evaluation stack and then goto eval the body of function at x.

(fun.a.v e)

“fun” is an operational code at the beginning of a function definition.  It creates a 
new activation record. The arguments of the function call are passed from the 
evaluation stack to this environment, and the body of function is evaluated.  Once 
the  evaluation of  the body is  finished,  the  activation record is  deleted.   Two 
parameters are required to handle creation and deletion of the activation record: 
arity and the size of frame.  The encoding is “fun.a.v” where a is arity,  v is the 
size of frame. The size,  v,  is used in the deletion of activation record, k is  v-
arity+1, used in the creation of activation record

The action of “fun.a.v” is:   (SS[.] denotes stack segment)

k = v-a+1             offset from SP
SS[sp+k] = fp         new frame
fp = sp+k
sp = fp
v = eval(e) eval body
sp = fp-v-1 delete frame
fp = SS[fp] restore old FP

Value-instruction

The argument is the index to a local variable.  It is relative to the frame pointer.

get.a return SS[FP-a].

(put.a e) SS[FP-a] = eval(e), return eval(e).

(ld.a) load, a is global, return Mem[a].

(st.a e) store, a is global, Mem[a] = eval(e), return eval(e).

(ldx.a e) load with index, a is local, return Mem[ SS[FP-a] + eval(e) ].

(stx.a e1 e2)  store with index, a is local, Mem[ SS[FP-a] + eval(e1) ] = 
eval(e2), return eval(e2).
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(ldy.a e) load with index, a is global, return Mem[ Mem[a] + eval(e) ] .

(sty.a e1 e2)  store with index, a is global, Mem[ Mem[a] + eval(e1) ] = 
eval(e2), return eval(e2).

lit.a return a.

str.a a string constant, a is a pointer to a string, return a.

Arithmetic

(bop e1 e2) bop are  + - = < >.  The operators have their usual meaning, 
return eval(e1) bop eval(e2).

System

System instructions perform the task of input/output and other services related to 
operating system.  On a real processor, the system instructions are implemented 
differently due to their dependency on a target machine.  However, we define 
these instructions for their use in the simulation.  The result of input/output can 
be simulated on the simulator.

(new e) return  pointer  to  a  newly  allocated  chunk  of  memory  of  size 
eval(e).

(sys.a e) system call sys.a
a = 1  print integer eval(e)
a = 2  print character eval(e)
return eval(e)

Example of programs written in N-code

An expression 

(= a (+ b 1))
 
(put.a (+ get.b lit.1))

Function definitions

(def double (x) () (+ x x)) 

 
(fun.1.1 (add get.1 get.1))
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(def sum (a b s) () 
     (if (> a b) 
        s 
        (sum (+ a 1) b (+ s a))))

(fun.3.3 
    (if (gt get.a get.b) 
        get.s 
        (call.sum (add get.a lit.1) get.b (add get.s get.a))))

A quicksort program

(def partition (a p r) (x i j flag)
    (do
    (set x (vec a p))
    (set i (- p 1))
    (set j (+ r 1))
    (set flag 1)
    (while flag
        (do
        (set j (- j 1))
        (while (> (vec a j) x)
            (set j (- j 1)))
        (set i (+ i 1))
        (while (< (vec a i) x)
            (set i (+ i 1)))
        (if (< i j) (swap a i j) (set flag 0))))
    j ))

(fun.3.7 
    (do 
    (put.4 (ldx.1 get.2))
    (put.5 (- get.2 lit.1))
    (put.6 (+ get.3 lit.1))
    (put.7 lit.1 )
    (while get.7 
        (do 
        (put.6 (- get.6 lit.1))
        (while (> (ldx.1 get.6) get.4)
            (put.6 (- get.6 lit.1)))
        (put.5 (+ get.5 lit.1))
        (while (< (ldx.1 get.5) get.4)
            (put.5 (+ get.5 lit.1)))
        (if (< get.5 get.6)
            (call.swap get.1 get.5 get.6 )(put.7 lit.0)))
    get.6))
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(def quicksort (a p r) (q)
    (if (< p r)
        (do
        (set q (partition a p r))
        (quicksort a p q)
        (quicksort a (+ q 1) r))
        0))

