
CHAPTER 1 
 

INTRODUCTION 
 

Admixture Analysis is a tool to study the stratification of population. It is useful for 
genetic association studies [1] such as admixture mapping [2][3][4], subspecies classification 
[1] or genetic barrier detection [5]. The result of this analysis is the proportion of each ancestral 
genetic group. The aim of the analysis is to infer the mixing ratio of each unknown ancestral 
group from the known current genetic population data. Tang proposed a method for an 
individual admixture analysis [6]. This analysis can infer the admix ratio from one ancestry 
groups of each individual. The calculation can be a tool to infer the Hapmap tree [7][8]. 
Furthermore, this analysis was applied in some epidemiology genetic such as, obesity, breast 
cancer, the skin pigment of women who receive genetic from Hispanic and African-American [9] 
or diabetes of African-American [10]. However, the data to infer the stratification should be large 
to gain more accuracy. The large dataset takes very long time to process. Some dataset takes 
several months. 

Admixture analysis is an ancestry estimation tool based on a maximum likelihood 
relation. Expectation Maximization (EM) [11][12][13] is a method to solve the likelihood relation. 
There are basic mathematic operators to be used in EM: random, addition, subtraction, division 
and multiplication. While other methods are based on numerical methods such as Newton-
Raphson, NR, [14] or Block Relaxations, BR, 0. Most of NR and BR operators are matrix 
operators, the matrix operators were used to compute a Jacobian or Hessian matrix from the 
relation. 

Field Programming Gate Arrays, FPGA [21], is a choice to speed up the calculation 
because the operators of FPGA work in fully parallel mode and they have low power 
consumption. Furthermore each unit of calculation of FPGA operates independently. The 
different calculation can be executed at the same time. Most other parallel processors are 
homogeneous. Currently, most of calculation speed can be gained by using parallel paradigm 
such as GPGPU [22][23] or Cloud Computing from Amazon [24]. Most of the techniques are 
done in the software level, so they cannot control each unit of calculation directly. Every 
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commands are passed to Operating System which in turn accesses the hardware level. This 
work presents a method to control each unit of calculation directly. 

1.1 Related works 
Related works in this dissertation were separated into two parts. The first part is the 

development of algorithms on the likelihood calculation. The second part is the development of 
calculation technologies. 

1.1.1 Algorithm Development 
Admixture analysis has been developed for a long time since 1986[3], starting from 

allele frequency comparison which is the first approach of this field. The work was based on 
prior knowledge techniques. Various types of genetics representation were applied with the 
comparison technique such as microsatellite or Short Tandem Repeats (STR) counting. STR is a 
repeat of genetic base. The length of the tandem is 2-6 bases. The number of repeats is not 
more than 100 repeats. The tandems are show in Figure 1 

 

 
Figure 1 Tandem repeat 

 
STR was also used in forensic work in the step of PCR. Inferring the admixture of each 

individual was based on the known tandem data. The tandem data should be a common 
sequence of the parental genome and current genome. Determining the admix ratio of each 
individual requires the knowledge of ancestry group marker. In 1991 Long [1] proposed the 
algorithm to analyze the admix ratio using F-statistic, Fst,[25], and Chi-square statistic applied to 
candidate the markers to analyse the admixture of the SNPs data. The selected markers by 
Long require a genomic knowledge; the markers to be used by Long must be an ancestry 
informative marker (AIM). An AIM [26] requires many of biology knowledge and prior knowledge 
of the ancestry population genetic. The result that obtained from Long is a group level admixture 
ratio. The information of Fst represents an admix ratio in group level. Fst is a statistical tool to 
measure the correlation between groups of genetic data. Fst is based on a deviation of the allele 
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frequency represents in binomial distribution. In 2003, Carrie and et al. [26] analyzed the 
accuracy of the analysis of STR and SNP. The work stated that SNPs data is better than the STR 
data for the admixture calculation. In 2000, Pritchard [27] proposed the method of calculation 
by applying the Markov Chain to the admixture calculation. Pritchard et al. introduced the 
STRUCTURE version 1. The STRUCTURE version 1 is software to infer models from the 
admixture group of data. This group of genomic data was inherited from some group of 
ancestral group. The proposed method is a kind of statistical method that does not required 
ancestry genomic knowledge, such as AIM or genetic inheritance knowledge. In 2003 Falush et 
al. [29], proposed a STRUCTURE version 2. Multi loci of genetic data were applied with this 
version of STRUCTURE. The calculation was based on Linkage Disequilibrium and Allele 
frequency. The STRUCTURE software gains a lot of accuracy in the population level. The 
calculation can only be applied in the population level and it takes a lot of calculation time. 
Chikhi et al. proposed likelihood based calculation in 2000 [28]. Figure 2 shows the mechanic of 
the mixture model calculation of two groups of ancestry. 

 
Figure 2 Mixing of two groups of ancestry when the time is changed 

 
This method based on calculation of mixture models as Eq 1 that is based on Bayesian’s 

network. The work proposed a speed up method for the calculation by Monte Carlo method. The 
work is an inference of genetic data in a population level but the genetic knowledge were 
applied in the calculation. The likelihood in this work is based on linear combination of each 
group of population. Three parameters were proposed in Eq 1, the first parameter is probability 
of ancestry group (pi), the second parameter is admix ratio (xi) and the last parameter is 
generation of mixing (tj). The calculation is based on current data, D to infer p and x. 

Eq 1.                           
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In 2005, Tang [6] proposed a log-likelihood model for admixture calculation. The 
proposed method computes this model by Expectation Maximization, EM. FRAPPE is software 
by Tang to calculate the admixture ratio in Individual level. Tang proposed two methods in his 
work. The first method is EM and the second is Newton-Raphson (NR). EM was selected in his 
work because the implementation of NR is more difficult as the number of ancestral groups 
grows. Both of the approaches cannot guarantee the global maxima for non-convex relation. To 
solve any non-convex relationship the calculation must be re-run by changing the initial point. In 
2009, Alexander et al 0 proposed a method of block relaxation for the Admixture by log-
likelihood relation. ADMIXTURE was provided by Alexander. ADMIXTURE is software for 
admixture analysis. Quasi-Newton-Raphson (QNR) was applied to solve the likelihood relation. 
The calculation achieves the speed of calculation via QNR. The NR is a Quadratic time 
algorithm. Both of iterative methods cannot guarantee any of global convergence with non-
convex problems. For NR and QNR, the starting point of calculation must be known. Most of NR 
guarantee a good convergence if the starting point is close to the answer. 

Most of the works above are based on single-core machines and they are slow on a 
large dataset. Every proposed methods may get stuck at a local maximum. Using parallel 
programming can reduce the computation time but it is very hard to achieve good performance 
across variable size of dataset because there were too many choices to consider. There were 
two major division of work in parallel computing, first is communication and second is 
computation. Both of them should be balanced to gain most speed. 

1.1.2 Technology of Calculation 

Recently, there are a lot of computing technologies such as multi-core CPU, GPU 
(Graphics Processing Unit), FPGA. Moore’s Law states that the number of transistors on a 
device doubles every two years because more transistors can be fabricated in a die. An 
improvement of clock frequency is another factor of performance gain. This dissertation 
proposed a calculation of Admixture by FPGA. Many works showed the performance of FPGA is 
better than the performance of GPU and Multi Cores, especially the floating point calculation. In 
[15], Stephanie and Jason proposed acceleration of phylogenetic tree calculation by FPGA. 
This work achieves 10x speed up relative to the calculation by software only. The computing 
tasks were divided into two tasks, the first task is the performance-critical task and the second 
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task is non-performance-critical. The first task was assigned to a FPGA and the second task 
was assigned to a general CPU. The non-performance-critical is data manipulation task such as 
data swapping, sampling or moving data. While the performance-critical is the task that requires 
fixed point and floating point calculation. Finding a phylogenetic tree is an application of this 
work. Bayes' Net was applied for the calculation. Markov Chain Monte Carlo (MCMC) was 
applied to speed up the calculation of the Bayes' Net. The problem is formulated as a state-
space-search. MCMC guesses a reasonable direction of the search to the state-space-tree. The 
direction at each node was obtained from the calculation of every nodes under that node. FPGA 
was applied to calculation the reasonable direction of the current node then trace to the 
selected direction until reach the leaves node. Virtex-2 Pro 100 FPGA was used as the 
acceleration device. The device operates at 165 MHz, but it can be operated at 310 MHz using 
Virtex-6 SX 475 FPGA technology.  Several of FPGA applications were applied with streaming 
data and signal processing such as [16]. Peter and Desmond proposed a technique of decoder 
calculation. The FPGA was used to process the Alamouti decoder [16] to increase system 
capacity and performance throughput of multiple input and output antennas (MIMO). There was 
a report to show the floating point operation performance of FPGA vs. CPUs in [17]. This work 
showed the trends of both single and double precision floating point performance of the FPGA 
above the CPUs. The benchmark in this work is LINPACK, the linear algebra of floating point 
calculation and matrix operations. In 2010, Christian et al did an application to compare the 
overall performance on FPGA Multi-Core CPUs and GPU [19]. The application is a real-time 
network intrusion detection system. ReMIND [20] is a detection tool in this work. The main 
concept of this work is matching subsequence in packet contents by efficient sorting. This work 
proposed and implemented a merge-sort, bitonic-sort and insertion-sort for all testing platforms. 
FPGA in this work is Virtex-5 with 0.55 GHz clock frequency, two Quad-core Xeon 5472 3GHz 
with OpenMP C/C++ and Nvidia Quadro FX 5600 1.35GHz of clock with CUDA. Multi-core 
CPUs gain highest performance in this work at 2Gbits per second, while the second rank is 
FPGA with 2Gbit per second of operation time but 1Gbit per second of data transferring and the 
bottom rank is GPU at 8Mbit per second. Moreover, the data format of the FPGA has more 
freedom than simple data format of general processors units [18]. Chunk of memory may be 
implemented for each calculation unit in the high density FPGA that can get rid of the bottleneck 
between processing unit and memory unit especially using multi processing units on a single 
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data. In a general purpose processing unit, there is only a single memory connection through 
memory. This architecture aimed to save space on chip and routing space on a circuit, but it 
increases the latency of memory accessing. The IEEE 754 floating point [45] was applied in this 
dissertation, because it is broadly used in all the current floating point calculation units such as 
AMD or Intel FPU [17]. EM NR and BR calculation are based on iteration method. The result is 
dependent on a good initial point and the number of iteration. The convergence of any method 
may requires more than ten thousand iterations of calculation. The huge number of iteration can 
cause a lack of precision from the cumulative error of fixed point representation. 

