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Chapter 3

Nut Compiler

In this chapter we are going to describe Nut compiler which is written in Nut. A 
compiler can be written using the target language (of the compiler). Writing a 
compiler with its own target language demonstrates two points: 

1. The language is not trivial. At least it can be used to write some complex 
program such as a compiler. This shows a kind of  completeness of the 
language.

2. The understanding of meaning the language is complete enough to use it 
to write such a non-trivial program.

And our favourite third point: 

3. It is beautiful, in a sense that the language is self-describing.

Writing a compiler with the target language is not new (for example you can 
write a C compiler in C and compile your C compiler into the executable code 
using any existing C compiler)1. It has been practiced especially in the early days 
of  computer  software  development.  Some  conceptual  difficulty  must  be 
overcome  concerning  the  confusion  of  the  “compiler”  and  the  “compiled” 
program (since we use the compiler to compile itself!). The run-time facilities are 
always posing difficulty as the memory is shared between the compiler and the 
compiled program. However, these points are not a priority in our study. 

A compiler  translates  a  source code to  a  target  code.   In  our  study,  the  Nut 
compiler  translates  a  Nut  program  to  an  N-code  object.  A  code  generator 
translates  an  object  code  to  a  machine  specific  code.   Our  code  generator 
translates an N-code object to machine codes.  

1 The  question  arises  as  how  the  first  compiler  was  written?   This  question  is 
explored in [CHO05].
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compiler
  input source program (in nut)
  output n-code

code generator
  input n-code
  output machine code of a specific processor

To develop “Nut-in-Nut” compiler, we will use a special version of Nut compiler 
(written  in  C),  “nutc”.  This  version  of  Nut-compiler  has  many  additional 
operators that support compilation. To run the compiler, a version of the N-code 
virtual  machine (or  the  interpreter  for  N-code),  called  “nvm”  is  used.  Nvm 
contains  many  supporting  functions  to  facilitate  compilation  (which  are 
cumbersome  to  write  in  Nut  or  which  we  are  not  interested  in  discussing). 
Remember that our goal is to develop the Nut compiler itself including its own 
virtual machine.  Nutc and nvm are the tools to bootstrap these programs.  Once 
our version of compiler and virtual machine are working, the initial tools will 
become unnecessary.

Next, we will explain the output of the compiler. It is important to understand the 
N-code; it is what the compiler must produce. 

3.1 N-code
An example, the source program to be compiled:

(def add1 x () 
  (+ x 1))

(def main () () (sys 1 (add1 2))

Where (sys 1 x) is a system call (analogous to OS call for I/O). It will print an 
integer x to the screen.

The N-code of the above program in human-readable form is:

add1
(fun.1.1 (add get.1 lit.1 ))

main
(fun.0.0 (sys.1 (call.17 lit.2 )))
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and in an absolute object form (as in the output file a.obj):

22 22
2 1 16 1 0
4 1 14 1 2
6 1 6 0 4
8 0 0 6 0
10 1 19 257 8
12 1 16 2 0
14 1 13 10 12
16 0 0 14 0
18 1 20 1 16
20 0 0 18 0
22 1 19 0 20
0

17 add1 3 10 1 1
19 main 3 22 0 0

There are three parts in the object file:
1 the code
2 the data (the line contains a zero)
3 the symbol table

The code is a contiguous block of memory. The code “main” started at 22. The 
format of the object code is: 

{address tag op arg next}

tag 0 is dot-pair
tag 1 is atom
op arg is the operator
next is the address of the next cell

Now, we will read the object code as follows.

22 1 19 0 20

It is an atom “fun.0” next is 20

20 0 0 18 0

It is a list (dot-pair), the head pointed to 18 and the next is NIL.
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18 1 20 1 16

It is an atom “sys.1”, next is 16 (the argument of sys.1)

16 0 0 14 0

It is a list, the head is 14, next is NIL.

14 1 13 10 12

It is an atom “call.10”, next is 12 (the argument of the function)

12 1 16 2 0

It is an atom “lit.2”, next is NIL.

At 10, is the “fun.x” (the function “add1”) etc.

3.2 Compiler

The whole compiler is about 500 lines. We will describe the compiler using a 
pseudo  code  and  sometimes  in  Nut  language  to  illustrate  some  concrete 
implementation.  Full listing of the compiler in Nut is available in the appendix 
B. We will refer to the source using the notation [name lineno].

