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Chapter 4

Code Generation

To actually run a  program on a  real  machine,  the  intermediate  code must  be 
translated into machine codes of that machine. To generate machine codes, the 
instruction set of the target machine must be studied.  We will study processors in 
details in Chapter 5.  There will be two illustrative processors.  The first one has 
instructions of the type zero-address, so called a stack-based instruction set.  The 
second one will be a more conventional three-address instruction set.  It is easier 
to translate N-code to a stack-based instruction set.  Therefore we will study the 
code generator for this instruction set. However, the code generation for three-
address instruction set will also be discussed. We shall begin with the discussion 
of the target instruction set.

4.1 S-code

The instruction set for our stack-based processor is called S-code.  The processor 
itself is named Sx processor.  S-code is designed for simplicity; the emphasis is 
on a small  number of instructions.  It is also quite fast to be interpreted by a 
software virtual machine.  From S-code, it is easy to generate machine dependent 
code for a specific purpose, such as,  small  code size (byte-code, nibble-code) 
[KOT03],  high  performance  (extended  code)  [CHO97],  or  to  fit  a  particular 
hardware. In our system, S-code is the machine code of Sx processor which has 
been designed to execute S-code directly in hardware.

S-code has a fixed-length 32-bit  instruction format.  It is not compact but it is 
reasonably  fast  when  interpreting.   This  format  simplifies  the  code  address 
calculation and allows code and data segment to be the same size (integer) as 
opposed to other format such as the byte-coded instruction format (as in JVM 
[LIN97]).  There are two types of instructions: zero-argument and one-argument. 
The zero-argument  instructions  are  mostly  related to  the  arithmetic  and logic 
operations.  The one-argument instructions are the access operations to variables 
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and the  control-flow operations.   The  description  of  the  instruction  set  is  as 
follows.

Notation

n is a 24-bit constant (2-complement)
x is a 32-bit value
v is a variable reference, for a global variable, it is an index to code segment, for 
a local variable, it is an offset to a current activation record in stack segment.
f is a reference to CS.
DS[] is the data segment, SS[] is the stack segment.
pc is a program counter, pointed to the current instruction.

stack notation:   (before -- after)

Zero argument instructions

add, sub, 
mul, div, 
mod

are integer arithmetic, take two operands from 
the stack and push the result back.  (a b -- a op b)

shl, shr take two operands: number, no-of-bit and shift 
the number and push the result back.  shr is an 
arithmetic shift, preserved sign.

band, bor, 
bxor, eq, 
lt, le, ge, 
gt

are logical, take two operands from the stack and 
push (T/1, F/0) back.  (a b -- 0/1)

bnot is bit inverse, takes one operand and push the 
result back. (a -- ~a)

ldx takes an address ads, an index idx, and returns 
DS[ads+idx]. (ads idx -- DS[ads+idx]) 

stx takes an address ads, an index idx, a value x, and 
store x to DS[ads+idx].  (ads idx x -- )

case takes a value (key), compares it to the range of 
label, goto the matched label, or goto else/exit if 
the key is out of range. (key -- )

array allocate x words in Data segment, return ref v to 
the allocated data.  (x -- v)
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One argument instructions

lit n Push n  ( -- n )
inc v Increment local variable, SS[FP+v]++
dec v Decrement local variable, SS[FP+v]--
ld v Push DS[v]. ( -- DS[v])
st v Take a value x and store to DS[v] = x. (x -- )
get v Get local variable v. ( -- SS[FP+v])
put v Store a value x to local variable v.  (x -- )
call f Create a new activation record, goto f in CS
ret n Return from a function call, n is the size of 

activation record. Remove the current activation 
record. Return a value if function returns a value.

fun n Function header, n is the number of local 
variables

jmp n Jump to PC+n in CS
jt n Jump PC+n if top of stack = 1, pop
jf n Jump PC+n if top of stack = 0, pop
sys n Call a system function n, for interfacing to 

external functions, the arguments are in the 
stack, the number of arguments can vary.

4.2 S-code format

Each instruction is 32-bit.  The right-most 8-bit is the operational code.  The left- 
most 24-bit is an optional argument. For a virtual machine, this format allows 
simple  opcode extraction by bitwise-and with a  mask  without  shifting,  but  it 
needs  8-bit  right-shift  to  extract  an  argument.   Because  zero-argument 
instructions  are  used  more  frequent,  this  format  is  fast  for  decoding  an 
instruction.  However, a decoder in hardware can tap any bit freely, therefore any 
format will be equally fast to decode. The instruction encoding is shown below.