1.2 Problem statement 
Although Moore’s law claimed the hardware resource scaled at 2x every year. But the 

demand of calculation is increased much more than that. Most of calculation devices have 
weakness because of lack of hardware, such as RAM is not enough or loss of precision in a low 
bit of fixed point number format. This dissertation proposed a systematic improvement of EM on 
FPGA that is scalable by the number of ancestor group. In admixture calculation, the number of 
individual and the number of marker were fixed but the number of ancestral group is unknown. 
This is a problem for both software application and hardware application to prepare a space of 
RAM in software application or the number of Register in hardware application for allocation the 
huge size of variables. The advantage of FPGA is a freedom of design such as scattering of 
memory into a small chunk of memory per calculation unit. Although the clock frequency of an 
FPGA is not competitive with CPU from Intel or AMD or GPU, but the FPGA can create a large 
amount of calculation unit to simultaneously operate. Scattering of memory can reduce the 
bottleneck of general processing unit and memory unit. It integrates the memory unit into the 
calculation unit, same as register of Intel 808x or local memory of GPGPU. The design these 
Scattering units are scalable by number of ancestry groups.  
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CHAPTER  2 
 

METHODS AND BACKGROUND 
 

2.1 Mixture models 
Mixture model [30] is a probabilistic model derived from the existing and known data 

(Figure 3). There were four genetic models from four groups of population in Figure 3. Each 
model can be represented by Pi. Hi represents a hybrid from parental groups. Ci represents the 
Child. The number in each circle denotes the number of population in each group of population. 
From Figure 3 there were 100 individuals in population 1, 500 individuals in population 2, 400 
individuals in population 3 and 1000 individuals in population 4. It is not the case that all of the 
population from each group transfer their genetic to their child, for example H1 received 50 
individual from P1 and 200 individuals from P2. This relation can be written as H1 = 0.2P1 + 0.8P2. 
While H2 received only genetic from P2 so H2 = 1.0*P2. Hardy-Weinberg law [31][32] can be 
applied to express this fact. 

 

 
Figure 3 The genetic mixing from four population in each time step 
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C2 population in Figure 3 may directly inherited from only one group of ancestry as C2 = 
1xP4 although the population is not the same as their ancestry, while population of C1 may 
mixed well with every groups of ancestry, the roots of the tree are P1, P2, P3 and P4 that formed 
C1. 

2.2 Hardy-Weinberg Law [31][32] 
The law explains the ratio of genetic from generation to generation. It is preserved and 

will not change over time. The allele frequency was persevered over time. The law can be used 
to explain the effect of Mendel’s Pea Experiment [33]. 

2.2.1 Allele and SNP [34][35] 
Allele is a set of possible genetic base in a locus of diploid. There were “Major Allele” 

represents the majority of allele in a locus and another set called “Minor Allele”. The Major and 
Minor Allele may not express in a phenotype such as phenotype of blood group representation 
the blood type “A” may come from genotype “AO” or genotype “AA”. Homozygosity wild type is 
the genotype that composed of two major alleles. The genotype composed of two different 
alleles was called Heterozygosity. Its variant is a genotype that composed of two minor-alleles. 
To determine whether the gene is dominance or recessive depended on an expression of the 
genotype. SNP was used to represent the possibility of chromosome in a locus. There were 
various way to determine the value of SNPs. This dissertation uses 0, 1 and 2 to represent the 
Homozygosity wild type, Heterozygosity and Homozygosity variant respectively. 

 
Figure 4 Show a chunk of chromosome and SNPs. 
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The two upper traits in Figure 4 were called genetic copy or “copy”. For example, in 
blood type the first copy may represent blood type “A” and the lower trait also represent the 
blood type “A” then this genetic has genotype “AA”, the dominance “A”.  

 

2.2.2 Diploid [36] 
Cells have two homologous copies of each chromosome such as a chromosome of 

mammal. Bacterial has only one copy of chromosome, called Haploid. In the mating of diploid a 
child will receive two copies of chromosome one from the mother and one from the father. 
Nearly all mammals are diploid organisms although all individuals have some small fraction of 
cells that display polyploidy. 

2.2.3 Binomial Distribution [36] 
Genetic data in SNPs format was used in this dissertation. Any loci of SNPs data 

composed of only two possible alleles such as either A or T. If the amount of A is more than T 
then A is a major allele while another is minor allele. The number of individual is N. The 
composition in a loci can be either AA or AT or TA or TT. AA was called Homozygosity wild type. 
AT or TA obtained the same genotype were called Heterozygosity wild type and TT was called 
Homozygosity variant. Binomial relationship can be applied with SNPs data relation in a locus as 
Eq 2 

Eq 2. N2=(A+T)2 = AA + AT+TA + TT = A2 + 2AT + T2 

 
From Allele and Diploid and Hardy-Weinberg Law, a locus of SNPs data can be 

represented by binomial distribution model [37] as Pi. There were two dependent parameters: 
means,    and variance,  .of a binomial distribution model in a locus. The mixed model may 
have different ratio from each ancestral group.    represents the ratio of each ancestral model. 
Figure 5 shows the result of mixing of four binomial models. In general, the result of mixing 
model can be written as the relation in Eq 3. 
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Figure 5 The mixture models that composed of four difference binomial 

distribution models 

Eq 3.                      
        

 

Mixing model was applied in STRUCTURE [29]. It is based on Markov Chain to 
represent the mixed model that is to find the   . This approach yields low accuracy [30]. It also 
does not consider the nature of genetic inheritance. Inheritance of genetic is not locus 
independence. Each parental genome is divided into chromosome segments, similar to a chunk 
of genome, and transfers to child. 

2.3 Likelihood Model 
Likelihood calculation [38] is an inverse calculation of mixture calculation. In mixture 

calculation, the goal is to infer the child from the known ancestry genetic distribution. For 
Admixture, given a mixed data, the goal is to infer the ratio of that mixing. The SNPs data do not 
provide any of ancestry genetic model representation and each model mixing ratio. Likelihood 
calculation is an inferring method to infer each unknown model representation and each 
unknown model ratio from the current data. The likelihood relation was proposed by Hanis in 
1986 [10]. Hanis computed partial maximum likelihood with the likelihood relation. Tang applied 
EM with the likelihood relation. EM is a statistic based tool that was proposed by Dempster [11]. 
EM algorithm is a popular tool to solve the problem involving incomplete data and latent 
variables. EM [11] can be written as Eq 4, for likelihood model in each loci. D is a current 
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genetic data.       are latent variables.    is an allele frequency in each ancestral group i.    is 
each ancestral group proportion.    in Eq 3 can be ignored because in the loci of SNPs the 
Hardy-Weinberg Equilibrium is maintained, so the likelihood relation can be represented as Eq 
4. 

Eq 4.                     
     

 
EM algorithm is an iterative procedure to compute the Maximum Likelihood based on 

log likelihood, so the whole dataset can be written as Eq 5 after applying the log-likelihood 
relation. 

Eq 5.                       
   
 

   
 

   
  

 
Dataset in this dissertation is a Single Nucleotide Polymorphisms, SNPs. SNPs is a 

composite of human genome data that composed of Major allele and Minor allele in each locus. 
There were two threads in each SNP, each thread is called copy. This means that the part of 
that genetic was a copy of the parent. The likelihood for mixing of genetic model in a binomial 
distribution is as Eq 6 

 

Eq 6.                  
                                     

 
Eq 7 is the log-likelihood of Eq 6 and after applying the SNP value in each marker “m” of 

each individual “i”. 
 

Eq 7.                                                     

 
The SNPs data, G, consists of I individuals M markers, gij. Each marker of each loci has 

genotype either 0, 1 or 2 representing the homozygous wide type heterozygous wide type and 
homozygous variant type, respectively. A 0 means the first copy is “A” and the second copy is 
“A”, A 1 means the first copy is “A” while the second copy is “a” and 2 means both the first and 
second copy are “a”. The relationship has the term                 represents the effect 
of only major allele. The term                         represents the effect of minor 
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allele. qik denotes the mixing ratio from the kth ancestral group in the ith individual. pkm denotes 
the allele frequency of major allele in the mth loci of kth ancestral group, (1-pkm) denotes the minor 
allele of the mth loci of kth ancestral group. 

Tang [6] proposed a method to solve the likelihood relation by Newton-Raphson (NR) as 
Eq 8. NR requires a differential calculation to compute the Jacobian’s matrix, used in the 
relation. However the matrix operator in NR is difficult to scale when implemented in FPGA. 
Although the NR method guarantees the quadratic time of convergence [39] it does not 
guarantee the global solution and it is also dependent on the initial starring point. 

Eq 8.                     
        
         

     

 
        
         

     

 

Alexander proposed a block relaxation method that is based on quasi Newton Raphson. 
This method also does not work well with FPGA implementation. Tang proposed the calculation 
step of EM in three steps. They are Initialize value Step, Maximization Step and Expectation 
Step. The EM method must add an observable variable aim for the first copy and bim for the 
second copy at mth loci and ith individual. aim and bim can represent the group of ancestral value 
in each loci of each individual as well. 
Initial Step: Randomly assign “1” to only one cell of k at the ith individual mth loci of aim and bim. 
Maximization Step: Maximize the value of P by Eq 9 and maximize the value of Q by Eq 10 

Eq 9.     
    

        
 

 

        
 

              
 

 
 

Eq 10.    
    

 

  
      

      
    

Expectation step: Re-expect the value of “A” and “B” in each marker of individual from 
maximized value of ancestry allele frequency and admixed ratio. The expectation step 
calculates the ancestry groups’ ratio at mth marker from mth allele and mixing ratio of ith individual 
as: Eq 11 and Eq 12. 

Eq 11.     
  

   
     

 

    
     

 
 

 

Eq 12.     
  

