

การแก้ปัญหาการจดัตารางการผลิตในระบบไหลเล่ือนโดยใช้เวลาในการด าเนินงานน้อยท่ีสดุด้วย
อลักอริทมึการบรรจวบ

นางสาวอรรัมภา ศรีมงคลกลุ

วิทยานิพนธ์นีเ้ป็นสว่นหนึง่ของการศกึษาตามหลกัสตูรปริญญาวิศวกรรมศาสตรมหาบณัฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ จฬุาลงกรณ์มหาวิทยาลยั
ปีการศกึษา 2557

ลิขสิทธ์ิของจฬุาลงกรณ์มหาวิทยาลยั

MINIMIZING MAKESPAN USING NODE-BASED COINCIDENCE
ALGORITHM IN THE PERMUTATION FLOWSHOP SCHEDULING PROBLEM

Miss Ornrumpha Srimongkolkul

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering Program in Computer Engineering

Department of Computer Engineering
Faculty of Engineering

Chulalongkorn University
Academic Year 2014

Copyright of Chulalongkorn University

Thesis Title MINIMIZING MAKESPAN USING NODE-BASED
COINCIDENCE ALGORITHM IN THE
PERMUTATION FLOWSHOP SCHEDULING
PROBLEM

By Miss Ornrumpha Srimongkolkul
Field of Study Computer Engineering
Thesis Advisor Professor Dr. Prabhas Chongstitvatana

 Accepted by the Faculty of Engineering, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master's Degree

 Dean of the Faculty of Engineering

(Professor Dr. Bundhit Eua-arporn)

THESIS COMMITTEE

 Chairman

(Assistant Professor Dr. Sukree Sinthupinyo)

 Thesis Advisor

(Professor Dr. Prabhas Chongstitvatana)

 External Examiner

(Dr. Chalermsub Sangkavichitr)

 iv

THAI ABSTRACT

อรรัมภา ศรีมงคลกลุ : การแก้ปัญหาการจดัตารางการผลิตในระบบไหลเล่ือน
โดยใช้เวลาในการด าเนินงานน้อยท่ีสุดด้วยอัลกอริทึมการบรรจวบ (MINIMIZING
MAKESPAN USING NODE-BASED COINCIDENCE ALGORITHM IN THE
PERMUTATION FLOWSHOP SCHEDULING PROBLEM) อ.ท่ีปรึกษาวิทยานิพนธ์
หลกั: ศ. ดร. ประภาส จงสถิตย์วฒันา, หน้า.

การจัดตารางการผลิตเป็นส่ืงท่ีส าคญัซึ่งส่งผลกระทบโดยตรงกับประสิทธิภาพในการ
ด าเนินงานโดยรวมของโรงงานอตุสาหกรรม การจดัตารางการผลิตท่ีมีประสิทธิภาพสามารถลด
เวลาในการผลิตซึ่งส่งผลให้โรงงานอุตสาหกรรมสามารถลดต้นทุนการผลิตและและจัดการ
ทรัพยากรได้ดียิ่งขึน้

ปัญหาการจัดตารางการผลิตในระบบไหลเล่ือนได้รับความสนใจจากภาคธุรกิจและ
อตุสาหกรรมมานานกว่าคร่ึงศตวรรษ นกัวิจยัได้ออกแบบอลักอรึทึมท่ีซบัซ้อนมากมายเพ่ือช่วย
แก้ปัญหาการจดัตารางการผลิตในระบบไหลเล่ือน และแสดงผลลพัธ์ท่ีมีประสิทธิภาพ อย่างไรก็
ตามการออกแบบอลักอรึทมึในงานวิจยัจ าเป็นต้องค านงึถึงความซบัซ้อนของอลักอรึทึมและเวลาท่ี
ใช้ในการค านวณเพ่ือให้สามารถน าไปใช้ได้จริงในโรงงานอตุสาหกรรม