The “end” is a pseudo instruction. It does not existed in a real processor. It is 
used to stop the processor simulation.  S-code supports high-level function call 
directly similar to N-code.  The run-time data structure must be understood. An 
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Encoding

0 --      1  add    2  sub     3  mul     4  div     
5  band   6  bor    7  bxor    8  not     9  eq      
10 ne     11 lt     12 le      13 ge      14 gt      
15 shl    16 shr    17 mod     18 ldx     19 stx     
20 ret    21 --     22 array   23 <end>   24 get     
25 put    26 ld     27 st      28 jmp     29 jt      
30 jf     31 lit    32 call    33 --      34 inc     
35 dec    36 sys    37 case    38 fun 

activation record stored a computation state.  It is resided in the stack segment. 
The computation state consists of: PC (return address), FP, all local variables.  SP
needs not be stored as it will be recovered properly when return.  The necessary 
information, the size of the activation record, is stored as the argument of “ret” 
instruction. The following diagram shows the layout of an activation record in the 
stack segment (notice that it is exactly the same as the activation record of N-
code).

Figure 4.1  The activation record to support S-code
 
A function call creates a new activation record.  The new FP is  SP + k.  The 
value k is the argument of “fun k”, k = n - arity + 1.  The new activation record 
overlaps the evaluation stack such that the passing parameters become the local 
variables of the new activation record.  A local variable is indexed by an offset 
from the  current  FP.   The  numbering  of  the  local  variables  causes  the  first 
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passing parameter to be the n-th local variable and so on.  This fact is handled by 
the compiler (Chapter 3).  A function call does the following:

1  Decode k at function header
2  Create new activation record, save old FP
3  Set new SP
4  Save return address
5  Goto body of function

When returning, the return instruction, “ret m”, supplies a value m to be used to 
restore SP. m is size of activation record + 1.  When restoring SP (not considering 
the return value yet):  

SP'' = FP - m
  
A return does the following:

1  Restore PC
2  If there is a return value
3      Restore SP and FP  
4      Push the return value 
5  Else           
6      Restore SP and FP

“case” is a multiway branch instruction.  It requires a jump-table.  The layout of 
code in “case” is as follows:

case
lit low
lit hi
jmp else
jump-table
...
code of each case

A case does:

1  Extract range of label: low, high
2  If key < low or key > high
3      PC = PC + 3    goto else-case
4  Else
5      PC = PC+key-low+4  goto matched label
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In this implementation, the jump-table is filled with the labels in the range (from 
low to high), hence, finding the matched label is simply an index calculation, a 
constant  time  operation.   This  enables  the  case instruction  to  be  fast  but  it 
consumes the memory in the code segment as large as the range of label.  This is 
wasteful if the label is not dense.  For the case of sparse label, a binary search can 
be used.  The jump-table is the sorted label of the pair (label, goto code). 
This  is  not  implemented  as  it  is  not  suitable  to  be  converted into a  machine 
specific instruction (maps to a real processor). Because Nut language does not yet 
support  multiway  branch,  the  “case”  instruction  is  not  implemented  by  Sx 
processor.

Input of the code generator is an N-code object.  Output is the S-code object. 
Let’s study some examples of programs in S-code.  Let a, b, c be locals; d, e 
be globals; L, M  be labels. S-code is shown in Arial font.

a = a + 1  

get a, lit 1, add, put a

a = b[i] 

get b, get i, ldx, put a 

d[i] = b 

ld d, get i, get b, stx

e = add2(a,b)

get a, get b, call add2, st e

if (a == 1) then b = 2 else b = 3

get a, lit 1, eq, jf L, 
lit 2, put b, jmp M, 

     L:    lit 3, put b, 
     M:

Let give one example what the code generator do.  The source program in Nut,

(def add1 x () (+ x 1))
(def main () ()
  (sys 1 (add1 22)))

is compiled into N-code object,
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add1
(fun.1.1 (+ get.1 lit.1 ))
main
(fun.0.0 (sys.1 (call.80 lit.22 )))

22 22
2 1 16 1 0
4 1 14 1 2
6 1 6 0 4
8 0 0 6 0
10 1 19 257 8
12 1 16 22 0
14 1 13 10 12
16 0 0 14 0
18 1 20 1 16
20 0 0 18 0
22 1 19 0 20
0

The S-code generator takes this N-code object and outputs S-code object.  The 
format of S-code object will be discussed later.