   
        

  

    
        

   
 

The operators in EM are simple mathematics operators. The calculations needs a high 
precision that FPGA support through the floating point calculation block. Convergent criterion is 
calculated by Eq 13 
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Eq 13. “L  n+1,Qn+1)-L(Pn,Qn  < e” 

“e” is stopping criteria. The iteration stops when the current likelihood value is not 
different from the previous likelihood value.
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CHAPTER  3 
 

DESIGN AND IMPLEMENTATION 
 
This dissertation presents a method to speed up the calculation by Field Programmable 

Gate Arrays (FPGA) [21]. Fully parallel operators are a prefer choice of this dissertation. To 
achieve the performance of fully parallel calculation unit it is necessary to unroll the loop of 
calculation and then assign each task to each calculation unit. The limit of hardware resource 
causes an insufficient number of calculation units. This dissertation applies the systolic array 
computing to achieve scalability of the calculation. A systolic array [40] was applied to 
overcome a limitation of hardware resource. A systolic array is an arrangement of processors in 
an array where data flows synchronously across the array. The systolic array also has a 
specialized form of parallel computing. Each cell of arrays is an independent computing unit 
that computes data and stores data independently. Finally each cell shares information to the 
cell beside itself in the specified direction. This dissertation applied an IP-core floating point 
operators from the library of Xilinx [43][44] that are based on the IEEE754 standard [45] to gain 
more precision than fixed point calculation. A USB circuit is used as a communication channel 
between FPGA and PC. The synthesis and implementation tools are Xilinx ISE Design Suit v13.2 
[46] with Verilog compiling language. Verilog is used to synthesis a calculation circuit and java 
language is used to generate a Verilog coding of the circuits from a design script. 

The method of a calculation starts from loading SNPs data from host CPU to FGPA. This 
step allocates only 2-bit per allele copy. All possible SNPs in this dissertation are {0, 1, 2}. For 
unknown data, it was biased to be 0. The number 0, 1 and 2 represent Homogeneous wild type, 
Heterogeneous and Homogeneous variant respectively. The register size of I×M×K 32-bits were 
allocated for “Aimk” and “Bimk”. The P-value, Q-value and AB-value are represented by floating 
point single precision IEEE754 format. The Q-value allocates I×K×32-bit amount of FPGA 
register. The P-value allocates amount of M×K×32-bit and the AB-value allocates 2×I×M×K×32-
bit of FPGA’s register as shown in Figure 6. The array of registers is provided to speed up the 
calculation by hardware calculation as described below. 
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Figure 6 The register allocation in FPGA circuit 

The units of registers in the calculation of the equations, in previous chapter, were 
represented in this Figure. There were several types of register representation in this 
dissertation. Floating point format was applied with register units of Aimk Bimk Qik and Pmlk 
while unsigned short format was applied with register unit of Gim. The vertical arrow in Figure 6 
represents dependencies of Gim Aimk and Bimk on Pmlk as the Eq 9 and the horizontal arrow 
represent the dependencies of Aimk and Bimk on Qik as the Eq 10 as in Maximization step. The 
maximization step is to read the value of Pmlk and Qik and calculate as the Eq 11 and Eq 12 to 
update the value of Aimk and Bimk.  

3.1 Floating-Point 
There are many number representations, such as the fixed point number system using 

1’s complement arithmetic or 2’s complement arithmetic. This dissertation applied the IEEE754 
floating point number format for the calculation to avoid the precision loss from the cumulative 
operations. Figure 7 shows the composition of IEEE754 format. 

 
 
 
 

Figure 7 A 32-bit number of IEEE754 format for floating point calculation 

sign * 2exponent * mantissa 
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The number format is composed of three parts. The first part is a sign bit, 1-bit wide, 0 
for positive and 1 for negative. The second part is an exponent, 8-bit wide in binary number and 
the last part is a mantissa, 23-bit wide. To transform any decimal number to the IEEE754 floating 
point number, it starts from a conversion to binary number then transforms to exponential form 
and fills in the “m” part. The exponent is transformed into a binary number and then fill to the “e” 
part. 

A library of Floating point operation is provided by Xilinx. The operators in this 
dissertation are add, sub, multiply and divide. The circuits of calculation are proposed in 
Section 3.2.1 for updateP circuit and Section 3.2.2 for updateQ circuit and Section 3.2.3 for 
updateAB circuit. 

3.2 Circuit Design of EM calculation 
The calculation of likelihood as proposed in Chapter 2 was implemented as circuits of 

FPGA. This dissertation proposed a method of fully parallel of processing unit. The main idea is 
to perform loop unrolling and scattering of memory to each calculation unit. The EM method of 
calculation to solve the likelihood relation as proposed in Chapter 2 was chosen. There were 
three steps of calculation. The first step of EM is randomized the initial point of solutions. This 
step is starting from randomly assigns the group of ancestral to each copy in any individual 
(called as initial step). The constraints of these values are          to determine the 
probability of the major allele of the mth marker of ith individual and          to determine 
the probability of the minor allele of the mth marker of ith individual. The second step is 
Maximization step as Eq 9 (updateP) and Eq 10 (updateQ). The calculation direction of Eq 9 
can be simultaneously operated with Eq 10. The operation of Eq 9 is row dependent of data 
because the operation is based on a summation over vertical data from the first individual 
through the last individual of a locus. The individual admix ratio in Eq 10 is data dependent from 
the summation over row of each individual. The last step is Expectation step. This step re-
determine the probability of ancestral group for each individual copy. The re-determining is 
similar to a calculation of mixture model. The step of Maximization must be completed before 
starting an Expectation step. The convergence of the calculation is determined by Eq 13. Each 
of calculation of the three steps can be implemented as follows. 
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3.2.1 Circuit Design for UpdateP 

This circuit is used to calculate a value of ancestral allele frequency in each loci, 
PmAk/PmBk as Eq 9. It is a part of calculation to maximize the ancestry allele frequency. The 
calculation of each column does multiply all k variables of Aim by Gim and accumulate through 
the last Ith. Then divide each kth variable of Aim by Aim+Bim 

zero all P[m][k] 
for m = to size of Marker{ 
 for I = 0 to size of Individual { 
  for k = 0 to size of Ancestral group { 
   tmpA[k] = tmpA[k] + G[i][m] * A[i][m] 
   tmpB[k] = tmpB[k] + (2-G[i][m])*B[i][m] 
  } 
 } 
 P[m][k] = tmpA[k] / (tmpA[k] + tmpB[k]) 
} 

The calculation does a summation over individuals in a locus and the result is a new 
ancestral allele frequency for the next iteration. The pseudo code shows the method of updateP 
that is implemented on a single processing unit. For multiple of processing units the calculation 
can be transformed to  

Pmk =    G0m*A0mk +G1mk*A1mk +..+ Gimk*Aimk+..+ GImk*AImk 
 (G0m*B0mk +..+ Gimk*Bimk+..+ GImk*BImk + G0m*B0mk +..+ Gimk*Bimk+..+ GImk*BImk) 

There were three types of circuit in updateP. The first circuit multiplies Gim by Aim and Bim 
then sends the result to the second circuit. The second circuit multiplies the current Gim by Aim 
and Bim and adds the current result with the previous result, and then sends it to the next circuit 
through the last individual data. The third circuit is the same as the second type of updateP but 
it also adds a block of addition circuit between Gim×Aimk and Gim×Bimk. This is as a denominator 
of the divide circuit to complete the updateP calculation of each loci. The head of updateP 
circuit contains only 2k blocks of mul to multiply Gim by Aim and multiply Gim by Bim. There were 3 
types of input ports. The first type is 2-bit wide for G0m, the second type is 32-bit wide k ports for 
A0mk and the last type is 32-bit wide k ports for B0mk. The output ports are 32-bit wide 2k 
ports. It is shown as the top block of Figure 8. The updateP circuit contains 2k blocks of mul and 
add circuit to multiply Gim by Aim and multiply Gim by Bim and adds the result with the updateP 
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circuit. There were four types of input ports. The first type is 2-bit wide for G0m. The second type 
is 32-bit wide k ports for A0mk. The third type is 32-bit wide k ports for B0mk and the last type is 32-
bit wide 2k ports of the previous Aimk and the previous Bimk. The output ports are the same as the 
head of updateP circuit. It is shown as the middle block of Figure 8. The last updateP circuit is 
almost the same implementation and input/output port as an ordinary updateP circuit but the 
operator performs add of the ancestral major allele number with the ancestral minor allele 
number. The result is a norm of ancestral allele frequency. The k units of add block and div 
block were added to the circuit. The input ports are the same as an ordinary updateP but there 
are only 32-bit wide k ports of the output to the ancestry major allele frequency.  

The calculation circuit is shown in Figure 8. Please note the connection of the three 
types of updateP circuit. The left side of the circuit is the register of each locus of individual. Aim 
implies major allele. Bim implies minor allele and G is the genotype value. The Aimk and Bimk have 
k possible values from k groups of ancestral. This value is selected to update the ancestral 
allele frequency of each ancestral group as PmAk/PmBk. The update depends on genetics value of 
the loci of each individual, Gim = 0 means Major-Major (AA), Gim = 1 means Major-Minor (AB) 
and Gim = 2 means Minor-Minor (BB). From the relationship of binomial distribution and log-
likelihood (Eq 9), the genetic value 0 denote the P0Ak += Aimk + Bimk. The genetic value 1 denotes 
P0Ak += Aimk , P0Bk += Bimk and the genetic value 2 denotes P0Bk += Aimk + Bimk. The ancestral 
allele frequencies were calculated only for Major Ancestral Allele Frequency to reduce the 
circuit size. The minor ancestral allele frequency is implied by 1- major ancestral allele 
frequency. It is shown at the bottom of Figure 8. Figure 8 shows the calculation circuit of the first 
marker for three ancestor groups.  
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Figure 8 the “UpdateP” circuit in column 0 

3.2.2 Circuit Design for UpdateQ 
This circuit calculates the individual admix ratio (Qik) as Eq 10. It was used in 

Maximization step. To update the new value of Qik, it sums every value of Aimk and Bimk that 
match the kth ancestral group by row (Figure 9). There is a direct connection for each kth 
registers in the circuit of the Aimk and Bimk because each register represents the inheritance ratio 
of each marker of individual. For example A123 represents the 3rd ancestry group probability of 
the 2nd marker of 1st individual. There are 32-bit wide k variables per individual to compute the 
mixing ratio of each ancestral group in each individual. The sum of these values in each 
individual is 1.0. The pseudo code of the implementation of Eq 10 is as follows. 

Header 
updateP 

Ordinary 
updateP 

   Last 
updateP 
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zeros all Q[I][K] 
for i = 0 to size of Individual{ 
 for m = 0 to size of markers{ 

for k = 0 to number of ancestral groups 
   Q[i][k] += A[i][m][k]/2M + B[i][m][k]/2M; 
 { 
} 

The computation for a single processing unit starts from clearing the admix ratio (Qik) 
from the previous calculation. Then cumulatively adding the value of A and B row by row 
through the last row. The implementation for a multiple processing unit can be implemented as 
follows. 