The compiler has four main functions.

main [nut 432]
  readinfile 
  parse
  resolve  
  outobj

“ readinfile” reads the source program from a standard input stream (stdin in 
Unix). The compiler reads the whole input at once and keeps it in a big array of 
characters (maximum input size is 50 Kbytes).  “parse” is the main parser that 
scans the input stream and generates N-code.  “resolve” performs renaming and 
binding of the actual code to generate the executable code.  “outobj” prints out 
the object file to a standard output (stdout).
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We will concentrate on “parse”.  To understand “resolve” you need to know the 
run-time system which is the topic of the next section.  Nut has a trivial syntax by 
design hence the parser for Nut is very simple. Our parser is a recursive descent 
parser. It calls parsing routines recursively with one look ahead symbol and never 
backtrack  (this  is  called  LL(1)  parser  [AHO86]).  This  is  a  simple  and 
straightforward kind of parser. You can read more about this kind of parser in 
any standard textbook in compiler.

Before we look into the parser, we need to be able to scan the input which is the 
stream of  characters  and  forms  “token”.  This  is  called  lexical analyser.  The 
tokens are separated with special characters called  separator.   There are only 
three separators in Nut: space, “(“ and “)”. “tokenise” is one of the system call 
that is implemented in the “nvm”, (sys 3). It parses the token and returns a string 
of characters (string of Nut language). Here is the sample use of “tokenise”:

; token is a global variable pointed to the string

(let tok)     

(def tokenise () ()    [nut 169]
    (set tok (sys 3))

; tokenise input stream until end of file

(def testtok () ()   
    (do
    (tokenise)
    (while (!= (vec tok 0) EOF)
        (do
        (prstr tok)
        (space)
        (tokenise)))))

Where “prstr” is a function to print a Nut string. The end of file is signified by the 
first character of the returned string as EOF (127). Run testtok with the example 
stream and here is the output:

( def add1 x ( ) ( + x 1 ) ) ( def main ( ) ( ) 
( sys 1 ( add1 2 ) )
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Now we take a look at the parser.

parse  [nut 309]
  tokenise
  while not EOF
    expect “(“
    tokenise
    if token == “def”
      parseDef
    if token == “let”
      parseLet
    if token == “enum”
      parseEnum
    tokenise

 
The parser  gets  a  token and calls  “parseDef” or  “parseLet” or  “parseEnum” 
according to the token then loops until it reaches the end of file.

parseDef  [nut 269]
  tokenise get fun name
  parseNL get formal arg
  parseNL get local
  tokenise
  e = parseExp get body
  tokenise skip “)”
  update symtab
  out (fun.k e)

“parseDef” parses the “header” of the function definition then the main part is 
“parseExp” to parse the body of the function definition. The declaration part of a 
function definition composed of:

(def add1 x () ...)

“add1” is the function name. “x” is the list of formal parameters. “( )” is the list of 
local variables.  The list of formal and locals is parsed by “parseNL” (parse name 
list) which will store the formal and local names in the symbol table and gives 
them the  references  as  a  running  number  1..n in  order  of  their  appearance.

For sake of clarity, let’s assume that the name list will not be an atom.
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parseNL  [nut 185]
  tokenise
  while token != “)”
    installLocal token
    tokenise

“ parseNL”  merely  gets  a  name  and  stores  it  in  the  symbol  table  using 
“installLocal” until exhausting the list (found the token “)” ).

Before getting into “parseExp”, let’s study the symbol table.

Symbol table

The symbol  table  is  a  one-dimension  array of  the  entry.  Each entry has  five 
fields:  name, type, value, arity, lv. “name” is a pointer to a string, the symbol. 
“type” is the type of symbol.  The type value is shown below. “value” stores the 
value of the symbol, which is a reference for function, local/global variable, the 
opcode of an operator, the syscall number of “sys.x” or the value of an enum 
symbol.  “arity” and “lv” are for the function symbol, storing its arity and total 
number of local variables.

Table 3.1  Type of symbols

  2     VAR is a local variable 
  3     FUN is a function
  4     OP is an operator
  5     OPX is an op that has one special argument
  6     SYS is “sys.x”
  7     UD is undefined
  8     GVAR is a global variable
10     ENUM is an enum symbol

The function “install nm” does a scan for “nm” (value of a pointer to a string, the 
string of symbol)  in the symbol table.  Searching a symbol table is efficiently 
implemented  using  a  hash  table.   In  our  implementation,  for  simplicity,  a 
sequential search is used.  If “nm” is already present, “install” returns the index to 
that  entry.  If  it  is  a  new symbol,  it  is  inserted into the  symbol  table  and the 
function returns its  index.  Initially,  all  keywords  are primed into the symbol 
table. They are treated the same as any other symbol.  



