
85

Chapter 4

Code Generation

To actually run a program on a real machine, the intermediate code must be
translated into machine codes of that machine. To generate machine codes, the
instruction set of the target machine must be studied. We will study processors in
details in Chapter 5. There will be two illustrative processors. The first one has
instructions of the type zero-address, so called a stack-based instruction set. The
second one will be a more conventional three-address instruction set. It is easier
to translate N-code to a stack-based instruction set. Therefore we will study the
code generator for this instruction set. However, the code generation for three-
address instruction set will also be discussed. We shall begin with the discussion
of the target instruction set.

4.1 S-code

The instruction set for our stack-based processor is called S-code. The processor
itself is named Sx processor. S-code is designed for simplicity; the emphasis is
on a small number of instructions. It is also quite fast to be interpreted by a
software virtual machine. From S-code, it is easy to generate machine dependent
code for a specific purpose, such as, small code size (byte-code, nibble-code)
[KOT03], high performance (extended code) [CHO97], or to fit a particular
hardware. In our system, S-code is the machine code of Sx processor which has
been designed to execute S-code directly in hardware.

S-code has a fixed-length 32-bit instruction format. It is not compact but it is
reasonably fast when interpreting. This format simplifies the code address
calculation and allows code and data segment to be the same size (integer) as
opposed to other format such as the byte-coded instruction format (as in JVM
[LIN97]). There are two types of instructions: zero-argument and one-argument.
The zero-argument instructions are mostly related to the arithmetic and logic
operations. The one-argument instructions are the access operations to variables

86

and the control-flow operations. The description of the instruction set is as
follows.

Notation

n is a 24-bit constant (2-complement)
x is a 32-bit value
v is a variable reference, for a global variable, it is an index to code segment, for
a local variable, it is an offset to a current activation record in stack segment.
f is a reference to CS.
DS[] is the data segment, SS[] is the stack segment.
pc is a program counter, pointed to the current instruction.

stack notation: (before -- after)

Zero argument instructions

add, sub,
mul, div,
mod

are integer arithmetic, take two operands from
the stack and push the result back. (a b -- a op b)

shl, shr take two operands: number, no-of-bit and shift
the number and push the result back. shr is an
arithmetic shift, preserved sign.

band, bor,
bxor, eq,
lt, le, ge,
gt

are logical, take two operands from the stack and
push (T/1, F/0) back. (a b -- 0/1)

bnot is bit inverse, takes one operand and push the
result back. (a -- ~a)

ldx takes an address ads, an index idx, and returns
DS[ads+idx]. (ads idx -- DS[ads+idx])

stx takes an address ads, an index idx, a value x, and
store x to DS[ads+idx]. (ads idx x --)

case takes a value (key), compares it to the range of
label, goto the matched label, or goto else/exit if
the key is out of range. (key --)

array allocate x words in Data segment, return ref v to
the allocated data. (x -- v)

87

One argument instructions

lit n Push n (-- n)
inc v Increment local variable, SS[FP+v]++
dec v Decrement local variable, SS[FP+v]--
ld v Push DS[v]. (-- DS[v])
st v Take a value x and store to DS[v] = x. (x --)
get v Get local variable v. (-- SS[FP+v])
put v Store a value x to local variable v. (x --)
call f Create a new activation record, goto f in CS
ret n Return from a function call, n is the size of

activation record. Remove the current activation
record. Return a value if function returns a value.

fun n Function header, n is the number of local
variables

jmp n Jump to PC+n in CS
jt n Jump PC+n if top of stack = 1, pop
jf n Jump PC+n if top of stack = 0, pop
sys n Call a system function n, for interfacing to

external functions, the arguments are in the
stack, the number of arguments can vary.

4.2 S-code format

Each instruction is 32-bit. The right-most 8-bit is the operational code. The left-
most 24-bit is an optional argument. For a virtual machine, this format allows
simple opcode extraction by bitwise-and with a mask without shifting, but it
needs 8-bit right-shift to extract an argument. Because zero-argument
instructions are used more frequent, this format is fast for decoding an
instruction. However, a decoder in hardware can tap any bit freely, therefore any
format will be equally fast to decode. The instruction encoding is shown below.