Q00 = (A000+B000+A010+B010+..+A0m0+B0m0+..+A0M0+B0M0) / 2M 
Q01 = (A001+B001+A011+B011+..+A0m1+B0m1+..+A0M1+B0M1) / 2M 
Q0k = (A00k+B00k+A01k+B01k+..+A0mk+B0mk+..+A0Mk+B0Mk) / 2M 
Qik = (Ai0k+Bi0k+Ai1k+Bi1k+..+Aimk+Bimk+..+AiMk+BiMk) / 2M 
QIk = (AI0k+BI0k+AI1k+BI1k+..+AImk+BImk+..+AIMk+BIMk) / 2M 

 
The implementation of individual admixture ratio is shown in Figure 9. There is only one 

type for input port. It is 32-bit wide and there are 2k x M x K ports for value of A and B and 32-bit 
wide k ports for the output. The circuit requires M x K units of computing in a row as shown in 
Figure 9. The sub unit calculations were applied for the entire row of genetic data per individual. 
Figure 9 shows a part of the calculation circuit that consists of three ancestral groups, K=3. The 
calculation block was connected to every register from the genotype (G) and the first and the 
second copies of every marker in an individual. 

 
 

 
Figure 9 the circuit of UpdateQ  
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3.2.3 Circuit Design for UpdateAB 

After the calculation of the Maximization step is completed, the next calculation is the 
Expectation calculation. This step computes the re-expect value of the latent variables of Aimk 
and Bimk that imply the group of ancestry in a locus of each copy of genetic data. The values are 
the probability of each marker multiplied by the mixing ratio as Eq 11 for major allele and Eq 12 
for minor allele. The method of calculation is to sum over ancestral groups for qik × pmk for major 
allele and qik × (1-pmk) for minor allele. Values of Aimk and Bimk depend on the genetic data to 
select either major or minor ancestral allele frequency value. The pseudo code of Eq 11 and Eq 
12 as follows. 

for i = 0 to size of Individual { 
  for m = 0 to size of Marker { 
   major = 0; minor = 0; 
   for k = 0 to size of Ancestral group { 
    major = P[m][k]*Q[i][k] + major 
    minor = (1-P[m][k])*Q[i][k] + minor 
   } 
   for k = 0 to size of Ancestral group { 
    A[i][m][k] = P[m][k]*Q[i][k] / major 
    B[i][m][k] = (1-P[m][k])*Q[i][k] / minor 
   } 
  } 
} 

The first loop is a calculation of mixing model of the mth marker in the ith individual. The 
result is a denominator of each copy. This calculation was used in the second loop to represent 
the inheritant proportion of each copy from its ancestor. The pseudo code above shows the 
operation of a single processing unit. The thread of computing is started by calculating from the 
first marker of the first individual through the last marker of the last individual to complete the 
Expectation step. It is important to have the independence of data access of the calculation 
units to ancestral allele frequency and individual admix ratio. The design for multiple calculation 
units uses multiple registers to achieve this effect. Multiple registers can be accessed at the 
same time, assuming there were I×M units of updateAB circuits. The calculation unit of 
updateAB can be implemented as follows. 
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A[i][m][0] = P[m][0]*Q[i][0] / (P[m][0]*Q[i][0]+ P[m][1]*Q[i][1]+..+ P[m][K]*Q[i][K]) 
B[i][m][0] = (1-P[m][0])*Q[i][0] / ((1-P[m][0])*Q[i][0]+ (1-P[m][1])*Q[i][1]+..+ (1-P[m][K])*Q[i][K]) 
A[i][m][1] = P[m][0]*Q[i][1] / (P[m][0]*Q[i][0]+ P[m][1]*Q[i][1]+..+ P[m][K]*Q[i][K]) 
B[i][m][1] = (1-P[m][0])*Q[i][1] / ((1-P[m][0])*Q[i][0]+ (1-P[m][1])*Q[i][1]+..+ (1-P[m][K])*Q[i][K]) 
… 
A[i][m][K] = P[m][0]*Q[i][K] / (P[m][0]*Q[i][0]+ P[m][1]*Q[i][1]+..+ P[m][K]*Q[i][K]) 
B[i][m][K] = (1-P[m][0])*Q[i][K] / ((1-P[m][0])*Q[i][0]+ (1-P[m][1])*Q[i][1]+..+ (1-P[m][K])*Q[i][K]) 

The implementation is suitable for the bottleneck-less architecture as FPGA or multiple 
processing units which have enough internal registers. There was 32-bit input/output bus for 
each unit of A and B as shown in Figure 6. The ancestral allele frequency (Pmk) and individual 
admix ratio (Qik) were directly accessed from each computing unit to update their own registers 
of Aimk and Bimk. The genotype selects Pmk to be calculated. The selection process of Pmk is 
shown in Figure 10, Figure 11 and Figure 12. 

 

 
Figure 10 The circuit of UpdateAB: genotype is “0”. The genotype of each copy is 

Major or Homogenous wild type. Only ancestral major allele frequency was 
selected. 
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Figure 11 The circuit of UpdateAB: genotype is “1” (Heterozygous). Both Major and 

Minor ancestral alleles were selected. 

 
Figure 12 The circuit of UpdateAB: genotype is “2”. Only ancestral minor allele 

frequency was selected. 
 
Figure 10 shows a calculation circuit when the genotype of the locus is “0”. The circuit 

will select only the ancestral major allele frequency (Pmk). When genotype is “1”, the major and 
minor ancestral allele frequencies are selected. When it is “2”, only ancestral minor allele 
frequency (1-pmk) is selected to operate as Eq 11 and Eq 12 respectively. The architecture of 
this step is totally different from the calculation of Maximization step as 3.2.1 and 3.2.2. The 
genotype data is shared between multiple calculation units. For the proposed architecture here, 
there is no conflict in accessing data between multiple units. However, the mutual exclusion for 
sharing data access is a major problem for a conventional CPU.  
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Figure 8 - Figure 12 were proposed calculation circuits in this dissertation. Figure 6 is a 

circuit of register unit. The arrows in Figure 6 were operations of maximization step. The circuits 
in Figure 8 and Figure 9 perform concurrent update concurrently update the value of Pmlk and 
Qik.  

 

3.2.4 Circuit Design Summary 
The architecture proposed in the previous section consumes a lot of resource as 

registers and a lot of floating point operation units as shown in Table 1. 
Table 1 The sub-calculation unit usage in each circuit  

Circuit Number block 
of Adder  

Number blocks of 
multiplier  

Number blocks 
of Divider  

Number of the block 
in overall  

updateQ 2K - K I×M 
updateP 2K+K 2K K I×M 
updateAB 2(K-1) 2K 2K I×M 

 
There are a lot of floating operator blocks. The adder blocks have to instantiate 

I×M×(K+2K+K+2(K-1)) blocks of the overall circuit. The multiplier blocks have to be instantiated 
I×M×(2K+2K) blocks and I×M×(K+K+2K) blocks of the divider blocks. The huge amount of all 
floating point blocks overflows the resource available in FPGA devices. The calculation method 
of updateP and updateQ cause the abundant of carry ripple from data dependency in column 
and row. Even if the calculation units are fully implemented, there is still a bottleneck in speed 
up due to the ripple of carry. The Systolic architecture was applied to this dissertation. In 
general case, the multiplier circuit handles any value multiplies by genotypes value (0, 1 or 2). 
To reduce the size of the circuit, it is specialized to the fixed values of 0, 1 or 2. This 
specialization also reduces the time of floating point operation.   

3.3 Systolic Array [40] 
Systolic array was applied for this dissertation to reduce the number of calculation unit. 

Systolic array architecture is based on parallel processing and remarkable advances in VLSI 
technology. Many systolic algorithms have been designed for a great diversity of areas. This 
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dissertation applies systolic architecture for hardware resource saving. The calculation step is 
divided into two dependent steps from Expectation Maximization algorithm. The first part is 
Maximization step and the second part is Expectation step. The circuit of updateP and updateQ 
were enabled in the Maximization step and updateAB was enabled in the Expectation step. A 
concern of a systolic architecture is a flow of data into the calculation units. There are several 
ways to flow the data into a calculation unit such feeding row-by-row as Figure 13A or feeding 
column-by-column as Figure 13B. The strip-wise of calculation units was called bundle-wise. 
Figure 13C shows the bundle-wise architecture. Figure 14 shows the flow of data by block-wise 
method. The data were fed through the array of Data Processing Units (DPUs) in two directions. 
The block-wise architecture was very popular to apply with matrix multiplication [42]. The 
process of matrix multiplication by systolic array is shown in Figure 14. The first step vertically 
feeds the B[0][0] and horizontally feeds A[0][0] to the calculation node C[0][0] to multiply and 
accumulate as C[0][0] += A[0][0]×B[0][0]. The second step, the data of B[1][0] and A[0][1] are 
fed to process in C[0][0] and the result becomes C[0][0] += A[0][1]×B[1][0]. At this step the 
data of B[0][0] is fed to C[1][0] to be multiplied by A[1][0] and the result is C[1][0] += 
A[1][0]×B[0][0]. Other element of C is calculated similarly as C[0][1] = A[0][0]×B[0][1], and so 
on. The time complexity of matrix multiplication via systolic array is O(n) while the matrix 
multiplication via single thread machine takes O(n3), but the systolic architecture requires n2 of 
computation nodes. 

 

 
Figure 13 data partitioning for each architecture of calculation unit 
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Figure 14 Data Processing Units (DPUs) of Systolic Architecture from [41]  

 
Full placement of calculation circuit requires I×M circuits. This takes too much of 

resource. Placement of calculation circuits by row-wise requires M circuits. Finally placement of 
by column-wise requires I circuits. It is the choice in this work. Most of genetic data, the size of 
marker is significantly greater than the size of individual. To complete the calculation of EM, 
each iteration requires two steps of Expectation and Maximization. The main iterative of EM 
requires the first iteration or step of Maximization and another iteration is step of Expectation. 
Therefore, column-wise I circuits are the minimum resource required to implement this 
computation. 

3.3.1 Circuit Design for Maximization Calculation 
The original calculation of maximization step of EM was shown in Figure 15. There were 

I×M blocks of calculation circuits to process I×M array of genetic data. Figure 16 shows the 
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circuit after applying systolic architecture by column-wise for maximization step of EM 
calculation. 

 

 
Figure 15 the original circuit of the maximization part of likelihood calculation 

 
Common sub-calculation units are the most important part of the systolic architecture. 