62

The main part of “install” is shown here.  The “getName”, “setName”, “setType” 
are  the  access  functions  for  the  fields  in  the  symbol  table.   The  variable 
“numNames” is the number of symbols in the table. “esize” is a constant value 
of 5, the size of an entry in the table. The “str=” is a string comparison function. 
The “newName nm” returns a copy of the string “nm”.

; search symtab for nm, if found, return its index, else insert it

(def install nm (i flag end)   [nut 77]
    (do
    (set i 0)
    (set flag 1)
    (set end (* esize numNames))
    (while (and flag (< i end)) ; sequential search
        (if (str= (getName i) nm)
            (set flag 0)
            ; else
            (set i (+ i esize))))
    (if flag ; not found
        (do
        (if (> i MAXNAMES)
            (error “symtab overflow”))
        (setName i (newName nm))
        (setType i tyUD)
        (set numNames (+ numNames 1))))
    i))

We conclude the discussion of the symbol table here and go back to discuss the 
parser.  The next function is “parseExp”.

; An expression is a list, a number, a string or a name
parseExp  [nut 255]
  if token == “(“
    tokenise
    nm = parseName
    e = parseEL
    out (nm e)
  if isNumber token
    n = atoi token
    out lit.n
  if isString token
    e = makestring token+1
    out str.e
  parseName    it is OP, OPX, VAR, FUN
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The function “parseExp” parses an expression in Nut language. An expression 
can be: a name (such as a variable), a number, a constant string, a list (function 
application).    For  a  list,  “parseExp”  uses  two auxiliary functions  to  parse: 
parseName, parseEL (expression list). 

parseName  [nut 214]
  type = symbol.type
  v = symbol.val
  switch type
    OP: out v
    VAR: out get.v
    GVAR: out ld.v
    FUN: out call.idx
    OPX:
      tokenise            get var name
      ty2 = symbol.type
      v2 = symbol.val
      if ty2 == VAR
        switch v
          SET: out put.v2
          SETV: out stx.v2
          VEC:  out ldx.v2
      else if ty2 == GVAR
        switch v
          SET: out st.v2
          SETV: out sty.v2
          VEC:  out ldy.v2
    SYS:
      tokenise
      k = atoi token
      out sys.k
    ENUM:
      out lit.v

“parseName” takes one token and depends on its type, it outputs an appropriate 
N-code.  The table 4.2 shows the type and the N-code associated with it.

The operator of type OPX takes the next token as an “unevaluated name”, i.e. a 
reference of that name, not its value. Three operators are OPX: “set”, “setv” and 
“vec”. Two possibilities for the next token, either it is a local variable or a global 
variable.

Local, out  put.ref, stx.ref, ldx.ref
Global, out  st.ref, sty.ref, ldy.ref
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Table 3.2  Type and the associated N-code

OP         an operator, out opcode
VAR       a local var, out get.ref
GVAR    a global var, out ld.ref
FUN       a fun, out call.ref
SYS       a system call, gets sys num, out sys.k
ENUM    a enum symbol, out lit.ref
OPX       a special op

The last piece of the parser, “parseEL” recursively parses the rest of the list.

parseEL  [nut 243]
  tokenise
  if token == “)” return NIL
  e = parseExp
  e2 = parseEL
  out (e e2)

Now that the major part of compiler is completed, we turn our attention to the 
housekeeping task.   The remaining  parts  are  the  “resolve” and the  low level 
“tokenise”.  We will discuss only their pseudo code.

resolve  [nut 368]
  for all func in symtab
    reName call and local var

reName  [nut 356]
  if op == get, put, ldx, stx
    rename local var  (lv-arg+1) 1..n to n..1
  if op == call
    update reference

The rename function changes the number of local variables by reversing their 
order.  The reason ties to the way an activation record is created.  This run-time 
behaviour is discussed in the next section.  Once the compiler reaches the end of 
input source, all references to functions should be known.  Initially the “call” to a 
function  has  the  argument  as  the  index  to  that  function  in  the  symbol  table. 
“resolve” also instantiates the actual reference to all “call” instructions.  Now the 
last bit, the tokeniser.
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tokenise
  skip blank
  get a char
  if isSpecial  return
  if isQuote it is a string
    get to other quote
  else  
    get to delimiter  LP RP blank

“ tokenise” leaves a token string in token[.]. The tokeniser is implemented in the 
nvm and  is  available  to  be  used  as  a  system call,  (sys  3).   See  the  earlier 
discussion of the function “tokenise”.