5678920
1 12
2080 23 294 280 287 1 532 294 
5663 800 292 276 
1000 999

It means the following:

      1 Call 8
      2 End
      3 Fun 1
      4 Get 1
      5 Lit 1
      6 Add
      7 Ret 2
      8 Fun 1
      9 Lit 22
     10 Call 3
     11 Sys 1
     12 Ret 1

The N-code and S-code are quite similar as they are both stack-based instruction 
sets.  The mapping between N-code and S-code is simple (see Table 4.1). Only 
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the  control-op  must  be  transformed  to  jump.  To  distinguish  between  two 
instruction sets the N-code is prefixed with “x” and S-code with “ic”.

Table 4.1  Mapping between N-code and S-code

n-code s-code

xLIT.a              icLit.a
xGET.a icGet.a
xPUT.a icPut.a
xLD.a icLd.a
(xADD e1 e2 e1 e2 icAdd
(xST.a e) e icSt.a
(xLDX.a e) e icGet.a icLdx
(xSTX.a e v)        e v icGet.a icStx
(xLDY.a e) e icLd.a icLdx
(xSTY.a e v)        e v icLd.a icStx
(xFUN.a.v e)        icFun.k e icRet.m 

where k = v-a+1, g = v+1
(xCALL.a e...)      e ... icCall.a
(xIF e1 e2 e3)   e1 

  icJf F 
  e2 
  icJmp E 
F: e3
E: 

(xWHILE e1 e2) L: e1
   icJf E
   e2
   icJmp L
E:
or better
   icJmp I
L: e2
I: e1
   icJt L

(xDO e1 e2 ...) e1  e2
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4.3 How the code generator work?
In the last chapter, the evaluator, “eval”, evaluates the N-code and returns the 
result.  The evaluator performs its task by traversing the N-code tree and applies 
the operators to their arguments.  The code generator follows the same pattern. It 
uses a variant of “eval”.  In other words, the generator reads the input N-code 
object and traverses the N-code.  Instead of executing it by applying the operators 
to their arguments, the generator outputs the corresponding S-code.  The mapping 
between N-code and S-code is simple.  Most of the code is one-to-one mapping. 
However,  the  addresses  of N-code and S-code are different.   This is handled 
using  the  associative list  of  N-code  address  to  S-code  address.  The  only 
instruction that need to relocate its argument is “call” using “insertLab” and 
“assoc”. The listing of the code generator is presented in the appendix E.

Let look at the “eval” for code generator. “out” outputs an S-code. The whole S-
code is stored in an array, XS[.].  XP is the current S-code address.  

eval e [gen 224]            ; S-code generator
 ...                      ; e1 is the argument list
 switch op
 ADD
   eval head e1
   eval arg2 e1
   out icAdd
 LIT
   out icLit arg
 GET
   out icGet arg
 FUN
   insertLab ads XP        ; ads is N-code, XP is S-code
   lv = arg & 255
   arity = arg >> 8        ; decode a.v
   out icFun (lv-arity+1)
   eval head e1
   out icRet (lv+1)
 CALL
   while e1 not empty      ; generate all arguments
      eval head e1
      e1 = tail e1
   out icCall (assoc arg)  ; map address to S-code
 ...
 else
   error “unknown op”
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For the control-op, the iteration is achieved by the jump instructions.  The first 
one, “do”, just generates the S-code one-by-one corresponding to the elements in 
the argument list of N-code (e1).

 DO  [gen 239]
   while e1 not empty
     eval head e1
     e1 = tail e1

The “if” generates the testing for the conditional and the alternatives. The first 
jump, “icJf”, jumps over the true-alternative (to label F).  The second jump is 
the jump at the end to exit (label E). 

The pattern for code generation is:

(xIF e1 e2 e3)
  
  e1 
  icJf F 
  e2 
  icJmp E 
F: e3
E: 

This is  how the generator works.  The variable  ads is  used to mark the place 
where the offset of the jump will be updated.  All jumps in S-code are relative. 
Their displacements are calculated relative to the current address (XP).

  IF  [gen 186]             ; e1 = (cond true false)
    eval head e1          ; gen cond
    out icJf 0            ; <1>
    ads = XP - 1          ; mark S-code ads
    eval arg2 e1          ; gen true
    if (arg3 e1) = NIL
      patch ads (XP-ads)  ; patch jf at <1>
    else
      out icJmp 0         ; <2>
      patch ads (XP-ads)
      ads = XP - 1        ; mark S-code ads
      eval arg3 e1        ; gen false
      patch ads (XP-ads)  ; patch jmp at <2>
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There are two ways to generate code for the while expression.  The first one is 
straightforward.