The common sub-calculation units were described in Section 3.2. The implementation merges 
the sub-calculation units of updateP and updateQ for simultaneous calculation of maximization 
and update in the step of expectation. All of the implemented circuits are based on a column-
wise architecture as shown in Figure 16.  
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Figure 16 The circuit after applying column-wise of systolic architecture to the 

maximization step. 
Figure 16 shows the merged circuit of updateP and updateQ into CalPQ that was 

placed in M circuits. The horizontal operation of CalPQ circuit performs the summation of Q[i][k] 
= A[i][m][k]+B[i][m][k] from the first of marker through the last of marker and divides by 2M. 
This operation is similar to updateQ. The horizontal operation of this circuit of each column takes 
O(1). It takes around 6 clocks of floating point adder. The vertical operation of the CalPQ circuit 
performs the summation of the first individual through the last individual of each marker. This 
operation takes O(I). The circuits for ancestral allele frequency calculation were adapted for 
more general use than the circuit updateP. In the full placement architecture, there were three 
types of updateP circuit. They are differing on the value of genotype. For reusability, all of three 
circuits must be implemented in each CalPQ circuit, because the genetic value may be 
changed due to each genotype of each locus. The multiplexer of each updateP circuit was 
changed to multiplier block as Eq 9. The vertical operation takes O(I) from a ripple carry of each 
sub-calculation unit because the result of A[i][m][k]×g[i][j] and B[i][m][k]×g[i][j] has been 
prepared in each CalPQ circuits as Figure 17. The time complexity of Maximization step is 
O(I×M), that is not significantly slower than the full placement circuit of CalPQ or the placement 
by row-wise. Registers allocation of the column-wise architecture still be the same as the full 
placement architecture.  
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The flow of calculation in Maximization step started from the first locus of genetic data. 
The data will be shifted to the next right column when the ancestry allele frequencies of every 
group were updated. The circuits of CalPQ were shifted to the second locus and so on through 
the Mth locus.  

 
Figure 17 The circuit of CalPQ circuit of systolic architecture. 

3.3.2 Circuit Design for Expectation Calculation 
This calculation step starts after finishing of Maximization calculation. In this step the 

value of latent variables are updated after the parameters were Maximized, ancestral allele 
frequency and individual admix ratio have been maximized from the Maximization step. The 
original design of Expectation step is shown in Figure 10 - Figure 12. The different circuits were 
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selected depended on the genotype value. The genotype 0 selects the circuit of Figure 10, 1 
selects the circuit of Figure 11 and 2 selects the circuit of Figure 12. The updateAB circuit in the 
previous section may save a hardware resource more than the circuit in this section but the 
previous circuit lacks of general use. The hardware resource is smaller and faster for multiplexer 
than the multiplier block. That is the reason why multiplexer was selected for the updateAB 
circuit. The multiplexer was changed to the operation of Eq 11 and Eq 12 for making a more 
general circuit of updateAB as Figure 18. 

 
Figure 18 The circuit for expectation step. 

 
The column-wise architecture was also applied to updateAB circuit. The time complexity 

of column-wise architecture is improved from O(M) to O(1). Each latent variable was updated 
from a separately access of ancestral allele frequency and admix ratio. There were M markers 
to transverse in an iteration, so the time complexity of column-wise updateAB is O(M).  

The circuits of calculation are based on binary operands of floating point operators and 
binary operation with integer and floating point. The floating point circuit of IP-Cores from Xilinx 
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were applied with this dissertation. This dissertation proposed a wrapping of floating point 
operators thus transforms them into building blocks.  

3.4 Circuit Implementation 
This dissertation proposed an implementation of circuit via Verilog language. There are 

three types of circuit in this dissertation. The first circuit is Register Unit for genetic data, 
ancestral-allele-frequencies, admix-ratios and latent variables. The second circuit is calculation 
circuits for updatePQ and updateAB. The last circuit is control unit to control the flow of data 
and the check for stopping criterion. 

3.4.1 Register Unit 
There are four blocks of Register unit as shown in Table 2. Speed, higher accuracy and 

efficient hardware usage are the main aim of the design. To achieve speed up, registers are 
placed near the calculation units. This can reduce the bottleneck of a single data bus from data 
unit (RAM Cache or Register) to the calculation unit. IEEE754 floating point data format was 
applied with the circuit. A 32-bit data width is chosen for the implementation. The precision may 
not be as good as a 64-bit width but it is better than 32-bit fixed point format. Genetic data 
registers, only 2-bit data, are designed to fit register allocation of the circuit. The operations of 
both G[i][j]×A[i][j][k] and G[i][j]×B[i][j][k] were changed from 32-bit floating point operands to 
32-bit floating point and 2-bit short operands. 

Table 2 The size of register allocation  
Genotypes There were I×M block of registers, each block takes two bits.  

Space complexity is I×M×2 bits 

Admix ratios There were I×K block of registers, each block takes 32 bits. 
Space complexity is I×K×32 bits 

Ancestral Allele 
frequencies 

There were M×K block of registers, each block takes 32 bits. 
Space complexity is M×K×32 bits 

Latent variables There were I×M×K blocks of register, each block takes 32 bits. 
Space complexity is I×M×K×32 bits 

The register for Column-wise architecture were adjusted to 32×M-bit wide register. 
There are I×K blocks of this register. The control unit has only the shift-left operation. These 
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latent variables are moved to the next 32-bit of the data and a 2-bit shift-left operation is for 
genotype data. 

3.4.2 Calculation Unit: Wrapping Circuit 
The calculation circuits are constructed from a basic sub-calculation block such as a 

floating point adder, a multiplier and a divider. Xilinx IP-cores provided the block of floating 
point operators used in this dissertation. This dissertation proposed a wrapping technique to 
envelop the floating operators of IP-cores for the proposed circuit. The wrapping technique is 
based on handshaking signal of Asynchronous data transfer. The operation time of each floating 
point operator is different. There was no register of the output signal to sustain the result. The 
original floating point timing diagram of Xilinx IP-cores is shown as Figure 19 -Figure 21.   

 
Figure 19 the timing diagram of floating point multiplier circuit 

 

 
Figure 20 the timing diagram of floating point adder circuit 
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Figure 21 the timing diagram of floating point divider circuit 

The timing results were obtained from the post Place&Route simulation of ISim[48]. The 
post Place&Route simulation is a simulation that is closed to real gate implementation in the 
FPGA device. The timing profiles of every device were put into the circuit in the placement step. 
The routing profiles of every wiring were assigned to the pins between the devices in routing 
step. Figure 19 - Figure 21 show the timing diagram of the original floating point operators of 
2.5×5.25, 2.5+5.25 and 2.5/5.25 respectively. The timing result did not show the signal to 
enable the calculation blocks. The chip-enable (ce) is set to “1” and clear (sclr) is set to “0”. All 
of the results of the operations are valid only on the “1” of “rdy” signal. The operators will be 
enabled on the rising edge of new-data (nd) signal. Time of data serving is a major problem. For 
example, in Figure 8, the add block is waiting for the result of the multiply block while another 
side of incoming data was served. There are several solutions. The first solution is to build a 
state machine to control the timing of all calculation circuits. The second solution is applying a 
circuit handshaking for acknowledge and response between a communication of the blocks 
called wrapping block.  

The state machine was applied to this dissertation first. It is easier to design and control. 
The work load of calculation circuit was transferred to control circuit. There were a lot of control 
signals through every of calculation blocks. Handshaking signals were used. The control block 
only monitors the signals from the last direction of each calculation circuit. The wrapping blocks 
as shown in Figure 22 compose of “AND” gate D-Flip-Flop (DFF) and the original calculation 
blocks. The AND gate was used to enable the calculation. It is the same as operation of the nd 
signal. The original calculation block was active when both of the input data had been served 
and the nd signal was raised. The AND gate was used to determine the status of each port of 
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the input data as shown in the Table 3. Figure 23 shows the connection of validA and validB 
signal to the nd signals of the calculation block. 

 
Figure 22 The original circuit and wrapping circuit of a floating point adder. 

 
Figure 23 The input part of the wrapping block 

Table 3 Control signal to enable the wrapping circuit. 
validA ValidB Start Calculation 
0 0 No 
0 1 No 
1 0 No 
1 1 Yes 

DFF were used to sustain the value of the result and rdy signals and waiting for a 
response from the target of calculation block. The target of the calculation responses to the rdy 
signal of the previous calculation block with the calFinish signal. The calFinish signal was used 
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to release the calculation block to accept the new input data. The calFinish signal was designed 
for local calculation blocks. It is not the same as the state machine controller that every signal 
have to be connected to the control block. The connection signals are status signals to 
acknowledge the actions. Figure 24 shows the myRdy signal connected to validB and the result 
of the Adder block was fed to the port B of the next Adder block. The calFinish signal will be 
raised from the next calculation after complete calculation of updateQ. 

 
Figure 24 A part of calculation in updataQ circuit. 

The calFinish signal was used to reset the value of DFF holding as shown in Figure 25.  

 
Figure 25  The wrapping circuit of adder that composes of AND gate and DFF 

Figure 25 shows the connection of DFF and the output of Adder. The result of Adder will 
be latched into DFF on the next positive edge of myRdy signal that came from the DFF block. 
The DFF for myRdy signal was always connected to “1”. It is waiting for any raising edge of rdy 
signal of the original adder block to hold the status of complete calculation and latch a new 
data. Figure 26 shows the timing of the wrapped adder block. The circuit takes around 521ns 
and waits for the response of calFinish signal as shown in Figure 27. 
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Figure 26 Timing diagram of the wrapped adder block before the calFinish signal  

 
Figure 27 Timing diagram of the wrapped adder block 

The timing diagram as shown in Figure 26 demonstrates that the result has not been 
used in the next calculation block. The resultAdd will not be changed when the block receives 
the calFinish signal as shown in Figure 27.  

3.4.3 Control Unit 
The circuit was designed to control the flow of data of the calculation of EM. The control 

circuit uses 32-bit rotate right register units for latent variables and 2-bit rotate right registers for 
genotype. OddEven is a 1-bit register. It controls the selection circuit of updateAB or updatePQ. 
The value of register is increasing after the end columns of data were operated. The first round 
OddEvent is “0” to enable the calculation of updatePQ circuit for Maximization step. The second 
round OddEvent is “1” to enable the calculation of updateAB circuit for Expectation step. There 
were three output control signals, start column, next column and last column. The start column 
signal was fed to clear the register value of updatePQ circuit. The updatePQ circuit is a 
cumulative sum from the first column through the last column of each individual admixture 
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calculation. It also performs a cumulative conditional sum of first row of latent variables through 
the last individual latent variable. The result is the ancestral allele frequency. This signal has not 
been connected to the updateAB circuit because there is no cumulative operation of the 
method. The control circuit is waiting for the myRdy signal of the last updateP circuit before 
feeding the next data. The second signal is nextCol. This signal generates a pulse to start the 
operation of updatePQ and updateAB circuit. The signal was directly connected to the input of 
validA and validB of every calculation blocks to prepare the first level calculation. This signal 
generates a pulse at the finishing of each column calculation for feeding the next data. The last 
signal is endCol. This signal was designed for the calculation of individual admixture. The signal 
enables the operation of the divider to divide the cumulative sum by 2M. The control diagram 
was shown in Figure 28.  