3.3 How to compile and run Nut-compiler

The first Nut-compiler is written in C, “nutc”.  It is used to compile the Nut-
compiler describing in this chapter.  Nutc outputs the object code to a file, named 
“a.obj”.  This object is executable by a Nut virtual machine “nvm”.  Here is a 
sample session of compiling the Nut-compiler in the file “nut.txt”:

A lot of human-readable N-code is displayed on the screen. It can be visually 
checked whether it is correct (no error message). The object code can be executed 
under the nvm simulator. Nvm loads “a.obj” (to save stdin for Nut-compiler 
to use to read its source) and then starts the execution.  The result is the execution 

c:>nutc < nut.txt

!=
(fun.2.2 (if (eq get.1 get.2 )lit.0 lit.1 ))
and
(fun.2.2 (if get.1 get.2 lit.0 ))
...
main
(fun.0.0 (do (call.79 )(call.124 )(call.157 )
(call.29 )(st.3 (sys.9 ))(call.145 )(call.155 )
(call.156 )(call.23 )))



66

of Nut-in-Nut compiler, now is in an executable form in “a.obj”. The compiler 
reads the source from stdin.  Suppose we compile the simple example shows at 
the beginning of this chapter.  Suppose it is in the file “t2.txt”.

The object code is outputted to stdout.  The whole output can be redirect to a 
file, then select only the code segment to be the object file.  Let the name of the 
object file be “t2.obj”2.  This object file can be executed under nvm.

c:>nvm a.obj < t2.txt > t2.obj

Edit “t2.obj” to eliminate surplus listing at the beginning then run it.

2 The reason why the object of the sample program started at somewhat far address is 
because there is the Nut-compiler itself (in N-code) already resided in the memory. 
The compiler (in N-code) takes around 3600 words; the associated data including the 
symbol table occupies another 5700 words.)

c:>nvm a.obj < t2.txt

add1
(fun.1.1 (add get.1 lit.1 ))
main
(fun.0.0 (sys.1 (call.75 lit.2 )))

9392 9392
9372 1 16 1 0
9374 1 14 1 9372
9376 1 6 0 9374
9378 0 0 9376 0
9380 1 19 257 9378
9382 1 16 2 0
9384 1 13 9380 9382
9386 0 0 9384 0
9388 1 20 1 9386
9390 0 0 9388 0
9392 1 19 0 9390
0
3
add1 3 9380 1 1
x 2 1 0 0
main 3 9392 0 0
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Rename the previous “a.obj” which is the N-code of Nut-compiler and save it in 
other name, “nut.obj”.  Now, run “t2.obj”.

c:>nvm t2.obj
3
c:>

This concludes the compilation part.  The compiler we discussed so far has no 
error recovery capability.   The error recovery is very important  in a practical 
compiler.  It helps programmers to find errors in the program being developed. 
However,  including  error  recovery  will  make  the  compiler  itself  much  more 
complex.  Hence it has been omitted in this presentation.  

3.4 Run-time system and the evaluator

The evaluator (function eval) is the program that executes the internal forms (N-
code).  The listing of the evaluator in Nut (N-code evaluator) is in the appendix 
D.  The  global  data  is  allocated  from the  data  segment  when  the  variable  is 
defined. The local data is dynamic and is allocated from the stack segment.  The 
local  data  is  created when passing the actual  parameters to  a function and is 
destroyed  when  exit  from  the  function.   Because  the  function  call  has  the 
behaviour of a last-in-first-out queue (LIFO) as the earliest call will exit the last, 
a stack structure is suitable for allocating the local data for function calls.

Using a stack gains a huge benefit of an automatic reclamation of the memory 
when the local data is no longer in used.  (You may think this is obvious but this 
is the beauty of it.  Think about other alternative way of storing local data such as 
linked-list.  The local data once ceased to exist will have to be reclaimed by some 
method).

The global and local data can be handled in the same way except that the global 
data is in the data segment and the local data is in the stack segment.

The evaluation (execution) of  a program employs  a stack data structure.   All 
variables are accessed through the structure called  activation record.   When a 
function is evaluated, it has its local environment (local variables and stack area). 
The  activation  record  is  maintained  through  two  global  pointers:  FP  (frame 
pointer), and SP (stack pointer).
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The argument of value-instruction is the index relative to the frame pointer.  For 
example, to get a value of a local variable 3, the instruction “get.3”, the access is 
SS[FP-3] where SS[.] is the memory.  Usually this part of memory is called stack 
segment. 

Most instructions take their arguments from the evaluation stack.  The result (if 
any) is pushed back to the stack.  In this sense, N-code is said to be stack-based 
instructions.  The evaluation stack is local to the current activation record (from 
FP upward, pointed to by SP).
  