(fun.3.4 
    (if (< get.2 get.3)
        (do 
            (put.4 (call.90 get.1 get.2 get.3))
            (call.135 get.1 get.2 get.4)
            (call.135 get.1 (+ get.4 lit.1 )get.3))
        lit.0))

2.13 Run-time data structure

There are two blocks of memory for run-time data structure supporting N-code: 
heap and stack segment.  Heap contains the code segment and the data segment. 
Code segment is initialised by the loader.  The loader reads an object file and puts 
the N-code into the code segment.  Data segment is used to stored variables, the 
global data.   The global data is allocated by the compiler at the compile-time 
(when declaring a global variable) and at the run-time by the “new” instruction.  

Stack segment contains activation records which stored the data occurred at run-
time when a function is called.  The activation record contains all local variables 
and state of computation such as FP (frame pointer) and SP (stack pointer).  

When a variable is accessed, for example

(vec a (+ i 10))

(ldx.a (+ get.i lit.10))

the “get.i” instruction accesses the local variable “i” through the frame pointer 
from the stack segment by,  SS[FP-i] where SS is the stack segment.  The “ldx.a” 
accesses global data in data segment using the base address “a” (from SS) and the 
index (+ i 10) that is available from the stack (pointed to by SP).  The effective 
address for accessing data segment is ea = SS[FP-a] + SS[SP], then the value of 
(vec a (+ i 10)) is  heap[ea].
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A part of memory SS[sp] is the evaluation stack.  It stores the intermediate values 
during computation of an expression. Our scheme combines the activation record 
with the evaluation stack within a single stack segment.  

To make it clear, there are four blocks of memory: code segment, data segment, 
stack segment,  and evaluation stack.  Code segment  stores N-code,  executable 
machine  codes.   The  data  in  the  code  segment  is  dot-pair  and  atoms.   Data 
segment stores global data, allocated by “new” instruction.  Stack segment stores 
activation  records  pointed  to  by  FP.   Evaluation  stack  stores  intermediate 
computation results, pointed to by SP.  Our heap combines code segment and 
data segment.  The SS combines stack segment and evaluation stack.  

Parameter passing

Actual  parameters are evaluated and reside in the evaluation stack.   They are 
passed to a function when a function is called.  When a function is called, it 
creates a new activation record by overlapping its stack frame with the evaluation 
stack.  No parameters need to be copy to the new activation record.  For example,

(def sum3 (a b c) () (+ a (+ b c)))
(def main () () (sum3 4 5 6))

When “main” starts the arguments of “sum3” is evaluated one-by-one and the 
results are resided on the evaluation stack (pointed to by SP).  Here is the picture 
of the evaluation stack.

W

hen “sum3” is called.  “sum3” creates its own activation record on top of the 
evaluation  stack.   The  new  evaluation  stack  starts  at  the  top  of  the  current 
activation record (SP = FP).

SP6

5

4
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The local variable “a” can be accessed by an offset from FP, SS[FP-a].  This 
overlapping  also  reordered  the  position  of  local  variables  looking  from  the 
reference point of FP.  The number of a local variable is renamed from 1..n to 
n..1.  This is done by the compiler.  The run-time data structure is explained in 
more details in the next chapter.

2.14 Lab session

Try to run some Nut programs.  “nutc” is the Nut compiler. We can use nutc to 
compile  a  Nut  program into  N-code.   “nvm”  is  the  “interpreter”  of  N-code. 
“nvm” is a virtual machine for N-code. It can execute N-code directly. (In the 
later  chapter,  a  code generator  will  be  developed which allows N-code to be 
transformed into a target machine code).  The following session shows how to 
compile and run some Nut program.  The following example program is used to 
illustrate the session.

(def print (a) () (sys 1 a))
(def sq (x) () (* x x))
(def main () (a) (print (sq 20)))

Assume the example program is in the file “example.txt”. “nutc” produces a.obj 
(an N-code executable file).  The output on the screen shows the N-code of the 
functions that are successfully compiled. “nvm” executes a.obj which prints the 
result to the screen.  Try to write some Nut programs and test them.