 
Figure 28 The control logic in an iteration of EM. 

3.4.4 The sub-calculation unit of updatePQ 
The sub-calculation unit of updatePQ is shown in Figure 29. The circuit was created by 

the connection of calculation block in Maximization step. The circuit of updateP and updateQ 
were grouped to operate together in each step of calculation. The circuit composes of 2K 
Multiplier blocks and 2K+K of Adder blocks and 32-bit K blocks of registers. There were vertical 
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and horizontal operation directions. The vertical direction calculates the ancestral allele 
frequency and the horizontal operation performs admix-ratio calculation. The circuit was created 
from floating point operator blocks and registers. The register was used as temporary variables 
for the cumulative sum in the horizontal operation. It is called PrevQ. This registers are reset on 
every startCol signal from the control Unit. The circuit was enabled by the pulse of nextCol 
signal. The vertical outputs compose of ancestral allele frequency and rdy signal. The rdy signal 
will be a status of the circuit and was connected to the control unit to acknowledge the circuit 
operation. This signal was connected to the single pulser circuit called calFinish signal as 
shown in Figure 25. 

 
Figure 29 The connection of sub-unit calculation for each cell in updatePQ circuit 

 
The calFinish signal resets the value of every register in updatePQ circuit to prepare 

them for next data operation. The temporary register was used in systolic architecture while the 
full circuit has no registers. The column-wise architecture has been applied after the sub-
calculation units of updatePQ circuits. The number of sub-calculation units is the number of 
Individual, I as shown in Figure 16. 
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Figure 30 The connection of calFinish within the calculation block 

3.4.5 The sub-calculation unit of updateAB 
The circuit updates the latent variable in every locus of the individual. The input of 

calculation is the previous individual admixture and the ancestral allele frequency as Eq 11 and 
Eq 12. The updated latent variables are the outputs. The nextCol signals from the control unit 
are input control signal to start the calculation of each locus of an individual. The calFinish 
signal was also applied to the circuit from the control unit. Finally, myRdy signal is the output to 
the control unit. This signal was also used to acknowledge the status of the calculation circuit. 
The circuit connection is the same as in Figure 18.  

3.4.6 Byte-Float Multiplication block (Mul012) 
The operation of float-byte was used in the circuit of updateP as the Eq 9. The circuit 

was designed for multiply the floating point of latent variables by only two bit of genotype data. 
The value is either 0, 1 or 2. The Mul012 circuit reduces the size of all hardware and time of 
operation. The operation separates the IEEE754 floating point 32-bit format of latent variables 
into three parts as Figure 7. The sign part is the same for all operations. The part of mantissa is 
0 if genotype is 0. The part of exponent will be increased if the genotype is 2, the same is true 
when the genotype is 1 and 0 for genotype 0. The interface of the Mul012 block is the same as 
the others operators.  



CHAPTER4 
 

SUMMARIZATION AND FUTURE WORKS 

 

4.1 Dissertation Summarization 
Recently in the research literature most of floating point operations has been transferred 

from software calculation into hardware calculation to gain more speed. This dissertation 
proposed to generate the resizable hardware circuit, aimed for gain up the calculation 
performance via FPGA. One of the advantages of FPGA is the fully parallel processing unit, 
especially floating calculation. The performance of the calculation can be increased in two 
directions. The first one from the direct use of FPGA floating-point operators. The second one is 
the use of the fully parallel architecture that each computing unit can be independently 
operated. The design of floating point and byte operation can reduce both operation time and 
hardware resource usage.  

 

4.2 Design Summarization of Hardware Utilization 
The implementation and synthesis tool in this dissertation is ISE Project Navigators 

version 13.4. ISim is a simulation tool in this dissertation. ISim[48] is integrated with ISE design 
suite. The Xilinx libraries as IP-cores were built-in. The simulation provides four different levels of 
timing precision. The first level is “Behavioral” simulation. This level, the simulator only parses 
the source code and directly generates the timing from the source code. Simulation at this level 
is fast. Source Code understanding is also a goal of this simulation level. The second level is 
“Post-Translate”. This level of simulation was used to verify the functionality of the source code 
after it is translated into the hardware. The hardware profile of the translation of Verilog/VHDL 
code to logic gate such as Verilog code “case” command may be translated to Mux circuit 
according to the technology of each device. The available devices are Spartan, Vertex5, 
Vertex6, Vertex7 etc. The next level is “Post-Map”. This level gains more precision of the 
hardware profile by adding the timing delay of each hardware profile from the previous level. 
The last level is the level of “Post-Place” or “Post-Place & Route”. In this level of simulation, 
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every profile, timing delay profile of each hardware devices and placement profiles of the wires 
from the hardware connections as net-list profile, are included for the simulation result. This level 
of the simulation is much closer to the timing of circuit simulation. The results from different 
series of technologies cause the different of net-list profiles and hardware timing delay profiles 
such as; the net-list profile of Vertex-7 series was fast because the 3D routing technology.  

The simulation starts from testing every sub-calculation block such as floating point 
adder, multiplier, divider and byte float multiplier. The simulator randomly generates the 
numbers in IEEE-754 floating point format and feeds them into the circuits to verify the result of 
each operation. The next summary is a hardware resource usage of each calculation block. This 
summary was generated for two hardware series, Spartan and Vertex, to illustrate the trend of 
hardware usage. The original operators and the wrapped operators were compared. Table 4 -
Table 6 show the hardware resource usage for the Spartan3 xc3s400, which has 8064 logic 
cells. Table 7 - shows the hardware resource usage for the Virtex6 xc6vlx75t, it has 74496 logic 
cells. The Table 7 - Table 9 shows only some part of the synthesized result because there are 
many different resources between the series of Xilinx chip. 

 
 

Table 4 The hardware resource usage of floating point adder for Spartan-3 
Adder Utilization Summary 

(Spartan3) Wrapped Original 

Logic Utilization Used Available Utilization Used Available Utilization 

Number of Slice Flip Flops 582 7,168 8% 581 7,168 8% 

Number of 4 input LUTs 590 7,168 8% 589 7,168 8% 

Number of occupied Slices 460 3,584 12% 470 3,584 13% 

    Number of Slices containing only 
related logic 460 460 100% 470 470 100% 

    Number of Slices containing 
unrelated logic 0 460 0% 0 470 0% 

Total Number of 4 input LUTs 594 7,168 8% 593 7,168 8% 

    Number used as logic 545     544     

    Number used as a route-thru 4     4     

    Number used as Shift registers 45     45     

Number of bonded IOBs 101 173 58% 99 173 57% 

    IOB Flip Flops 32           

Number of BUFGMUXs 2 8 25% 1 8 12% 

Average Fanout of Non-Clock Nets 2.38     2.39     

Maximum Frequency:  206.303MHz  206.303MHz 
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Table 5 The hardware resource usage of floating point multiplier for Spartan-3 
Multiplier Utilization Summary (Spartan3) Wrapped Original 

Logic Utilization Used Available Utilization Used Available Utilization 

Number of Slice Flip Flops 690 7,168 9% 696 7,168 9% 

Number of 4 input LUTs 608 7,168 8% 627 7,168 8% 

Number of occupied Slices 410 3,584 11% 436 3,584 12% 

    Number of Slices containing only related logic 410 410 100% 436 436 100% 

    Number of Slices containing unrelated logic 0 410 0% 0 436 0% 

Total Number of 4 input LUTs 643 7,168 8% 662 7,168 9% 

    Number used as logic 565     584     

    Number used as a route-thru 35     35     

    Number used as Shift registers 43     43     

Number of bonded IOBs 101 173 58% 101 173 58% 

    IOB Flip Flops 32           

Number of BUFGMUXs 2 8 25% 1 8 12% 

Average Fanout of Non-Clock Nets 2.51     3.22     

Maximum Frequency: 165.358MHz 165.358MHz 

 
Table 6 The hardware resource usage of floating point divider for Spartan-3 

Divider Utilization Summary (Spartan3) Wrapped Original 

Logic Utilization Used Available Utilization Used Available Utilization 

Number of Slice Flip Flops 1,350 7,168 18% 1,349 7,168 18% 

Number of 4 input LUTs 812 7,168 11% 811 7,168 11% 

Number of occupied Slices 859 3,584 23% 868 3,584 24% 

    Number of Slices containing only related logic 859 859 100% 868 868 100% 

    Number of Slices containing unrelated logic 0 859 0% 0 868 0% 

Total Number of 4 input LUTs 814 7,168 11% 813 7,168 11% 

    Number used as logic 751     750     

    Number used as a route-thru 2     2     

    Number used as Shift registers 61     61     

Number of bonded IOBs 102 173 58% 100 173 57% 

    IOB Flip Flops 32           

Number of BUFGMUXs 2 8 25% 1 8 12% 

Average Fanout of Non-Clock Nets 1.82     1.82     

Maximum Frequency: 180.183MHz 180.183MHz 

 
Table 7 The hardware resource usage of floating point adder for Virtex-6 

Adder Utilization Summary Original Wrapped 

Logic Utilization Used Available Utilization Used Available Utilization 

Number of Slice Registers 591 93120 0% 592 93120 0% 

Number of Slice LUTs 592 46560 1% 593 46560 1% 

Number of fully used LUT-FF pairs 374 809 46% 374 811 46% 

Number of bonded IOBs 99 240 41% 101 240 42% 

Number of BUFG/BUFGCTRLs 1 32 3% 2 32 6% 

Maximum Frequency  650.745MHz  650.745MHz 
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Table 8 The hardware resource usage of floating point multiplier for Virtex-6 
Multiplier Utilization Summary Original Wrapped 