The instruction “fun.a.v” creates a new activation record; passing arguments from 
the evaluation stack to this environment, (eval e) where e is the body of function, 
and deletes the activation record.  Two parameters are required to handle creation 
and deletion of an activation record: arity and the size of frame.  The encoding is 
“fun.a.v” where a is the arity, v is the size of frame. They are used in the deletion 
of  activation record.  The  value  k is  v− arity+1,  it  is  used  in  the  creation of 
activation record.  The operational semantic of “fun.a.v” is discussed in detailed 
in Chapter 2.

3.5 Run-time supports

To actually run N-code, the simulator provides run-time supports. The memory 
model  is  an  important  factor.  The  actual  memory  is  provided  through  the 
implementation language (C in our case).   In  general,  three parts  of  memory 
exist:

 code segment − storing N-code
 data segment − storing static/dynamic data
 stack segment − the run-time stack storing activation record and 

evaluation stack

The pictorial view of the memory is given below.  The memory is M[.] with size 
MEMEND.  The code  segment  and data  segment  occupied the  memory  to  the 
maximum limit MEMMAX.  The rest is the stack segment.  This is how the nvm 
(the base simulator written in C) arranges its memory.
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Figure 3.1  The memory layout of the base simulator

How the evaluator arranges its memory?

The loader loads the object into the memory. The N-code starts at the address 2. 
The data starts at  the address 0 and must  be relocated to be next to the code 
segment.  In relocating the data, the instructions that involve global variables: ld, 
st, ldy,  sty, str,  must  offset  their  arguments  (this  part  is  done in  the  function 
“resolve”).

The base simulator (nvm) loads the object of the evaluator (a.obj) first, then starts 
executing it. This causes the evaluator to read the object code from stdin and 
evaluating it.  The evaluator must relocate its N-code to begin behind a.obj and 
also its  data  behind its  N-code.  To relocate  the  code,  the  argument  to  a  call 
instruction must be changed. To relocate the data, the argument to the instruction 
accessing globals must be changed.  The N-code, data, stack of the evaluator is 
actually resided in the data segment of the base simulator (nvm).  The picture of 
the memory is shown in Fig. 3.2.

Once  the  object  code  is  loaded  by  the  evaluator,  it  starts  its  execution  by 
allocating its stack segment and sets SP, FP appropriately. 

All registers: FP, SP, have been declared as global variables.  The stack segment 
is allocated. The evaluator initialises them before use.

(let tok DP CS M) ; token, data pointer, code segment, memory
(let SS SP FP) ; stack, stack pointer, frame pointer

code segment

data segment

stack segment

memory

MEMMAX
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Figure 3.2  The memory layout after loading the evaluator

(def init () ()  [eval 23]
    (do
    (set M 0) ; base ads, absolute
    (set SS (new STKMAX))    ; allocate stack
    (set FP SS)

(set SP SS)))

3.6 Evaluator

The evaluator is implemented as a separate program.  It takes N-code produced 
from the Nut compiler and runs it.  The simulator started by reading the whole 
input stream (N-code object) into a buffer. Then execute it to instantiate the code 
segment  properly  and initialises the  simulator  variables  then  begins  the 
evaluation.
  

main  [eval 214]
  readinfile
  loadobj
  initialise
  eval start

a.obj

n-code

data

stack

stack segment

memory

evaluator

stack of nvm
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The main part is the “eval”.  We will concentrate on this function.  The function 
“loadobj”  performs  the  housekeeping  for  the  relocating  the  code  and  data 
segment to the appropriate address in the memory.  It will be discussed later.

The example below is a fragment of program consists of three functions: prints, 
add1 and main.  (sys 1) prints an integer.  (sys 2) prints a character.  

(let tv)

(def prints s ()    ; print string
    (if (vec s 0)
        (do
        (sys 2 (vec s 0))
        (prints (+ s 1)))))

(def add1 x () (+ x 1))

(def main () ()
    (do
    (set tv 5)
    (prints “string”)
    (sys 1 (add1 11))))

This is its N-code in a readable form. A constant string “string” is kept in the data 
segment at the location 2, it is presented in the object code as “str.2”.

prints
(fun.1.1 (if (ldx.1 lit.0 )(do (sys.2 (ldx.1 lit.0 ))(call.15 (add get.1 lit.1 ))))
add1
(fun.1.1 (add get.1 lit.1 ))
main
(fun.0.0 (do (st.1 lit.5 )(call.15 str.2)(sys.1 (call.17 lit.11 ))))

The object code of the above fragment is shown below.  It is the input stream of 
the evaluator.