(xWHILE e1 e2)

L: e1
   icJf E
   e2
   icJmp L
E:

The code is generated in order of the appearance of the arguments,  e1 then e2. 
However, each time around the loop there will be two jumps.  To improve the 
quality a bit, we can turn around the order and use the conditional to perform the 
loop back.

   icJmp I
L: e2
I: e1
   icJt L

The first jump jumps into the conditional.  Only the first time around the loop 
that requires two jumps; the subsequent iteration requires only one jump.

  WHILE                 ; e1 = (cond body)
    out icJmp 0
    ads = XP - 1        ; mark the loop back address
    eval arg2 e1        ; gen body
    patch ads (XP-ads)  ; jump into cond
    eval head e         ; gen cond
    out icJt (XP-ads+1) ; loop back    

Here  are  the  actual  nut  code  to  generate  S-code  for  the  “if”  and  “while” 
control-op.

; e = (cond true false)

(def genif e (ads e3)    [gen 186]
    (do
    (eval (head e)) ; gen cond
    (outa icJf 0)
    (set ads (- XP 1))
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    (eval (arg2 e)) ; gen if-true
    (set e3 (arg3 e))
    (if (= e3 NIL)
        (patch ads (- XP ads))
        (do ; else
        (outa icJmp 0)
        (patch ads (- XP ads))
        (set ads (- XP 1))
        (eval e3) ; gen else
    (patch ads (- XP ads))))))

(def genwhile e ads  [gen 204]
    (do
    (outa icJmp 0)
    (set ads (- XP 1))
    (eval (arg2 e)) ; gen body
    (patch ads (- XP ads))
    (eval (head e)) ; gen cond
    (outa icJt (- (+ ads 1) XP))))

; change arg, preserve op

(def patch (ads v) ()   [gen 167]
    (setv XS ads (+ (<< v 8) (& (vec XS ads) 255))))

The associative list has two operations: insert-label and get the associated address 
of the label. atab is the array storing the tuple {label, address} where label is the 
N-code address,  address is the S-code address.  numLab is the number of tuples 
stored in the associative table.

; n1 is the label, n2 is the address

(def insertLab (n1 n2) (i)  [gen 135]
    (do
    (set i (+ (* numLab esize) 2)) ; start at 2
    (setv atab i n1)
    (setv atab (+ i 1) n2)
    (set numLab (+ numLab 1))
    (if (> numLab MAXLAB)
        (error “label table full”))))
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; search assoc for n1
; if found, return adddress, else 0
(def assoc n1 (i flag end)   [gen 121]
    (do
    (set i 2) ; start at 2
    (set flag 1)
    (set end (+ (* esize numLab) 2))
    (while (and flag (< i end))
        (if (= (vec atab i) n1) ; sequential search
            (set flag 0)
            ; else
            (set i (+ i esize))))
    (if flag
        0 ; not found
        (vec atab (+ i 1))))) ; found, return n2

The output S-code must be of the correct form so that the processor simulator can 
read it properly.  Here is the format of the S-code object file.

magic
start end   (end inclusive)
code*       (code segment)
start end
data*       (data segment)

Where  magic = 5678920, it is used to distinguish the object code between N-
code and S-code. start, end are the addresses denoting the starting and ending 
addresses of the block of data that follow.  Take a look at the previous example 
of the S-code object.

5678920
1 12
2080 23 294 280 287 1 532 294 
5663 800 292 276 
1000 999

5678920 denotes that this is the S-code object.  1 12 are the starting and ending 
addresses of the code block.  The length of the code is 12.  2080..276 are the 
codes.  1000 999 denote the starting and ending addresses of the data block. 
There is no data block in this example (the ending address is smaller than the 
starting address).
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4.4 Three-address code generation

S-code is very similar to N-code, they are both stack-based.  It is easy and very 
straightforward  to  translate  N-code to  S-code.   However,  there  is  no modern 
processor  that  has  stack-based instruction set.   We now turn our  attention to 
another more conventional instruction set, a three-address instruction set.  The 
processor that has this instruction set, S2 is a register-based processor.  As the 
subsequent components of our system will be based on stack-based instructions, 
we  will  only  discuss  a  general  scheme  of  code  generation  for  three-address 
instruction  set.   To begin,  we  discuss  the  overview of  the  processor  and the 
instruction set.