The “end” is a pseudo instruction. It does not existed in a real processor. It is
used to stop the processor simulation. S-code supports high-level function call
directly similar to N-code. The run-time data structure must be understood. An

88

Encoding

0 -- 1 add 2 sub 3 mul 4 div
5 band 6 bor 7 bxor 8 not 9 eq
10 ne 11 lt 12 le 13 ge 14 gt
15 shl 16 shr 17 mod 18 ldx 19 stx
20 ret 21 -- 22 array 23 <end> 24 get
25 put 26 ld 27 st 28 jmp 29 jt
30 jf 31 lit 32 call 33 -- 34 inc
35 dec 36 sys 37 case 38 fun

activation record stored a computation state. It is resided in the stack segment.
The computation state consists of: PC (return address), FP, all local variables. SP
needs not be stored as it will be recovered properly when return. The necessary
information, the size of the activation record, is stored as the argument of “ret”
instruction. The following diagram shows the layout of an activation record in the
stack segment (notice that it is exactly the same as the activation record of N-
code).

Figure 4.1 The activation record to support S-code

A function call creates a new activation record. The new FP is SP + k. The
value k is the argument of “fun k”, k = n - arity + 1. The new activation record
overlaps the evaluation stack such that the passing parameters become the local
variables of the new activation record. A local variable is indexed by an offset
from the current FP. The numbering of the local variables causes the first

retads’

fp’

lv1

…

lvn

lo address

fp

lv 1

sp’,
the last passing parameter

sp’’, sp after return

sp

89

passing parameter to be the n-th local variable and so on. This fact is handled by
the compiler (Chapter 3). A function call does the following:

1 Decode k at function header
2 Create new activation record, save old FP
3 Set new SP
4 Save return address
5 Goto body of function

When returning, the return instruction, “ret m”, supplies a value m to be used to
restore SP. m is size of activation record + 1. When restoring SP (not considering
the return value yet):

SP'' = FP - m

A return does the following:

1 Restore PC
2 If there is a return value
3 Restore SP and FP
4 Push the return value
5 Else
6 Restore SP and FP

“case” is a multiway branch instruction. It requires a jump-table. The layout of
code in “case” is as follows:

case
lit low
lit hi
jmp else
jump-table
...
code of each case

A case does:

1 Extract range of label: low, high
2 If key < low or key > high
3 PC = PC + 3 goto else-case
4 Else
5 PC = PC+key-low+4 goto matched label

90

In this implementation, the jump-table is filled with the labels in the range (from
low to high), hence, finding the matched label is simply an index calculation, a
constant time operation. This enables the case instruction to be fast but it
consumes the memory in the code segment as large as the range of label. This is
wasteful if the label is not dense. For the case of sparse label, a binary search can
be used. The jump-table is the sorted label of the pair (label, goto code).
This is not implemented as it is not suitable to be converted into a machine
specific instruction (maps to a real processor). Because Nut language does not yet
support multiway branch, the “case” instruction is not implemented by Sx
processor.

Input of the code generator is an N-code object. Output is the S-code object.
Let’s study some examples of programs in S-code. Let a, b, c be locals; d, e
be globals; L, M be labels. S-code is shown in Arial font.

a = a + 1

get a, lit 1, add, put a

a = b[i]

get b, get i, ldx, put a

d[i] = b

ld d, get i, get b, stx

e = add2(a,b)

get a, get b, call add2, st e

if (a == 1) then b = 2 else b = 3

get a, lit 1, eq, jf L,
lit 2, put b, jmp M,

 L: lit 3, put b,
 M:

Let give one example what the code generator do. The source program in Nut,

(def add1 x () (+ x 1))
(def main () ()
 (sys 1 (add1 22)))

is compiled into N-code object,

91

add1
(fun.1.1 (+ get.1 lit.1))
main
(fun.0.0 (sys.1 (call.80 lit.22)))

22 22
2 1 16 1 0
4 1 14 1 2
6 1 6 0 4
8 0 0 6 0
10 1 19 257 8
12 1 16 22 0
14 1 13 10 12
16 0 0 14 0
18 1 20 1 16
20 0 0 18 0
22 1 19 0 20
0

The S-code generator takes this N-code object and outputs S-code object. The
format of S-code object will be discussed later.

5678920
1 12
2080 23 294 280 287 1 532 294
5663 800 292 276
1000 999

It means the following:

 1 Call 8
 2 End
 3 Fun 1
 4 Get 1
 5 Lit 1
 6 Add
 7 Ret 2
 8 Fun 1
 9 Lit 22
 10 Call 3
 11 Sys 1
 12 Ret 1

The N-code and S-code are quite similar as they are both stack-based instruction
sets. The mapping between N-code and S-code is simple (see Table 4.1). Only

92

the control-op must be transformed to jump. To distinguish between two
instruction sets the N-code is prefixed with “x” and S-code with “ic”.