Logic Utilization Used Available Utilization Used Available Utilization 

Number of Slice Registers 703 93120 0% 704 93120 0% 

Number of Slice LUTs 672 46560 1% 673 46560 1% 

Number of fully used LUT-FF pairs 565 810 69% 565 812 69% 

Number of bonded IOBs 101 240 42% 101 240 42% 

Number of BUFG/BUFGCTRLs 1 32 3% 2 32 6% 

Maximum Frequency 596.908MHz 596.908MHz 

 
Table 9 The hardware resource usage of floating point divider for Virtex-6 

Divider Utilization Summary Original Wrapped 

Logic Utilization Used Available Utilization Used Available Utilization 

Number of Slice Registers 1358 93120 1% 1359 93120 1% 

Number of Slice LUTs 832 46560 1% 833 46560 1% 

Number of fully used LUT-FF pairs 696 1494 46% 696 1496 46% 

Number of bonded IOBs 100 240 41% 102 240 42% 

Number of BUFG/BUFGCTRLs 1 32 3% 2 32 6% 

Maximum Frequency 625.900MHz 625.900MHz 

 
Table 4 - Table 9 shows the correlation of hardware resource usage from different 

technologies of Spartan-3 and Virtex-6. The usage also correlates with the original floating point 
operators and the wrapped operators. This result can be used to predict the hardware resource 
usage of each FPGA board. It indicates how many calculation blocks can be placed in the 
FPGA board. The operation speed of different technologies are also a concern. The routing of 
Virtex-6 has a special technique called “Number-used-exclusively-as-route-thrus”. It produces a 
shorter routing path than the Spartan. The number of Slice-Register of Virtex-6 and the number 
of Slice-Flip-Flop were used to represent the overall hardware resource usage. There are some 
relationship of Slice and LUT dependent on the hardware technology. There were 32-bit 
between the original floating point operator block and output as shown in Table 4 - Table 6 but it 
does not show Virtex-6 table as index of “IOB Flip Flops”. This number was used to represent 
the circuit that has output registers. The last calculation block is byte-float operator as block of 
Mul012 the synthesized result for Virtex-6 show as Table 10. 
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Table 10 The hardware utilization of a block of Mul012 operator for Virtex-6 
Mul012 Utilization Summary 

Logic Utilization Used Available Utilization 

Number of Slice Registers 34 93120 0% 

Number of Slice LUTs 52 46560 0% 

Number of fully used LUT-FF pairs 34 52 65% 

Number of bonded IOBs 72 360 20% 

Number of BUFG/BUFGCTRLs 1 32 3% 

Maximum Frequency  778.028MHz 

 
The sub-calculation circuit such as updataP updateQ and updateAB composed of the 

calculation block from Table 1. The circuit for updateQ was composed from K blocks of Adder 
and Divider, K blocks of temporary registers and K blocks of Single Pulsers. From the 
synthesized result, the Adder block uses 590 slices of FPGA register and the Divider block uses 
1360 slices of FPGA register. Therefore the circuit of updateQ approximately uses 
2K×(590)+K×(1360) and K×32 of I/O Flip-Flops as a temporary registers and K blocks of Single 
Pulser. This is very small amount of FPGA resource. Assuming K = 3 so the hardware resource 
is 7620 +xx slice registers (from 3×2×590 + 33×1360+xx). xx is from 3 blocks of Single Pulser 
and I/O Flip-Flops. The synthesized result was shown in Table 11 that is corresponded with the 
relationship of Table 1.  

Table 11 The resource utilization of updateQ circuit for Virtex-6 
UpdateQ Utilization Summary 

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 7,926 93,120 8% 

    Number used as Flip Flops 7,926     

    Number used as Latches 0     

    Number used as Latch-thrus 0     

    Number used as AND/OR logics 0     

Number of bonded IOBs 330 360 91% 

Maximum Frequency 625.900MHz 

 
There were three types of updateP. The aim of different type was for resource saving. 

The first type was designed for the first individual. The operation of this type is to multiply the 
value of latent variables by value of genetic of each ancestry groups and transmits the result to 
updateP. This circuit was called “headUpdateP”. This circuit composed of 2K blocks of mul012. 
The resource usage of this circuit is 2K×(35) slice registers. The K value was set to 3, as above, 
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so the resource usage was 210 slices registers. The second type of updateP was called 
“bodyUpdateP”. This circuit was designed to sum the result of its own genetic value and latent 
variables with the result from headUpdateQ. The circuit uses 2K blocks of Mul012, for 
multiplying of genetic value and the value of latent variables, and 2K blocks of adder, to add the 
mul012 result with the above calculation circuit. The resource consumption is 2K×(590 + 35) 
slices registers. The setting was K = 3 so the resource usage was 800 slices registers. The final 
circuit of updateP is circuit “tailUpdateP”. The operation of this circuit is the same as the 
bodyUpdateP circuit but this circuit divides the result of Gim×Aimk by (Gim×Aimk+ Gim×Bimk). K 
blocks of adder and divider were added to the circuit. The circuit uses 3930 slices registers, 
from 800+3 × (590+1360). The third circuit of updateP (buttUpdateP) was placed in the end of 
the calculation circuit. The adder block and divider block were added into the circuit to 
normalize the cumulative sum. The K blocks of adder and divider were used. The hardware 
resource was obtained from the circuit of bodyUpdateP + K(Adder+Divider). The hardware 
resource usage of three ancestral population was 9780, 3930 + 3(590+1360) of slices registers. 
The synthesized result of hardware utilization was shown in Table 12 

The last circuit is updateAB. Every calculation units can directly access to the register 
unit of admixture ratio and the ancestral allele frequency. The circuit uses 2K blocks of multiplier 
to multiply the individual admix ratio by the ancestry allele frequency and 2(K-1) blocks of serial 
adder for the denominator of the divider block and the added result of Qik×Pkm be a numerator of 
the upper latent variables and the added result of Q ik×(1-Pkm) is a numerator of the lower latent 
variables as Eq 11 and Eq 12. The hardware resource usage of the circuit is 2K×(700+1360) + 
2(K-1)×(590). The number of ancestral groups was set to 3, so the resource utilization is 14720 
slices of registers. The synthesized result for circuit of updateAB was shown in Table 13. 
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Table 12 The hardware resource utilization for each type of updateP circuit for 
Virtex-6 

headerUpdateP Utilization Summary 

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 204 93120 0% 

Number of Slice LUTs 126 46560 0% 

Number of fully used LUT-FF pairs 60 270 22% 

Number of bonded IOBs 396 360 110% 

Number of BUFG/BUFGCTRLs 1 32 3% 

Maximum Frequency 625.900MHz 

bodyUpdateP Utilization Summary 

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 3948 93120 4% 

Number of Slice LUTs 3654 46560 7% 

Number of fully used LUT-FF pairs 2358 5244 44% 

Number of bonded IOBs 594 360 165% 

Number of BUFG/BUFGCTRLs 7 32 21% 

Maximum Frequency 415.870MHz 

buttUpdateP Utilization Summary 

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 9993 93120 10% 

Number of Slice LUTs 7932 46560 17% 

Number of fully used LUT-FF pairs 5568 12357 45% 

Number of bonded IOBs 495 360 137% 

Number of BUFG/BUFGCTRLs 13 32 40% 

Maximum Frequency 415.870MHz 

 
Table 13 The hardware resource utilization of updateAB circuit for Virtex-6 

updateAB Utilization Summary 

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 15258 93120 16% 

Number of Slice LUTs 11408 46560 24% 

Number of fully used LUT-FF pairs 9062 17604 51% 

Number of bonded IOBs 489 360 135% 

Number of BUFG/BUFGCTRLs 16 32 50% 

Maximum Frequency 650.745MHz 

 
The synthesized results of Table 11 - Table 13 are correlated with the calculation blocks 

usage of Table 1 for the number of calculation unit and Table 4 - Table 6 for hardware resource 
usage. The size of hardware circuit can be calculated to determine the sufficient size of FPGA. 
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The experimental result is the synthesized circuit of 5 individual, 10 markers, and 3 
ancestral groups. The circuit consists of 1 circuit of updatePQ header, 2 circuits of updatePQ 
body, 1 circuit of CalPQ last, 5 circuits of updateAB and controlAll circuit. The first 5 circuits are 
composed of rotate-right registers for latent variables for 10 markers and 3 ancestral groups. 
The second part is 5 circuits for genotype rotate-right registers. The third part is 5 circuits of 3 
groups admixture units. The last part is 1 circuit of 10 markers and 3 groups of ancestral allele 
frequencies. There are also miscellaneous components such as several blocks of single pluser 
and AND gates. The synthesized result can be calculated by sum up the hardware utilization 
result of Table 4 - Table 13.  

Table 14 The hardware resource utilization of Frappe calculation circuit 
Frappe I5M10K3 Utilization Summary 

Slice Logic Utilization Used Available Utilization 

Number of Slice Registers 143031 - - 

Number of Slice LUTs 110927 - - 

Number of fully used LUT-FF 
pairs 84279 - - 

Number of bonded IOBs - - - 

Number of BUFG/BUFGCTRLs 16 - - 

 
The hardware utilization resource can be calculated by directly add up the number of 

each usage as Table 15 and Table 16 
Table 15 The hardware usage for the calculation circuit that composes of 5 

individuals 10 markers and 3 ancestral groups 
  updatePL updatePB updatePH updateQ updateAB Total 

#slices 9993 3948 204 7,926 15258   

#block 1 2 1 5 5   

  9993 7896 204 39630 76290 124020 

Table 16 The hardware usages for the register circuit that composes of 5 
individuals 10 markers and 3 ancestral groups 

  AB G P Q total  

#bit 32 2 32 32   

Marker 10 10 10 1   

individual 10 5 2 5   

ancestral 3 3 3 3   

  9600 300 1920 480 12300 
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4.3 Calculation result 

The calculation result of the circuit depends on the executed environment. The software 
version was re-implemented from the original FRAPPE’s application. The floating point single 
precision and floating point double precision were re-implemented and compared to the original 
version. Please note that the original version implements the floating point single precision 
format. The results show the slightly different accuracy of single precision and double precision. 
The result is compared with to the re-implemented software version. Figure 31-Figure 33 show 
the collocation of single precision result and the result from original version. The results were 
plotted in the 100% stack to represent the composite of each ancestry group in an individual. 
The Y-axis denotes an individual. The X-axis denotes the mixing ratio. The results were 

compared by root mean squared error (rmse) as    

 
          

 
   

  .      means the admix 

ratio of the original application of the ith individual.     means the admix ratio of the re-
implemented application of the ith individual. The rmse is small around .05 compared to floating 
point single precision between the original FRAPPE application and re-implemented application.  

 

 
Figure 31 The result of admix ratio from the simulation data with original FRAPPE 

application 
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Figure 32 The result of admix ration from the simulation data with double precision 

re-implemented application 

 
Figure 33 The result of admix ration from the simulation data with single precision 

re-implemented application 
The large size of dataset cannot be implemented in the real circuit using Spartan3 

xcs4000. The size of data set was reduced into 5 individuals, 10 markers and 3 ancestral 
groups.  