2 1 16 0 0
4 1 17 1 2
6 1 16 0 0
8 1 17 1 6
10 0 0 8 0
12 1 20 2 10
...
66 0 0 64 0
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68 0 0 56 66
70 0 0 52 68
72 1 3 0 70
74 0 0 72 0
76 1 19 0 74

The “eval” function takes a pointer to an expression and evaluates it.  “eval” 
traverses  the  expression  list,  when  it  finds  an  atom,  it  evaluates  that  atom 
immediately.  When if finds a list, the list is in the form (op arg*), it decomposes 
the list into its operator (op) and the argument list (e1).  The action of evaluation 
is taken according to the operators.  The main part of “eval” is this multi-way 
branch to do each operation.

eval e  [eval 160]
  if e is nil return nil
  get the operator and its arg-list, e1
  decode op arg
  switch op
    ADD
      v = (eval arg1 e1) + (eval arg2 e1)
    IF
      if (eval arg1 e1) != 0
        v = eval arg2 e1
      else
        v = eval arg3 e1
    CALL
      eval all arg and push them to eval stack
      v = eval the function
    LIT
      v = arg
    GET
      v = SS[fp-arg]
    ...
  else
    error “unknown op”
return v

To limit the scope of discussion, we will discuss in details only the subset of the 
instruction which is  suitable  to  run the  example  only (about  11 instructions). 
These instructions are {fun, if, ldx, lit, do, sys, call, add, get, st}.  The value-op 
are  {add, get, lit, str, ldx}.  The  control-op  are  {do, if, fun, call}.   The  other 
instructions are {sys, st}.   Their  actions are very like the description of their 
operational semantic discussed in Chapter 2.
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We start with the straightforward value-op.

(if (= op xADD)   [eval 181]
    (set v (+ (eval (arg1 e1)) (eval (arg2 e1))))

arg1,  arg2,  arg3 are  the  access  functions  to  get  the  first,  second  and  third 
argument from the argument list.   The variable  v is the value returned by the 
function “eval”. The operator “add” evaluates two arguments and adds them.

The operator “get” gets a value of a local variable from the activation record.

(if (= op xGET)  [eval 194]
    (set v (vec M (- FP arg)))

“lit” and “str” have the same effect.  The difference in the operation codes is used 
to distinguish two operators.  The loader must relocate everything stored in the 
data segment.  “str” has its argument as a pointer to a constant string stored in the 
data segment, therefore its argument must be identified and relocate at the load 
time.

(if (= op xLIT)  [eval 190]
    (set v arg)

(if (= op xSTR)  [eval 192]
    (set v arg)

“ ldx” takes the base address from the argument list, and takes the index from its 
argument.  The effective address is calculated as base + M[FP-arg]. The base is 
the base address of  M[.].  The value is taken from the data segment.  The data 
segment is just a location in the memory.

(if (= op xLDX)  [eval 202]
    (do
    (set idx (eval (arg1 e1)))
    (set v (vec M (+ (vec M (- FP arg)) idx))))

The control-op alters the sequence of evaluation.

(if (= op xDO)  [eval 176]
    (while e1
        (do
        (set v (eval (head e1)))
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        (set e1 (tail e1))))
Where (head e) is the first argument of e, (tail e) is the rest of e without (head e). 
“do” evaluates all the elements in the list. “if” evaluates the condition and selects 
one of the alternate actions.

(if (= op xIF)  [eval 171]
      (if (eval (arg1 e1))
        (set v (eval (arg2 e1)))
        ; else
        (set v (eval (arg3 e1))))

“call” evaluates all of its arguments and their value in the stack before evaluating 
the function.

(if (= op xCALL)  [eval 183]
      (do
      (while e1 ; eval all arg
        (do ; and push it to stack
        (push (eval (head e1)))
        (set e1 (tail e1))))
      (set v (eval arg))) ; eval function

And here is how to push a value to the evaluation stack.  The evaluation stack is 
an array of memory pointed to by SP.

; push a value to the evaluation stack
(def push e ()  [eval 124]
    (do
    (set SP (+ SP 1))
    (if (> SP (+ SS STKMAX))
        (error “stack overflow”))
    (setv M SP e)))

When evaluating a function, the “fun” performs a complicate task of creating a 
new activation record, setting a new SP, evaluating the body of function, then 
restore old activation record and SP.  The passing of parameters is through the 
evaluation stack where the new activation record just happens to overlap these 
variables.  There is no copying of passing parameters; they are arranged such that 
the overlap occurred properly.  The numbering of the variables must be ordered 
in  the  reversed  order  of  their  appearance.   This  is  done  during  the  final 
compilation phase.
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(if (= op xFUN)  [eval 145]
    (do
    (set v (& arg 255)) ; decode a, v
    (set a (>> arg 8))
    (set k (+ (- v a) 1))
    (setv M (+ SP k) FP) ; save old FP
    (set FP (+ SP k)) ; new frame
    (set SP FP)
    (set v (eval (arg1 e))) ; eval body
    (set SP (- (- FP v) 1)) ; delete frame
    (set FP (vec M FP))) ; restore FP

“st” gets the value of local variable and stores it to the memory.  The address is 
the first argument of argument list.