Table 4.1 Mapping between N-code and S-code

n-code s-code

xLIT.a icLit.a
xGET.a icGet.a
xPUT.a icPut.a
xLD.a icLd.a
(xADD e1 e2 e1 e2 icAdd
(xST.a e) e icSt.a
(xLDX.a e) e icGet.a icLdx
(xSTX.a e v) e v icGet.a icStx
(xLDY.a e) e icLd.a icLdx
(xSTY.a e v) e v icLd.a icStx
(xFUN.a.v e) icFun.k e icRet.m

where k = v-a+1, g = v+1
(xCALL.a e...) e ... icCall.a
(xIF e1 e2 e3) e1

 icJf F
 e2
 icJmp E
F: e3
E:

(xWHILE e1 e2) L: e1
 icJf E
 e2
 icJmp L
E:
or better
 icJmp I
L: e2
I: e1
 icJt L

(xDO e1 e2 ...) e1 e2

93

4.3 How the code generator work?
In the last chapter, the evaluator, “eval”, evaluates the N-code and returns the
result. The evaluator performs its task by traversing the N-code tree and applies
the operators to their arguments. The code generator follows the same pattern. It
uses a variant of “eval”. In other words, the generator reads the input N-code
object and traverses the N-code. Instead of executing it by applying the operators
to their arguments, the generator outputs the corresponding S-code. The mapping
between N-code and S-code is simple. Most of the code is one-to-one mapping.
However, the addresses of N-code and S-code are different. This is handled
using the associative list of N-code address to S-code address. The only
instruction that need to relocate its argument is “call” using “insertLab” and
“assoc”. The listing of the code generator is presented in the appendix E.

Let look at the “eval” for code generator. “out” outputs an S-code. The whole S-
code is stored in an array, XS[.]. XP is the current S-code address.

eval e [gen 224] ; S-code generator
 ... ; e1 is the argument list
 switch op
 ADD
 eval head e1
 eval arg2 e1
 out icAdd
 LIT
 out icLit arg
 GET
 out icGet arg
 FUN
 insertLab ads XP ; ads is N-code, XP is S-code
 lv = arg & 255
 arity = arg >> 8 ; decode a.v
 out icFun (lv-arity+1)
 eval head e1
 out icRet (lv+1)
 CALL
 while e1 not empty ; generate all arguments
 eval head e1
 e1 = tail e1
 out icCall (assoc arg) ; map address to S-code
 ...
 else
 error “unknown op”

94

For the control-op, the iteration is achieved by the jump instructions. The first
one, “do”, just generates the S-code one-by-one corresponding to the elements in
the argument list of N-code (e1).

 DO [gen 239]
 while e1 not empty
 eval head e1
 e1 = tail e1

The “if” generates the testing for the conditional and the alternatives. The first
jump, “icJf”, jumps over the true-alternative (to label F). The second jump is
the jump at the end to exit (label E).

The pattern for code generation is:

(xIF e1 e2 e3)

 e1
 icJf F
 e2
 icJmp E
F: e3
E:

This is how the generator works. The variable ads is used to mark the place
where the offset of the jump will be updated. All jumps in S-code are relative.
Their displacements are calculated relative to the current address (XP).

 IF [gen 186] ; e1 = (cond true false)
 eval head e1 ; gen cond
 out icJf 0 ; <1>
 ads = XP - 1 ; mark S-code ads
 eval arg2 e1 ; gen true
 if (arg3 e1) = NIL
 patch ads (XP-ads) ; patch jf at <1>
 else
 out icJmp 0 ; <2>
 patch ads (XP-ads)
 ads = XP - 1 ; mark S-code ads
 eval arg3 e1 ; gen false
 patch ads (XP-ads) ; patch jmp at <2>

95

There are two ways to generate code for the while expression. The first one is
straightforward.

(xWHILE e1 e2)

L: e1
 icJf E
 e2
 icJmp L
E:

The code is generated in order of the appearance of the arguments, e1 then e2.
However, each time around the loop there will be two jumps. To improve the
quality a bit, we can turn around the order and use the conditional to perform the
loop back.

 icJmp I
L: e2
I: e1
 icJt L

The first jump jumps into the conditional. Only the first time around the loop
that requires two jumps; the subsequent iteration requires only one jump.