วิทยานิพนธ์ฉบบันีน้ าเสนออลักอริทึมการบรรจวบเพ่ือใช้ในการแก้ปัญหาการจดัตาราง
การผลิตโดยมีวตัถปุระสงค์ในการใช้เวลาในการผลิตน้อยท่ีสดุ ผลจากการทดลองอลักอริทึมการ
บรรจวบได้รับการพิสูจน์ว่าเป็นอลักอริทึมท่ีมีประสิทธิภาพในการหาค าตอบท่ีดีโดยใช้ทรัพยากร
และระยะเวลาในการค านวณต ่า ในการแก้ไขปัญหาการจัดตารางการผลิตนี ้ อัลกอริทึมการ
บรรจวบได้เจอค าตอบท่ีดีท่ีสดุเป็นจ านวน 10%ของค าตอบทัง้หมด และคา่เฉล่ียของค าตอบห่าง
จากค่าท่ีดีท่ีสดุคิดเป็น 0.98% นอกเหนือจากนัน้ เวลาท่ีใช้ในการหาค าตอบของอลักอริทึมการ
บรรจวบยงัมีค่าน้อยกว่าเวลาท่ีใช้ในการหาค าตอบของอลักอริทึมอ่ืนๆท่ีน ามาใช้เปรียบเทียบใน
วิทยานิพนธ์

ภาควิชา วิศวกรรมคอมพิวเตอร์
สาขาวิชา วิศวกรรมคอมพิวเตอร์
ปีการศกึษา 2557

ลายมือช่ือนิสิต

ลายมือช่ือ อ.ท่ีปรึกษาหลกั

 v

ENGLISH ABSTRACT

5670462721 : MAJOR COMPUTER ENGINEERING
KEYWORDS: PERMUTATION FLOWSHOP / MAKESPAN / NODE-BASED COINCIDENCE
ALGORITHM / PRODUCTION SCHEDULING

ORNRUMPHA SRIMONGKOLKUL: MINIMIZING MAKESPAN USING NODE-
BASED COINCIDENCE ALGORITHM IN THE PERMUTATION FLOWSHOP
SCHEDULING PROBLEM. ADVISOR: PROF. DR. PRABHAS
CHONGSTITVATANA, pp.

Scheduling problem has always been an important problem in the industrial
sectors since it creates huge impact on the overall performance of the manufacturing.
Good scheduling can reduce overall production time which then leads to lower cost and
good resource management.

The permutation flowshop scheduling (PFSP) is the classic scheduling
problems that attracts both business and research area for almost half a century. On
research side, a variety of complex algorithms have been introduced to solve the
problems and provide high quality of solutions. Nevertheless, these algorithms will be
useless if they fail to implement in practice where computational time and complexity of
algorithm become an important issue of concern.

This research proposes a Node-Based Coincidence Algorithm (NB-COIN) for
the permutation flowshop scheduling problems (PFSP) aimed at Makespan minimization.
NB-COIN is proved to be an effective algorithm that can provide good quality solutions
using small amount of time and resources. The results generated by NB-COIN are also
better than other well-known algorithms in consideration. Based on the bench-mark data
sets of Taillard, 10% of the solutions provided by the presented algorithm are optimal
solutions. Moreover, the solutions found by NB-COIN are also achieve 0.96% gap from
upper bound in average. More importantly, those solutions are found within a
short time.

 Department: Computer Engineering
Field of Study: Computer Engineering
Academic Year: 2014

Student's Signature

Advisor's Signature

 vi

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

This research is one of the most challenging works I have ever
accomplished in my life. It would never have been completed successfully without all
supports, guidance, and kindness from the following people.

I would like to express my deepest gratitude to my supervisor, Professor Dr.
Prabhas Chongstitvatana for enlighten me to the research area, and get my research
start on the right direction from the beginning, provide me a valuable advice and
open to all of my questions until I successfully finish my research. I would not have
got through the difficult moment without his support.

I would like to give my sincere thanks to Dr. Warin Wattanapornprom for
providing guidance about Node-based Coincidence Algorithm which is used on this
research. I also thank him for motivating me to deliver this research and keep
pushing me to finish the paper.

I would like to thank all thesis committees for being available on my thesis
proposal date and thesis defending date at a short notice.

I would like to thanks all members of ISL (Intelligent System Laboratory) for
being energetic to give me suggestions and answers me a questions about the
research.

Finally, I would like to thank my family and friends for being supportive and
encouraging me in both good and bad time.