(if (= op xST)  [eval 198]
    (do
    (set v (eval (arg1 e1)))
    (setv M arg v))

The last instruction is special.  It performs the input/output which are dependent 
on the underlying physical system.  It looks strange that xSYS calls to (sys 1) and 
(sys 2), but this is absolutely correct because these two functions implement the 
correct actions; to print integer and character to a display.

(if (= op xSYS)   [eval 208]
    (do
    (set v NIL)
    (set a (eval (arg1 e1)))
    (if (= arg 1) (sys 1 a)
    (if (= arg 2) (sys 2 a)
    ; else
    (error “undef sys”))))

The  rest  of  the  instructions  are  evaluated  similarly.   This  will  conclude  our 
presentation of the function eval.  

Now we turn our attention to the housekeeping task, the relocation of the code 
segment. To relocate the code, the argument to call instruction must be offset. To 
relocate the data, the argument to the instruction accessing globals must be offset. 
Assuming the object codes have been read and the following variables have been 
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instantiated: ads, type, op, arg, next.  The following code fragment creates a new 
node for this code and does the relocation.

(set CS (sys 9))  [eval 80] ; find start of code segment
(set DP (+ (+ CS end) 2)) ;  start of data segment
(if (= type 1)
    (set a (reName op arg))
    ; else dot-pair
    (set a (shift (+ (<< op 24) arg) CS)))
(set a2 (new 2)) ; create a new node
(sethead a2 a)
(settail a2 (shift next CS)) ; reloc the next 

   
Where CS is the start of our code segment (not the N-code of eval itself!), DS is 
the start of data segment, “sethead” and “settail” update the head and next cells, 
“shift”  performs  the  offset  calculation.   The renaming  of  an  atom is  done in 
“reName”.  “mkAtom” creates an atom from op and arg.

; relocate arg of an op
(def reName (op arg) ()   [eval 62]
    (do
    (if (= op xCALL)
        (set arg (shift arg CS))
    (if (or (= op xLD) (= op xST))
        (set arg (shift arg DP))
    (if (or (= op xLDY) (= op STY))
        (set arg (shift arg DP))
    (if (= op xSTR)
        (set arg (shift arg DP))))))
    (mkATOM op arg)))

; offset a by disp, code segment started at 2
(def shift (a disp) ()  [eval 56]
    (if (> a 0)
        (- (+ a disp) 2)
        0))

Please bear in mind that the evaluator runs on top of the base simulator “nvm”. 
The N-code of the evaluator itself is loaded as “a.obj” by the “nvm” then the 
evaluator starts by reading the stdin stream which must be the object code to be 
evaluated.
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Understanding “eval” let us confirm the meaning of each N-code instruction.  In 
fact,  the  “eval”  itself  can  be  regarded  as  the  specification  of  the  operational 
semantic of N-code.

3.7 Lab session

Use the Nut compiler to compile a program, “quick.txt” (a quicksort program). 
First, compile the Nut-compiler into “a.obj”.  Then run the compiler with nvm to 
compile “quick.txt” (the source program).  The output is put into a file and edits 
it to be “quick.obj” (an N-code object).  Run “quick.obj” using nvm to see the 
result.  First, compile the compiler.

C:\test>nutc < nut.txt 

Then, use the compiler to compile “quick.txt”.

C:\test>nvm a.obj < quick.txt > q.obj

Edit “q.obj” and put it to the file “quick.obj”. The file “quick.obj” looks like this.

516 516
2 1 14 1 0
4 1 20 1 2
6 0 0 4 0
8 1 19 257 6
10 1 14 1 0
12 1 20 2 10
...
510 0 0 474 508
512 1 3 0 510
514 0 0 512 0
516 1 19 1 514
0

27
print 3 12952 1 1
...
swap 3 13072 3 4
partition 3 13238 3 7
flag 2 7 0 0
quicksort 3 13298 3 4
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q 2 4 0 0
inita 3 13352 2 3
s 2 2 0 0
show 3 13410 2 3
main 3 13460 0 1

Run the N-code object of the quicksort program using nvm.