 WHILE ; e1 = (cond body)
 out icJmp 0
 ads = XP - 1 ; mark the loop back address
 eval arg2 e1 ; gen body
 patch ads (XP-ads) ; jump into cond
 eval head e ; gen cond
 out icJt (XP-ads+1) ; loop back

Here are the actual nut code to generate S-code for the “if” and “while”
control-op.

; e = (cond true false)

(def genif e (ads e3) [gen 186]
 (do
 (eval (head e)) ; gen cond
 (outa icJf 0)
 (set ads (- XP 1))

96

 (eval (arg2 e)) ; gen if-true
 (set e3 (arg3 e))
 (if (= e3 NIL)
 (patch ads (- XP ads))
 (do ; else
 (outa icJmp 0)
 (patch ads (- XP ads))
 (set ads (- XP 1))
 (eval e3) ; gen else
 (patch ads (- XP ads))))))

(def genwhile e ads [gen 204]
 (do
 (outa icJmp 0)
 (set ads (- XP 1))
 (eval (arg2 e)) ; gen body
 (patch ads (- XP ads))
 (eval (head e)) ; gen cond
 (outa icJt (- (+ ads 1) XP))))

; change arg, preserve op

(def patch (ads v) () [gen 167]
 (setv XS ads (+ (<< v 8) (& (vec XS ads) 255))))

The associative list has two operations: insert-label and get the associated address
of the label. atab is the array storing the tuple {label, address} where label is the
N-code address, address is the S-code address. numLab is the number of tuples
stored in the associative table.

; n1 is the label, n2 is the address

(def insertLab (n1 n2) (i) [gen 135]
 (do
 (set i (+ (* numLab esize) 2)) ; start at 2
 (setv atab i n1)
 (setv atab (+ i 1) n2)
 (set numLab (+ numLab 1))
 (if (> numLab MAXLAB)
 (error “label table full”))))

97

; search assoc for n1
; if found, return adddress, else 0
(def assoc n1 (i flag end) [gen 121]
 (do
 (set i 2) ; start at 2
 (set flag 1)
 (set end (+ (* esize numLab) 2))
 (while (and flag (< i end))
 (if (= (vec atab i) n1) ; sequential search
 (set flag 0)
 ; else
 (set i (+ i esize))))
 (if flag
 0 ; not found
 (vec atab (+ i 1))))) ; found, return n2

The output S-code must be of the correct form so that the processor simulator can
read it properly. Here is the format of the S-code object file.

magic
start end (end inclusive)
code* (code segment)
start end
data* (data segment)

Where magic = 5678920, it is used to distinguish the object code between N-
code and S-code. start, end are the addresses denoting the starting and ending
addresses of the block of data that follow. Take a look at the previous example
of the S-code object.

5678920
1 12
2080 23 294 280 287 1 532 294
5663 800 292 276
1000 999

5678920 denotes that this is the S-code object. 1 12 are the starting and ending
addresses of the code block. The length of the code is 12. 2080..276 are the
codes. 1000 999 denote the starting and ending addresses of the data block.
There is no data block in this example (the ending address is smaller than the
starting address).

98

4.4 Three-address code generation

S-code is very similar to N-code, they are both stack-based. It is easy and very
straightforward to translate N-code to S-code. However, there is no modern
processor that has stack-based instruction set. We now turn our attention to
another more conventional instruction set, a three-address instruction set. The
processor that has this instruction set, S2 is a register-based processor. As the
subsequent components of our system will be based on stack-based instructions,
we will only discuss a general scheme of code generation for three-address
instruction set. To begin, we discuss the overview of the processor and the
instruction set.

S2 is a simple 32-bit processor for educational purpose. It exists as a simulator,
although some implementation at Hardware Description Language for S2 exists.
S2 is developed from S1 [CHO01], a simple 16-bit processor used for teaching
several classes in the past ten years. S2 has an adequate instruction set to
demonstrate the high level language and the assembly language relationships.
Comparing to a real processor (such as Intel Pentium [INT01]), S2 lacks OS
supporting functions, I/O and interrupts, and performance enhancing features
(such as MMX [PEL97]).

S2 description

S2 has 32 registers, r0...r31, r0 is special and always has a zero value. S2 has
32-bit address space, it can access 4G words of memory. Addressing is in word
(32-bit) unit. S2 has no byte-access instruction. All instructions are 32-bit long
(fixed length, one size). S2 has flags that indicate result of previous operations.
Flags are: Z zero, S sign, C carry, O overflow/underflow.