S2 is a simple 32-bit processor for educational purpose.  It exists as a simulator, 
although some implementation at Hardware Description Language for S2 exists. 
S2 is developed from S1 [CHO01], a simple 16-bit processor used for teaching 
several  classes  in  the  past  ten  years.   S2  has  an  adequate  instruction  set  to 
demonstrate the  high level  language and the assembly language relationships. 
Comparing to a real  processor (such as Intel  Pentium [INT01]),  S2 lacks OS 
supporting  functions,  I/O  and  interrupts,  and  performance  enhancing  features 
(such as MMX [PEL97]). 

S2 description

S2 has 32 registers, r0...r31, r0 is special and always has a zero value.  S2 has 
32-bit address space, it can access 4G words of memory.  Addressing is in word 
(32-bit) unit.  S2 has no byte-access instruction.  All instructions are 32-bit long 
(fixed length, one size).  S2 has flags that indicate result of previous operations. 
Flags are: Z zero, S sign, C carry, O overflow/underflow. 

S2 addressing mode

S2 has  four  addressing modes:  absolute,  displacement,  index,  and immediate. 
The absolute mode has 22-bit range (0..4M).  The displacement mode uses one 
register and a 17-bit value (0..128K).  The  index mode employs two registers. 
Lastly, the  immediate mode uses the literal value in the instruction. Depend on 
what  instruction  the  literal  is  22-bit  (load/store)  or  17-bit  (arithmetic).   For 
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example, to load a value from memory into a register, all four addressing modes 
are as follows: 

Absolute ld r1,ads      R[r1] = M[ads]
Immediate ld r1,#n       R[r1] = n
Displacement ld r1,d(r2)    R[r1] = M[d + R[r2]]
Index ld r1,(r2+r3)  R[r1] = M[R[r2] + R[r3]] 

The opcode format  and assembly language format  for  S2 follow the tradition 
dest = source1 op source2 from PDP [BEL76], VAX [LEV89] and IBM 
S360 [AMD64]. 

S2 instruction format

(rd dest, rs source, ads and disp are sign extended) 

Figure 4.2  S2 instruction format

Opcode encoding

The S2 instruction set,  its encoding and its format is shown in Table 4.2 and 
Table 4.3.

 op  rd1                       ads

op rd1 rs2         disp

  op rd1  rs2        rs3             xop

5         5                                22                        

L-format

D-format

X-format

5         5             5                  17                       

5         5            5           5                12
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Table  4.2   S2  opcode encoding  and  format.   (1)  jump  condition  uses  r1  as 
condition, the coding in r1 field: 0 always, 1 eq, 2 neq, 3 lt, 4 le, 5 ge, 6 gt  (2) 
extended instruction.  The code 14..30 are undefined.

Opcode Op Mode Format

0 ld absolute L
1 ld displacement D
2 ld immediate L
3 st absolute D
4 st displacement L
5 jmp (1) absolute L
6 jal absolute L
7 add immediate D
8 sub immediate D
9 mul immediate D
10 div Immediate D
11 and Immediate D
12 or immediate D
13 xor immediate D
31 xop (2)

Meaning

The meaning of each instruction is as follows.  We use the following notation to 
describe the instruction; “op dest src1 src2”.  R0 always returns the value 
0.

ld r1,ads         R[r1] = M[ads] 
ld r1,#n          R[r1] = n 
ld r1,d(r2)       R[r1] = M[ d + R[r2] ] 
ld r1,(r2+r3)     R[r1] = M[ R[r2] + R[r3] ] 
st ads,r1         M[ads] = R[r1] 
st d(r2),r1       M[ d + R[r2] ] = R[r1] 
st (r2+r3),r1     M[ R[r2] + R[r3] ] = R[r1] 
jmp cond,ads      if cond true PC = ads 
jal r1,ads        R[r1] = PC; PC=ads; jump and link 
jr  r1            PC = R[r1]; return from subroutine 
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Table 4.3  S2 instruction encoding for xop.  (1) use r1.  (2) use r1 as the number 
of trap function.  The code 13..4095 are undefined.

Xop Op Mode Format

0 add register X
1 sub register X
2 mul register X
3 div register X
4 and register X
5 or register X
6 xor register X
7 shl register X
8 shr register X
9 ld index X
10 st register X
11 jr  (1) special X
12 trap (2) special X

The arithmetic operations are two-complement integer arithmetic.

add r1,r2,r3     R[r1] = R[r2] + R[r3] 
add r1,r2,#n     R[r1] = R[r2] + sign extended n 

The instruction add, sub affect Z, C − C indicates carry (add) or borrow (sub). 
The instruction mul, div affect Z, O − O indicates overflow (mul) or underflow 
(div) and divide by zero. 