3.8 Further reading

The intermediate code is a widely known technique used almost in all compilers. 
It separates the task of compilation into two major phases; the first phase is to 
parse the source language into this intermediate code and the second phase is to 
generate the target language (usually machine codes of the target machine) from 
this intermediate code.  This helps to simplify the compiler and also separating 
the target dependent part from the compiler.  This separation is useful when there 
are many target machines.  The first phase can remain the same, only the code 
generator needs to be done for each new machine.  

The  evaluator  or  the  virtual  machine  is  one  of  the  most  important  ideas  in 
computer science.  The emulation of other machine is a powerful concept.  It has 
been  the  major  cause  of  the  success  of  computer  industry  both  in  terms  of 
producing different hardware that can use the same executable software and in 
terms of software that can be run on different platform virtually unchanged.  The 
hardware example is the IBM S360 family [PAD81] that can emulate many early 
IBM computers to such a degree that the customers bought the new machines to 
run their existing software unchanged.  The software example is the Java Virtual 
Machine (JVM) [VEN98] which is the virtual machine that is available on almost 
any  machines.   The  use  of  intermediate  code  for  the  purpose  of  porting  a 
compiler to a new machine is popularised by P-code [BUR78] [WIR91].  Early 

C:\test>nvm quick.obj
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C:\test>
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Pascal language was compiled into P-code.  This made Pascal compiler  to be 
rapidly available throughout the microcomputer communities because the task of 
creating  an  executable  Pascal  compiler  was  reduced  to  porting  the  P-code 
evaluator.  The latest software emulation can be seen from the Apple computer 
company where their latest computers use a different processor than any of their 
previous product  but  the company can made a large number  of  their  existing 
software available under this new processor in a short time using the emulation.

The  technique  of  writing  an  evaluator  in  its  own  language  is  called  meta 
interpreter [STR88] or  more specifically  meta circular interpreter.   It  was in 
practice in early days of computing, the example can be drawn from LISP.  The 
interpreter of LISP was usually written in LISP [MCA65].   The meta interpreter 
is also useful to reason about the meaning of program and its correctness.
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Excercises

3.1 The Nut-compiler has not been finished.  There are no “let”, “enum” and 
string.  Extend Nut-compiler (nut.txt) to include them.  You can have a 
look at “nut3-compiler.txt” for a guide, or you can look at the C source in 
“nut31/compile” directory, nut.c.

3.2 Complete  the  Nut-in-Nut  compiler.   Use  Nut  completion  kit.   Write 
additional functions so that Nut compiler is able to handle the full Nut 
language.

3.3 Extend the Nut-in-Nut compiler to include “let” and “enum”.

3.4 Nut-compiler  does  not  have  the  operator:  mul,  div.   Add  it  to  the 
compiler and simulator (simulator is optional)  (Hint:  at compiler, you 
should look at the following functions:

#define xMUL 8  in nut.h
add reserved word to keynames[]  in nut.c
prAtom()  in data.c

3.5 Strings in Nut can be more efficient by packing 4 characters into one 
word.  Do it.

3.6 The symbol table uses a sequential search [nut 82].  It is not efficient. 
Implement  a  more  efficient  method  for  searching  the  symbol  table. 
(Hint: a hash table is a standard way to handle a symbol table.  It has a 
constant running time for searching.)

3.7 How many symbols are there in the symbol table when we compile the 
Nut-compiler?

3.8 The N-code object can be made  relocatable, i.e. not dependent on the 
absolute location in the memory.  This can be achieved by linearising the 
N-code tree.  The simplest form is the  prefix form.  See the following 
example:

Source  (+ 2 3)  becomes readable N-code: (+ lit.2 lit.3) which is stored in 
the memory (say starts at 6).



81

2 1 16 3 0
4 1 16 2 2
6 1 6 0 4

This  object  is  not  relocatable,  it  embeds  the  absolute  location  in  the 
“next” link.  A list can be represented by prefixing it with its length, no 
“next” link is necessary.

(+ lit.2 lit.3)

becomes

3 + lit.2 lit.3

another example:

(+ lit.2 (+ lit.3 lit.4))

becomes
3 + lit.2 3 + lit.3 lit.4

This  representation  can  be  converted  into  an  N-code  tree  (at  any 
location). 

Write a program to output N-code object in linear form to a file and read 
it back into the memory properly at a different location.  You can use 
“prList” to print the readable N-code out to check it.

3.9 Study eval-in-nut (eval.txt)  and try to add some missing operators to it.

3.10 In the main loop of Nut-evaluator [eval 160], the evaluator spent most of 
its time is checking the opcode and performs the operation accordingly. 
It uses the form of (if (= op xxx) …).  This is a sequential test.  Suggest a 
way to improve the efficiency of the main evaluator loop.
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