S2 addressing mode

S2 has four addressing modes: absolute, displacement, index, and immediate.
The absolute mode has 22-bit range (0..4M). The displacement mode uses one
register and a 17-bit value (0..128K). The index mode employs two registers.
Lastly, the immediate mode uses the literal value in the instruction. Depend on
what instruction the literal is 22-bit (load/store) or 17-bit (arithmetic). For

99

example, to load a value from memory into a register, all four addressing modes
are as follows:

Absolute ld r1,ads R[r1] = M[ads]
Immediate ld r1,#n R[r1] = n
Displacement ld r1,d(r2) R[r1] = M[d + R[r2]]
Index ld r1,(r2+r3) R[r1] = M[R[r2] + R[r3]]

The opcode format and assembly language format for S2 follow the tradition
dest = source1 op source2 from PDP [BEL76], VAX [LEV89] and IBM
S360 [AMD64].

S2 instruction format

(rd dest, rs source, ads and disp are sign extended)

Figure 4.2 S2 instruction format

Opcode encoding

The S2 instruction set, its encoding and its format is shown in Table 4.2 and
Table 4.3.

 op rd1 ads

op rd1 rs2 disp

 op rd1 rs2 rs3 xop

5 5 22

L-format

D-format

X-format

5 5 5 17

5 5 5 5 12

100

Table 4.2 S2 opcode encoding and format. (1) jump condition uses r1 as
condition, the coding in r1 field: 0 always, 1 eq, 2 neq, 3 lt, 4 le, 5 ge, 6 gt (2)
extended instruction. The code 14..30 are undefined.

Opcode Op Mode Format

0 ld absolute L
1 ld displacement D
2 ld immediate L
3 st absolute D
4 st displacement L
5 jmp (1) absolute L
6 jal absolute L
7 add immediate D
8 sub immediate D
9 mul immediate D
10 div Immediate D
11 and Immediate D
12 or immediate D
13 xor immediate D
31 xop (2)

Meaning

The meaning of each instruction is as follows. We use the following notation to
describe the instruction; “op dest src1 src2”. R0 always returns the value
0.

ld r1,ads R[r1] = M[ads]
ld r1,#n R[r1] = n
ld r1,d(r2) R[r1] = M[d + R[r2]]
ld r1,(r2+r3) R[r1] = M[R[r2] + R[r3]]
st ads,r1 M[ads] = R[r1]
st d(r2),r1 M[d + R[r2]] = R[r1]
st (r2+r3),r1 M[R[r2] + R[r3]] = R[r1]
jmp cond,ads if cond true PC = ads
jal r1,ads R[r1] = PC; PC=ads; jump and link
jr r1 PC = R[r1]; return from subroutine

101

Table 4.3 S2 instruction encoding for xop. (1) use r1. (2) use r1 as the number
of trap function. The code 13..4095 are undefined.

Xop Op Mode Format

0 add register X
1 sub register X
2 mul register X
3 div register X
4 and register X
5 or register X
6 xor register X
7 shl register X
8 shr register X
9 ld index X
10 st register X
11 jr (1) special X
12 trap (2) special X

The arithmetic operations are two-complement integer arithmetic.

add r1,r2,r3 R[r1] = R[r2] + R[r3]
add r1,r2,#n R[r1] = R[r2] + sign extended n

The instruction add, sub affect Z, C − C indicates carry (add) or borrow (sub).
The instruction mul, div affect Z, O − O indicates overflow (mul) or underflow
(div) and divide by zero.

The logical operations are bitwise operations. They affect Z, S flags.

and r1,r2,r3 R[r1] = R[r2] bitand R[r3]
and r1,r2,#n R[r1] = R[r2] bitand sign extended n
or xor . . .
shl r1,r2 R[r1] = R[r2] shift left one bit
shr r1,r2 R[r1] = R[r2] shift right one bit

As r0 always is zero, many instructions can be synthesis using r0.

or r1,r2,r0 move r1 <- r2
or r1,r0,r0 clear r1
sub r0,r1,r2 compare r1 r2 affects flags

102

To complement a register, xor with 0xFFFFFFFF (-1) can be used.