SP

6  (lv.c)

5  (lv.b)

4  (lv.a)

FP’ FP
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2.15 Summary

We have introduced a high level language that will be used to describe all levels 
of the computer system in this text, Nut.  The language itself is intended to be a 
minimal  language  in  a  sense  that  it  is  a  very small  language  usable  for  our 
purpose and yet Nut is complete.  It can be used to write its own compiler and 
evaluator which will  be the topic of  the next  chapter.   The smallness of  Nut 
allows  us  to  investigate  its  semantic  in  full  details.   The  intermediate 
representation of Nut language is N-code.  N-code is a concrete presentation of 
Nut language. The operational semantic of N-code can be defined over its run-
time environment.  Given this semantic, a code generator for a target processor 
can be implemented or a special processor can be designed to directly execute N-
code.

2.16 Further reading

Language design is a topic of broad spectrum.  Most languages in the past have 
been constrained by the machines that existed in their period.  Overwhelming 
concern  was  the  issue  of  machine  efficiency.   A  large  survey  of  computer 
language  is  described  in  [HOR83].   However,  as  the  computing  machines 
become faster and are available abundantly, the emphasis is shifted to the topic of 

C:\test>nutc < example.txt
print
(fun.1.1 (sys.1 get.1 ))
sq
(fun.1.1 (* get.1 get.1 ))
main
(fun.0.1 (call.18 (call.20 lit.20 )))

C:\test>nvm a.obj
400
C:\test>



54

compatibility  and  standardisation.   The  history  of  programming  languages  is 
interesting, see [WEX78] [BER96].  It takes time for a language to be widely 
used and for programmers who are skillful with a language to become available 
for  the  industry.   Presently,  Java  [JOY00]  dominates  the  programming  in  IT 
industries.  It popularises the concept of the intermediate language (as JVM the 
virtual  machine [LIN97] is available on almost  any platform).   The computer 
language is  still  evolving.  A new language,  especially the dynamic language 
such as the special purpose scripting language, comes into being every year. A 
special purpose language has its advantage that it can be designed to facilitate the 
specific  programming  task,  such  as  Game  design,  or  real-time  control  task. 
Special language features can be embedded as primitives in the language such 
that they are very easy to use. This can reduce the error from programmers.  For 
example, a concurrent language for control tasks can have the message-passing 
primitives including the semaphore as primitive data types [CHO98]. The future 
language will take human behaviour into account more than just the machine that 
run it.
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Exercises

2.1 Write a program in Nut to do reversing elements in an array.   Try to 
compile and run it to see the result.  Observe the object code.  How is the 
object code (in N-code) corresponded to the source code?

2.2 Familiarise yourself with writing a program with the recursive style.  Try 
the following.

a) Do the question 1 using recursion.
b) Search for an element in a linked list using recursion.
c) Write  sum  1..n using  recursion.  (Hint:  use  an  accumulating 

parameter)

2.3 Write a Nut program to read the object code and print it out as a readable 
N-code in the form of expression in parenthesis.

2.4 The object code (N-code) includes many pointers to other cells. Suggest 
a way to save memory by reducing these pointers.

2.5 Write  N-code  (in  the  printable  form)  of  the  following  bubble-sort 
program.   Let  data be  the  array  storing  the  elements  to  be  sorted, 
maxdata be  the number  of  element,  swap be  a function to  swap two 
elements of the array data.

(enum 20 maxdata)
(let data)

(def sort () (i j)
    (do
    (set i 0)
    (while (< i maxdata)
        (do
        (set j 0)
        (while (< j (- maxdata 1))
            (do      
            (if (< (vec data (+ j 1)) (vec data j))
                (swap data j (+ j 1)))
            (set j (+ j 1))))
        (set i (+ i 1))))))
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2.6 Due to the way N-code is represented, a maximum literal representable in 
Nut language is 24 bits (because a code in n-code is a 32-bit  cell,  an 
opcode  is  7  bits,  an  argument  is  24  bits).  How to  represent  a  larger 
literal?