The logical operations are bitwise operations.  They affect Z, S flags.

and r1,r2,r3     R[r1] = R[r2] bitand R[r3] 
and r1,r2,#n     R[r1] = R[r2] bitand sign extended n 
or xor  . . . 
shl r1,r2        R[r1] = R[r2] shift left one bit 
shr r1,r2        R[r1] = R[r2] shift right one bit 

As r0 always is zero, many instructions can be synthesis using r0. 

or r1,r2,r0         move r1 <- r2 
or r1,r0,r0         clear r1 
sub r0,r1,r2        compare r1 r2  affects flags 
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To complement a register, xor with 0xFFFFFFFF (-1) can be used. 

xor r1,r2,#-1       r1 = complement r2 

How an expression be transformed into sequence of instructions

An instruction in machine language composed of an operator and operands.  The 
number of operands varies from zero (stack instruction), one, two, and three.  Our 
hypothetical S2 processor is a 3-operand machine.  Each instruction has the form 
“op r1 r2 r3” and all operands are registers.  Having three operands means 
each operation can take two inputs from two operands and stores the result in the 
third operand.  It is suitable for binary operations such as;  add, sub etc.  To 
translate  an expression into S2 instructions,  each result  of  a  binary operation 
needs to store in a temporary register.  For example, the following expression in 
transformed into a sequence of simple 3-operands instructions using t1,  t2,  t3 
as temporary registers.

a * b + c - d

t1 = a * b
t2 = t1 + c
t3 = t2 - d

The input variables (a,  b,  c,  d ) and the temporary variables will be assigned to 
registers. Let r1 = a, r2 = b, r3 = c, r4 = d, r5 = t1, r6 = t2,  r7 = 
t3.  The above expression can be written in S2 instructions as follows.

mul r5 r1 r2
add r6 r5 r3
sub r7 r6 r4

In  fact,  at  most  two  temporary  variables  are  needed  for  any  arbitrary  long 
sequence  of  binary  operations  (not  nested)  as  the  temporary  value  can  be 
accumulated  using  just  one  register  and  another  register  is  used  to  hold  one 
operand of the binary operator.

Let use only t1, the previous expression becomes,

t1 = a * b
t1 = t1 + c
t1 = t1 - d
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For any expression that has parentheses to control the order of evaluation, the 
expression can be transformed into postfix ordering.

(a * b) + (c * d)  

This expression is transformed into:

t1 = a * b
t2 = c * d
t1 = t1 + t2

Another example,

((a * b) + (c * d)) / f)

t1 = a * b
t2 = c * d
t1 = t1 + t2
t1 = t1 / f

  
Registers can be regarded as local variables.  To access global variables,  “ld” 
“st” is used with their associated addressing mode to transfer values to and from 
global  memory  to  registers.  Then,  the  arithmetic-logic  operation  can  be 
performed on registers.

Access simple scalar

Let A, B, C, D be global variables, the expression

A = B + C - D

can be translated into the following sequence.

Let r1 = A, r2 = B, r3 = C, r4 = D

ld r2 B
ld r3 C
ld r4 D
add r2 r2 r3
sub r1 r2 r4
st A r1
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Access an array

Let ax[] be an array, the expression

i = 2
b = ax[i]
ax[i+2] = c

can be translated into the following sequence.

Let r1 = i, r2 = b, r3 be the base address of ax, r4 = c, r5 = temp.

ld r1 #2
ld r2 (r3+r1)
add r5 r1 #2
st (r3+r5) r4

The displacement-addressing mode is used to access data structure, where the 
offset to the field is known at compile-time.  For example, the “head” function 
accesses the first cell and “tail” function accesses the second cell.  These function 
definitions are found in Nut-compiler.