xor r1,r2,#-1 r1 = complement r2

How an expression be transformed into sequence of instructions

An instruction in machine language composed of an operator and operands. The
number of operands varies from zero (stack instruction), one, two, and three. Our
hypothetical S2 processor is a 3-operand machine. Each instruction has the form
“op r1 r2 r3” and all operands are registers. Having three operands means
each operation can take two inputs from two operands and stores the result in the
third operand. It is suitable for binary operations such as; add, sub etc. To
translate an expression into S2 instructions, each result of a binary operation
needs to store in a temporary register. For example, the following expression in
transformed into a sequence of simple 3-operands instructions using t1, t2, t3
as temporary registers.

a * b + c - d

t1 = a * b
t2 = t1 + c
t3 = t2 - d

The input variables (a, b, c, d) and the temporary variables will be assigned to
registers. Let r1 = a, r2 = b, r3 = c, r4 = d, r5 = t1, r6 = t2, r7 =
t3. The above expression can be written in S2 instructions as follows.

mul r5 r1 r2
add r6 r5 r3
sub r7 r6 r4

In fact, at most two temporary variables are needed for any arbitrary long
sequence of binary operations (not nested) as the temporary value can be
accumulated using just one register and another register is used to hold one
operand of the binary operator.

Let use only t1, the previous expression becomes,

t1 = a * b
t1 = t1 + c
t1 = t1 - d

103

For any expression that has parentheses to control the order of evaluation, the
expression can be transformed into postfix ordering.

(a * b) + (c * d)

This expression is transformed into:

t1 = a * b
t2 = c * d
t1 = t1 + t2

Another example,

((a * b) + (c * d)) / f)

t1 = a * b
t2 = c * d
t1 = t1 + t2
t1 = t1 / f

Registers can be regarded as local variables. To access global variables, “ld”
“st” is used with their associated addressing mode to transfer values to and from
global memory to registers. Then, the arithmetic-logic operation can be
performed on registers.

Access simple scalar

Let A, B, C, D be global variables, the expression

A = B + C - D

can be translated into the following sequence.

Let r1 = A, r2 = B, r3 = C, r4 = D

ld r2 B
ld r3 C
ld r4 D
add r2 r2 r3
sub r1 r2 r4
st A r1

104

Access an array

Let ax[] be an array, the expression

i = 2
b = ax[i]
ax[i+2] = c

can be translated into the following sequence.

Let r1 = i, r2 = b, r3 be the base address of ax, r4 = c, r5 = temp.

ld r1 #2
ld r2 (r3+r1)
add r5 r1 #2
st (r3+r5) r4

The displacement-addressing mode is used to access data structure, where the
offset to the field is known at compile-time. For example, the “head” function
accesses the first cell and “tail” function accesses the second cell. These function
definitions are found in Nut-compiler.

(def head e () (vec e 0))
(def tail e () (vec e 1))

They are translated into the following sequence. Let r1 be the input expression,
r2 be the return value.

head: ld r2 0(r1)
tail: ld r2 1(r1)

Using jump for conditional branching

jmp cond ads

cond = eq, neq, lt, le, gt, ge, always

There are four flags in the processor: Sign, Zero, Carry, Overflow (S,Z,C,O).
Each flag is one bit. They are like global variables. Flags are set by ALU

105

instructions such as, add, sub, mul, div, and, xor etc. The ld/st
instructions do not change flags. The condition is decided by flags. Flags are set
by the previous ALU instruction. To compare two variables, sub instruction is
used and flags S, Z will be affected. Let two variables be in r1 and r2, the
instruction “sub r0 r1 r2” will compare these variables and sets the Sign and
Zero flags without altering any register (because r0 is always zero). For example
eq is Z = 1; lt is S = 1; le is S = 1 or Z = 1. Subsequently, the jump instruction
can test the flags that affect the control flow.

Using jump to do if-then-else

For an “if-then-else” expression, S2 instructions are generated using conditional
jumps. The following example shows the skeleton of the generated code.

(if (> a b) e1 e2)

Let r1 = a, r2 = b,

ld r1 a
ld r2 b
sub r0 r1 r2 ; compare a b
jmp gt L1 ; if a > b then
<code of e2>
jmp always exit

L1:
<code of e1>

exit:

Generate code for a simple while loop

The “while” expression can be translated to S2 code as follows.