4.4 Results 
The synthesis result was obtained from Xilinx Design Suite [46] and the calculation result 

was obtained from ISim[48]. There were many levels of simulation, Behavioral, Post-Translate, 
Post-Map and Post-Route. The Post-Route simulation was selected with this dissertation 
because the gate delay profile with routing profile were included in the simulation result that 
makes the timing result reliable. And the table and graph above denote that the hardware circuit 
can gain more efficient way to apply to this problem especially for Multiple Instructions Multiple 
Data (MIMD) platform. Figure 32 shows the result precision from the hardware calculation has 
no significantly difference from the software version. The result of the calculation speed up was 
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4.5 times for spartan3 architecture compare to single core processing unit and 2.2 times for 
spartan3 compare to multi-cores processor. The detail of speed up for overall circuit calculation 
can be described as 4.5   

 

4.5 Hardware and Software performance 
The performance comparisons were compared between FPGA VS single core processor 

FPGA vs multi-core processor, GPU was also included to multi-core processor. 

4.5.1 Single Core 
 The proposed method of calculation was implemented via single core using one thread 

of calculation. There were three loops of calculation, the first loop performs the calculation of the 
admix ratio from each the first row through the last row as Figure 34 

 
Figure 34 the calculation of updateQ for single core processor. 

 
The second loop performs the calculation of the ancestral allele frequency as Figure 35. 

The loop starts from the first column through the last column. The last loop updates the latent 
variables. The loop can be calculated either by row-wise or column- wise, because there are no 
dependency from the calculation the processing unit reads values from the specified group of 
admix ratio and ancestry allele frequency to update the specified latent variables as Figure 36. 
The row-wise or column-wise are used to specify the direction of calculation. The single core 
implementation takes I*M*K memory accesses for every step. 
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Figure 35 the column-wise architecture, the calculation loop of updateP for a single 

core processor 
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Figure 36 the calculation of updateAB for a single cores processor 

4.5.2 Multi-Core 
The next implementation was transferred from single thread to be multiple threads 

(number of threads denoted as T ). To calculate the admix ratio can simultaneous calculates T 
different rows at the same time as The speed up gains from loop unrolling technique. 
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Figure 37 the operation of updateQ for multi-processing unit. 

 
In Figure 37, the big circle denotes the operating threads and the small circle denotes 

the waiting job in the queue. The method was the same as multi-processing on the single core. 
The processing time of each thread takes M steps of calculation, there are I*K works to be done 
and T calculation units. The work for calculation of admix ratio is I*K/T. The overall time is 
I*M*K/T. Figure1115 represents the method of the ancestral allele frequency calculation. Row-
wise was applied with the ancestry allele frequency calculation. The calculation time of each 
thread is I*K, there are M/T works in a waiting queue. The overall of calculation times is I*M*K/T 
same as updateQ. Finally the Expectation calculation to update the latent variable is updateAB. 
Each latent variable was calculated by directly access from P and Q at the specified k as 
Figure1116. Each unit of calculation takes K steps of calculation, there are I*M/T blocks of 
calculation. The overall of calculation time of updateAB is I*M*K/T, same as the two methods 
above. The major obstruction of speed up is not as I*M*K/T.  There are /three major causes. The 
first is memory overhead. The second cause is insufficient floating point operation unit. Memory 
overhead came from accessing to memory unit especially the array data-type. In the data unit 
(Figure in Chapter 2) memory unit was declared as array. The loop of individual admixture can 
be implemented with no temporary register in the cumulative summation of AiK+Bik. The result 
is written to array Qik M times that can slow down the index calculation of array. The loop 
unrolling method assigns each row of data to each thread of calculation as Figure 37. The 
method can reduce the number of memory accessing of Qik from M times to only one. The task 
of updateP is very similar to the updateQ but the access is row-wise. The updateAB calculation 
assigned each thread of calculation to each cell as Figure 36. The calculation causes large 
amount of memory accessing both Qik and Pkm, M times of memory Qik accessing per a row 
and I*K times of array accessing of Pkm. Column-wise access was applied to updateAB 

Eimak Qik

I:1
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calculation. It takes time of calculation to I*M*K/T but the number of memory of Qik access can 
be reduced from M to be 1 while Pmk remained the same. Row-wise access can be applied for 
the calculation. This method also takes time of calculation to I*M*K/T. It reduces the memory 
accessing of Pmk from I to be 1 but the number of acces of Qik is M. Most of SNPs data has 
more number of markers than the number of individual, so column-wise access was applied for 
the calculation of updateAB. The floating point units of multi-cores processors are special 
processing units for general processors. It requires special data format. The special hardware is 
not scalable by the number of thread in a CPU. Finally the last task has different data type of the 
calculation of update, Gim*Pmk. Gim can either be 0, 1 or 2 bytes data. It was implemented for 
genotype data to save resource. The calculation of Pmk is a single precision floating point data. 
It has more precision than fixed point data format. The operator of Gim*Pkm was slowed down 
by data casting from byte into float. 

The proposed technique above were implemented to compare the speed of GPU, 
single-core CPU and multi-core CPU and GPU, three versions of the calculation were 
implemented. The implementation of multi-core version gained highest performance on quad 
core when compared to the implementation of GPU (Nvidia 8600GT. The major barrier of GPU 
may come from memory synchronization between CPU memory and GPU memory. The thread 
of calculation of GPU is not directly uncontrollable by the programmer. 

4.5.3 FPGA 
Using FPGA can overcome these limitations. The proposed circuit was motivated from 

software implementation. The limitation of number threads can be avoid using the systolic 
architecture because of the systolic architecture can be scalable using FPGA. The calculation 
was designed for scalability by using sub-common blocks of calculation to simultaneously 
compute each row of each calculation unit together or each column of each unit or each cell of 
each unit. The calculation unit can be placed in several ways such as: row-wise, column-wise or 
strip-wise and bundle-wise. The calculation of updateP and updateQ cause a problem of ripple 
carry of floating point data format. The ripple carry in the cumulative summation came from the 
first individual through the last individual, for updateP calculation, and in the cumulative 
summary from the first marker through the last marker for calculation of updateQ. The bundle-
wise access cannot gain much speed up. The calculation of updateAB can gain speed up from 
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I×M×K to K for the bundle-wise access. The calculation of updateAB has no dependency 
between units of calculation; every unit of calculation can directly read from memory unit of P 
and memory unit of Q as Figure 36. Therefore, the calculation of expectation reduced the time 
from I×M×K to K for bundle-wise, but the hardware becomes too large. The row-wise and 
column-wise accesses are preferred choice. The ripple carry in each column was obtained from 
a cumulative sum of Eq 9. The ripple carry from each row was also obtained from Eq 10. Row-
wise architecture for calculation updateP was shown in Figure 38.  

 

 
Figure 38 the placed calculation circuits and register units of row-wise access 

Figure 38 shows the direction of calculation. The architecture reduces the time of 
calculation from I×K to I×K/2 for one marker. The data were fed into the calculation unit M times. 
The total time of calculation is M×I×K/2. Figure 39 shows the column-wise access. The 
architecture takes time of calculation M/2 for a row. There are I*K rows of data. Total time of 
calculation for column-wise access is the same as row-wise. Data type casting also causes a 
slow down. The updateP has I*M*K times of byte-float multiplier, to multiply Gim with the latent 
variables. The byte operand will automatically be casted to float before multiply. The operator of 
float-float multiplication   is too slow. This dissertation proposed a byte-float multiplier circuit that 
takes only 3 clocks.  
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Figure 39 the calculation block connection for column-wise access 

 
In theory, the calculation takes the same time for both row-wise and column-wise 

access. The dependencies of the calculation are different for row-wise and column-wise from 
the direction of each calculation, but the overall calculation time is the same. The major 
difference is the number of sub-calculation in the circuit. Most of genomic data has a lot more 
marker than the number of individual. The row-wise access results in smaller circuits. The 
calculation of updateAB for bundle-wise or full placement takes just K times of calculation. The 
time complexity is the same for software calculation. The main benefit of hardware calculation 
circuit is that every calculation unit can access directly to the memory unit for reading a data 
while the software can not read a common memory at the same time. The index calculation was 
also eliminated because the placement of register unit and calculation unit as Figure 15. Every 
calculation unit can access to their connected memory unit. 

The circuit has no memory overhead, it can simultaneously start the process of 
calculation that every calculation threads is controllable. There were some specialist said that 
“For CUDA, you have to twist and turn your algorithm in very specific ways to enjoy the speed 
up. With FPGA you can do whatever you want i.e. implement specialize computation routines 
tailored just for your algorithm. CUDA -> SIMD, memory coalesced. Reducing a communication 
of main memory and devices memory is the main paradigm of the speed up.”[50]. The sentence 
is true for multi-cores memory system.  Tuning up the speed of calculation in multi-cores is very 
difficult because assignment of multithreads to the cores are not directly controllable by 
programmers. 
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4.6 Future works 

The admixture calculation was developed in several ways. The model of calculation has 
been developed for a long time from 1991. The calculation technique was proposed. The 
calculation based on iteration methods required large memory and long calculation time. There 
are several approaches of Newton-Raphson method such as, Quasi-Newton-Rahpson, 
Jacobian free Newton-Method. The algorithms of Newton-Raphson methods guarantee the 
quadratic of convergence but the assumption was based on an appropriate starting point. The 
speed of convergence was very good. The approach of Newton-Raphson method cannot be 
applied directly to the admixture model because there are both equality and inequality 
constraints in the problem. The newton’s method has a good rate of convergence but there are 
no known solution for global maximum of the admixture calculation. The evolutionary computing 
may be a choice to solve the global maximum but the cost of fitness evaluation is high.  

For the point of view of circuit design, the proposed circuit can speed up the calculation 
by streaming the input to sub-unit (systolic architecture) but the new buffer is needed for a 
queue in the wrapping circuit. The sub-unit was designed for scalability. The system can 
contain more than one FPGA board and used handshaking signals to communicate. The current 
design allocates data in the registers. Using an external memory to hold variable size of data is 
also possible. The design is flexible because it is independent of the data format. The floating 
point data format can be change from 32-bit to another format (but 32-bit). For higher precision 
the size of mantissa can be increased and the size of exponent part reduced. FPGA is 
applicable to speed up floating point calculation in several ways. There are several dissertations 
that used FPGA for CPU co-processing which gain speed up from this approach. 

There are numerous options in the configuration of ISE design suite to optimize a 
synthesized circuit to suite different user requirements such as, optimize for area or optimize for 
speed. The different options may result in different types of circuit.   
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