(def head e () (vec e 0))
(def tail e () (vec e 1))

They are translated into the following sequence. Let r1 be the input expression, 
r2 be the return value.

head:  ld r2 0(r1)
tail:  ld r2 1(r1)

Using jump for conditional branching

jmp cond ads

cond = eq, neq, lt, le, gt, ge, always

There are four flags in the processor:  Sign,  Zero, Carry,  Overflow (S,Z,C,O). 
Each flag is  one bit.   They are  like global  variables.   Flags  are set  by ALU 
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instructions such as,  add, sub, mul, div, and, xor  etc.   The  ld/st 
instructions do not change flags.  The condition is decided by flags.  Flags are set 
by the previous ALU instruction.   To compare two variables, sub instruction is 
used and flags S, Z will be affected.  Let two variables be in  r1 and  r2,  the 
instruction “sub r0 r1 r2” will compare these variables and sets the Sign and 
Zero flags without altering any register (because r0 is always zero). For example 
eq is Z = 1; lt is S = 1; le is S = 1 or Z = 1.  Subsequently, the jump instruction 
can test the flags that affect the control flow. 

Using jump to do if-then-else

For an “if-then-else” expression, S2 instructions are generated using conditional 
jumps.  The following example shows the skeleton of the generated code.

(if (> a b) e1 e2)

Let r1 = a, r2 = b,

ld r1 a
ld r2 b
sub r0 r1 r2  ; compare a b
jmp gt L1     ; if a > b then
<code of e2>
jmp always exit

L1:
<code of e1>

exit:

Generate code for a simple while loop

The “while” expression can be translated to S2 code as follows.

(do
(set s 0)
(set i 1)
(while (<= i 10)
    (do
    (set s (+ s i))
    (set i (+ i 1))))
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Let r1 = s, r2 = i

ld r1 #0      ; s = 0
ld r2 #1

loop:
sub r0 r2 #10
jmp gt exit   ; while i <= 10
add r1 r1 r2  ; s = s + i
add r2 r2 #1  ; i = i + 1
jmp always loop

exit:

Function call

The part  of  program that  is  reused is  made  into a subroutine.   When a main 
program calls a subroutine, the body of that subroutine is executed and then the 
flow goes back to the caller at the location after the line that call that subroutine. 
This transfer of flow requires saving of the program counter (PC) which at the 
time of call pointed to the next instruction.  The return from a subroutine call 
requires restoring PC.  There are two instructions for implementing a subroutine 
call: jump and link, and jump register.

jal rx ads

“jump and link” saves PC to rx and jump to ads.

jr rx

“jump register” restores PC from rx.

The register “rx” is called the link register.  It stores the return address.  It is 
complicate  when  the  call  is  recursive  because  the  link  register  must  then  be 
saved/restored properly.  Here is a simple call.  For simplicity, the parameters can 
be passed through registers.

(def sq (x) () (* x x))

(def main () (a b)
    (set a 2) 
    (set b (sq a)))
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The above program can be translated into S2 code as follows.
Let r1 = a, r2 = b, r3 = x, r4 = link, r5 be return value.

main:
ld r1 #2
add r3 r1 r0    ;  binding a, x 
jal r4 sq     ;  call sq
add r2 r5 r0    ;  b = return value
<end>

sq:
mul r5 r3 r3
jr r4           ;  return

Please note that  we use “add ra rb r0” to do  ra = rb (moving a value 
between two registers).  r4 is used as a link register to store the return address. 
The passing of a parameter is done by assigning x = a, (“add r3 r1 r0”).  The 
return value is stored in r5.

To pass parameters from “caller” to “callee”, we generate the code to transfer 
variables  using  the  evaluation  stack.   Any  registers  that  will  be  used  by  a 
subroutine must be saved upon entry into that subroutine and must be restored 
upon exiting it.  This is called  callee-save. The subroutine takes responsible in 
saving  and  restoring  link  register  and  all  registers  local  to  it  in  order  not  to 
interfere with values of the caller. An alternative is to use caller-save where the 
caller must save/restore its own registers. Let  sp be a register that is the stack 
pointer.

To push a register “x”,

add sp sp #1
st 0(sp) x

To pop a value to a register “x”,

ld x 0(sp)
sub sp sp #1

When multiple values are pushed into a stack, the compiler can use displacement 
to give an offset to the stack pointer.  The stack pointer can be adjusted at the end 
of the sequence.  For example, to push three registers.
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  st 1(sp) first
  st 2(sp) second
  st 3(sp) third
  add sp sp #3

And similarly for popping multiple values.

  ld third 0(sp)
  ld second -1(sp)
  ld first -2(sp)
  sub sp sp #3

Please note that the offset of sp started from 1 when push and 0 when pop due to 
asymmetric of two operations in terms of the initial position of sp, and the order 
of operands are reversed.

Now let us do the previous example of the function call again with the code for 
manipulating the activation record fully expanded.