(do
(set s 0)
(set i 1)
(while (<= i 10)
 (do
 (set s (+ s i))
 (set i (+ i 1))))

106

Let r1 = s, r2 = i

ld r1 #0 ; s = 0
ld r2 #1

loop:
sub r0 r2 #10
jmp gt exit ; while i <= 10
add r1 r1 r2 ; s = s + i
add r2 r2 #1 ; i = i + 1
jmp always loop

exit:

Function call

The part of program that is reused is made into a subroutine. When a main
program calls a subroutine, the body of that subroutine is executed and then the
flow goes back to the caller at the location after the line that call that subroutine.
This transfer of flow requires saving of the program counter (PC) which at the
time of call pointed to the next instruction. The return from a subroutine call
requires restoring PC. There are two instructions for implementing a subroutine
call: jump and link, and jump register.

jal rx ads

“jump and link” saves PC to rx and jump to ads.

jr rx

“jump register” restores PC from rx.

The register “rx” is called the link register. It stores the return address. It is
complicate when the call is recursive because the link register must then be
saved/restored properly. Here is a simple call. For simplicity, the parameters can
be passed through registers.

(def sq (x) () (* x x))

(def main () (a b)
 (set a 2)
 (set b (sq a)))

107

The above program can be translated into S2 code as follows.
Let r1 = a, r2 = b, r3 = x, r4 = link, r5 be return value.

main:
ld r1 #2
add r3 r1 r0 ; binding a, x
jal r4 sq ; call sq
add r2 r5 r0 ; b = return value
<end>

sq:
mul r5 r3 r3
jr r4 ; return

Please note that we use “add ra rb r0” to do ra = rb (moving a value
between two registers). r4 is used as a link register to store the return address.
The passing of a parameter is done by assigning x = a, (“add r3 r1 r0”). The
return value is stored in r5.

To pass parameters from “caller” to “callee”, we generate the code to transfer
variables using the evaluation stack. Any registers that will be used by a
subroutine must be saved upon entry into that subroutine and must be restored
upon exiting it. This is called callee-save. The subroutine takes responsible in
saving and restoring link register and all registers local to it in order not to
interfere with values of the caller. An alternative is to use caller-save where the
caller must save/restore its own registers. Let sp be a register that is the stack
pointer.

To push a register “x”,

add sp sp #1
st 0(sp) x

To pop a value to a register “x”,

ld x 0(sp)
sub sp sp #1

When multiple values are pushed into a stack, the compiler can use displacement
to give an offset to the stack pointer. The stack pointer can be adjusted at the end
of the sequence. For example, to push three registers.

108

 st 1(sp) first
 st 2(sp) second
 st 3(sp) third
 add sp sp #3

And similarly for popping multiple values.

 ld third 0(sp)
 ld second -1(sp)
 ld first -2(sp)
 sub sp sp #3

Please note that the offset of sp started from 1 when push and 0 when pop due to
asymmetric of two operations in terms of the initial position of sp, and the order
of operands are reversed.

Now let us do the previous example of the function call again with the code for
manipulating the activation record fully expanded.

(def sq (x) () (* x x))

(def main () (a b)
 (set a 2)
 (set b (sq a)))

This program can be translated into S2 code as follows.

Let r1 = a, r2 = b, r30 = link, r31 be the return value.

main:
ld r1 #2
add sp sp #1 ; pass a on eval stack
st 0(sp) r1
jal r30 sq
add r2 r31 r0 ; b = sq(a)
<end>

sq: ; let r1 = x
<save reg>
<pass param>
mul r31 r1 r1
<ret>
jr r30

109

Where <save reg> is the code to save the registers used in this subroutine.
First, the link register is pushed, then other registers.

 st 1(sp) r30
 st 2(sp) r1
 add sp sp #2

<pass param> is the code to pass parameters to the local registers. The passed
parameters are on the evaluation stack before <save reg>. The size of <save
reg> is used as an offset to access the passed parameters.

 ld r1 -2(sp)

At the end of subroutine <ret>, the saved registers are restored and the passed
parameters are popped from the evaluation stack.

 ld r1 0(sp)
 ld r30 -1(sp)
 sub sp sp #3

The subroutine “sq” is shown in full below.

sq: ; let r1 = x
st 1(sp) r30 ; <save reg>
st 2(sp) r1
add sp sp #2
ld r1 -2(sp) ; <pass param>
mul r31 r1 r1
ld r1 0(sp) ; <ret>
ld r30 -1(sp)
sub sp sp #3
jr r30

4.5 Lab session

Compile some Nut programs to get the object files then generate S-code from
these object files. Compile the Nut-compiler.

c:>nutc < nut.txt

110

And use Nut-compiler to compile a program, let it be “t3.txt”, the output goes
to “t3.obj”:

c:>nvm a.obj < t3.txt > t3.obj

Edit t3.obj to get rid of the listing at the beginning. Now compile the S-code
generator, “gen.txt”:

c:>nutc < gen.txt

Use it to generate the final S-code object:

c:>nvm a.obj < t3.obj > t3s.obj

We can use the S-code virtual machine, “svm” to run it and to generate a readable
S-code. To generate a readable S-code from an S-code object, do

c:>svm -l < t3s.obj

Run it.

c:>svm < t3s.obj

4.6 Summary

The code generation from N-code to S-code is straightforward. Both instruction
sets are similar. They are based on stack, zero-address instructions. We have
described the plan how to map from one code to another. The format of the
target object code has been studied. The mechanism to generate the object code is
elaborated. The general framework to generate the object code is similar to
executing the N-code using the evaluator of the last chapter, “eval”. The code
generator traverses the N-code and outputs the associated S-code. The control-
flow instruction of N-code is realised using the jump instruction of S-code.
Therefore the tree-structure of N-code has been transformed to a linear sequence
of S-code instructions.

To illustrate the method of generating object code for a conventional processor, a
register-based processor, S2, is demonstrated. One important aspect of
generating code for a register-based instruction set is that of register allocation.

111

The result of an operation must be placed explicitly into a register, unlike stack-
based instruction where the result is placed on the evaluation stack. We have not
touched the subject of code optimisation where the output code can be improved
in terms of speed of execution or the size of the code. This is not the main
concern for our study. Many textbooks on compiler are the excellent source
[AHO86] [LOU97]. However, in terms of performance of a system as a whole,
we will study it in Chapter 9.

References

[AHO86] Aho, A., Sethi, R., Ullman, J., Compiler: Principles, Techniques, and
Tools, Addison Wesley, 1986.

[AMD64] Amdahl, G., Blaauw, G., and Brooks, F., “Architecture of the IBM
System/360”, IBM Journal of Research and Development, April 1964.

[BEL76] Bell, C., and Strecker, W., “Computer structures: What we have learned
from the PDP-11”, Proc. of 3rd annual symposium on computer architecture,
(1976): 1-14.

[CHO97] Chongstitvatana, P., “Post processing optimization of byte-code
instructions by extension of its virtual machine”, Conf. of Electrical
Engineering, Bangkok, 1997.

[CHO01] Chongstitvatana, P. “Computer Architecture: A synthesis approach”,
2001.

[INT01] Intel Corp. Intel Pentium 4 processor optimization reference manual,
Document 248966-04. Aurora, CO, 2001.

[KOT03] Kotrajaras, V., and Chongstitvatana, P., “Nibbling Java Byte Code for
Resource-Critical Devices”, Proc. of National Computer Science and
Engineering Conference, Thailand, 2003.

[LEV89] Levy, H. and Eckhouse, R., Computer programming and
architecture: the VAX, 2nd ed., Digital press, 1989.

[LIN97] Lindholm, T. and Yellin, F. The Java™ Virtual Machine Specification,
Addison Wesley, 1997.

[LOU97] Louden, K., Compiler Construction: Principles and Practice, PWS
Pub., 1997.

112

[PEL97] Peleg, A., Wilkie, S, and Weiser, U., “Intel MMX for Multimedia
PCs”, Communications of the ACM, January 1997.

Exercises

4.1 Modify the code generator to generate the two-jump while. Measure the
number of instruction used while running a program. Compare it with
the one-jump while.

4.2 Implement the code generator that use the instruction inc and dec by
recognising the following N-code:

(put.a (ADD get.a lit.1))
(put.a (SUB get.a lit.1))

4.3 The associative table is a linear array. The searching is sequential.
Reimplement the associative table to be more efficient. (Hint: use other
data structure, or use hash table).

4.4 Write a code generator for S2 instruction set using the scheme outlined in
this chapter.

4.5 There are both advantage and disadvantage of using callee-save versus
caller-save. Some compiler does both depending on the context (the C
compiler for VAX under the operating system VMS). Modify the code
generator to do caller-save where the caller must save/restore its own
registers.

4.6 Suggest some way to implement a simple code optimisation to improve
the speed of execution. (Hint: replace a long sequence of code with a
shorter one).