(def sq (x) () (* x x))

(def main () (a b)
    (set a 2) 
    (set b (sq a)))

This program can be translated into S2 code as follows.

Let r1 = a, r2 = b, r30 = link, r31 be the return value.

main:
ld r1 #2
add sp sp #1     ; pass a on eval stack
st 0(sp) r1
jal r30 sq
add r2 r31 r0    ; b = sq(a)
<end>

sq:                ; let r1 = x
<save reg>
<pass param>
mul r31 r1 r1
<ret>
jr r30
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Where  <save reg> is the code to save the registers used in this subroutine. 
First, the link register is pushed, then other registers.

  st 1(sp) r30
  st 2(sp) r1
  add sp sp #2

<pass param> is the code to pass parameters to the local registers.  The passed 
parameters are on the evaluation stack before <save reg>. The size of <save 
reg> is used as an offset to access the passed parameters.

  ld r1 -2(sp)

At the end of subroutine <ret>, the saved registers are restored and the passed 
parameters are popped from the evaluation stack.

  ld r1 0(sp)
  ld r30 -1(sp)
  sub sp sp #3

The subroutine “sq” is shown in full below.

sq:                ; let r1 = x
st 1(sp) r30 ; <save reg>
st 2(sp) r1
add sp sp #2
ld r1 -2(sp) ; <pass param>
mul r31 r1 r1
ld r1 0(sp) ; <ret>
ld r30 -1(sp)
sub sp sp #3
jr r30

4.5 Lab session

Compile some Nut programs to get the object files then generate S-code from 
these object files.  Compile the Nut-compiler.

c:>nutc < nut.txt
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And use Nut-compiler to compile a program, let it be “t3.txt”, the output goes 
to “t3.obj”:

c:>nvm a.obj < t3.txt > t3.obj

Edit t3.obj to get rid of the listing at the beginning.  Now compile the S-code 
generator, “gen.txt”:

c:>nutc < gen.txt

Use it to generate the final S-code object:

c:>nvm a.obj < t3.obj > t3s.obj

We can use the S-code virtual machine, “svm” to run it and to generate a readable 
S-code.  To generate a readable S-code from an S-code object, do

c:>svm -l < t3s.obj

Run it.

c:>svm < t3s.obj

4.6 Summary

The code generation from N-code to S-code is straightforward.  Both instruction 
sets are similar.  They are based on stack, zero-address instructions.  We have 
described the plan how to map from one code to another.   The format of the 
target object code has been studied. The mechanism to generate the object code is 
elaborated.   The  general  framework  to  generate  the  object  code  is  similar  to 
executing the N-code using the evaluator of the last chapter, “eval”.  The code 
generator traverses the N-code and outputs the associated S-code.  The control-
flow  instruction  of  N-code  is realised using  the  jump  instruction  of  S-code. 
Therefore the tree-structure of N-code has been transformed to a linear sequence 
of S-code instructions.  

To illustrate the method of generating object code for a conventional processor, a 
register-based  processor,  S2,  is  demonstrated.   One  important  aspect  of 
generating code for a register-based instruction set is that of register allocation. 
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The result of an operation must be placed explicitly into a register, unlike stack-
based instruction where the result is placed on the evaluation stack.  We have not 
touched the subject of code optimisation where the output code can be improved 
in terms of speed of execution or the size of the code.   This is not the main 
concern  for  our  study.  Many textbooks  on  compiler  are  the  excellent  source 
[AHO86] [LOU97]. However, in terms of performance of a system as a whole, 
we will study it in Chapter 9.
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Exercises

4.1 Modify the code generator to generate the two-jump while.  Measure the 
number of instruction used while running a program.  Compare it with 
the one-jump while.

4.2 Implement the code generator that use the instruction inc and dec by 
recognising the following N-code:

(put.a (ADD get.a lit.1))
(put.a (SUB get.a lit.1))

4.3 The  associative  table  is  a  linear  array.   The  searching  is  sequential. 
Reimplement the associative table to be more efficient.  (Hint: use other 
data structure, or use hash table).

4.4 Write a code generator for S2 instruction set using the scheme outlined in 
this chapter.

4.5 There are both advantage and disadvantage of using  callee-save versus 
caller-save.  Some compiler does both depending on the context (the C 
compiler for VAX under the operating system VMS). Modify the code 
generator to do  caller-save where the caller  must  save/restore its  own 
registers.

4.6 Suggest some way to implement a simple code optimisation to improve 
the speed of execution.  (Hint: replace a long sequence of code with a 
shorter one).