CONTENTS
 Page

THAI ABSTRACT .. iv

ENGLISH ABSTRACT .. v

ACKNOWLEDGEMENTS .. vi

CONTENTS ... vii

TABLE OF FIGURE .. x

TABLE OF TABLE ... xi

 Introduction .. 1 Chapter 1

1.1 Background .. 1

1.2 Research Purpose and Objectives .. 2

1.3 Research Scope ... 2

1.4 Research Limitation .. 3

1.5 Contribution .. 3

1.6 Research Structure ... 4

 The Permutation Flowshop Scheduling Problem ... 5 Chapter 2

2.1 Flow shop .. 5

2.1.1 Flow shop with zero buffer or blocking flow shop .. 6

2.1.2 No Wait flow shop (NWFSP) .. 6

2.1.3 Hybrid flow shop ... 7

2.2 The permutation Flowshop Scheduling Problem ... 7

2.2.1 Model Formulation... 8

2.2.2 Well-known objectives for the permutation flowshop scheduling problem.... 8

Makespan minimization .. 9

 viii

 Page

Total Flowtime minimization .. 9

2.2.3 An Example of the permutation flowshop Scheduling Problem 10

2.2.4 Complexity of Flowshop Scheduling Problem .. 10

2.3 Conclusion .. 11

 Solution Approaches for the Permutation Flowshop Scheduling Problem 12 Chapter 3

3.1 Heuristics .. 12

3.1.1 The NEH Heuristic ... 12

3.1.2 Greedy Heuristic ... 14

Constructive Greedy Heuristic (CG) ... 14

Stochastic greedy heuristic (SG) .. 14

3.2 Metaheuristics... 15

3.2.1 Ant Colony System .. 15

3.2.2 Coincidence Algorithm .. 17

3.3 Hybrid Metahuristics Algorithm .. 19

3.4 Conclusion .. 20

 Node-Based Coincidence Algorithm ... 22 Chapter 4

4.1 Characteristic of Node-based Coincidence Algorithm .. 22

4.2 General Procedure of NB-COIN for the PFSP .. 23

4.2.1 Initialization .. 23

4.2.2 Population Sampling ... 24

4.2.3 Population Evaluation .. 25

4.2.4 Candidate Selection .. 25

 ix

 Page

4.2.5 The matrix update ... 25

4.3 Conclusion .. 26

 Computational Environment and Results ... 28 Chapter 5

5.1 Design of computational Experiment ... 28

5.1.1 Test Instance ... 28

5.1.2 User Define Parameter .. 28

5.2 Results .. 29

5.2.1 Computational time ... 29

5.2.2 The Performance Analysis .. 31

5.3 Conclusion .. 35

 Conclusion and Future Work .. 36 Chapter 6

6.1 Conclusion .. 36

6.2 Future Research ... 37

REFERENCES .. 39

VITA ... 45

x

TABLE OF FIGURE

Figure 2.1 The production process of job sequence 6-2-5-1-3-4 entered to 4
machines in the PFSP .. 8

Figure 3.1 Ant's behavior when searching for food source .. 16

Figure 3.2 General procedure of Coincidence Algorithm .. 18

Figure 4.1 The joint probability matrix based on the problem size of 5 24

Figure 4.2 The example of solution and its probabilistic model 24

Figure 4.3 Makespan table ... 25

Figure 5.1 The graph shows computational time consumed by NB-COIN over other
compared metaheuristics.. 30

Figure 5.2 The performance of NB-COIN in term of gap % from upper bound 34

xi

TABLE OF TABLE

Table 2.1 The Processing Time Of Jobs on the Machines .. 10

Table 5.1 Parameter setting for NB-COIN on PFSP .. 29

Table 5.2 The computational speed ... 30

Table 5.3 Performance comparison of Taillard’s 20×5 instance 32

Table 5.4 Performance comparison of Taillard’s 20×10 instance 32

Table 5.5 Performance comparison of Taillard’s 20×20 instance 33

Table 5.6 Performance comparison of Taillard’s 50×5 instance 34

 Chapter 1
Introduction

1.1 Background

In manufacturing sector, Scheduling has always been one of the important
decision-making process that create high impact in term of effectiveness and efficiency
of production process. Poor scheduling can lead to low productivity, higher cost and
longer time consuming.

Flow shop is a production line that is widely used in many industry such as
chemical, paper, circuit and glass industry. In the flow shop, the jobs process on a set
of machines in the same order. In addition, each machine is either idle or occupied by
only one job at the time with no pre-emption and interruption. The permutation of jobs
for every machine can be scheduled in (𝑛!)𝑚 solutions where n is the number of job and
m is the number of machine. However, in the permutation flowshop scheduling
problem(PFSP), passing any jobs is not allowed to simplify and reduce the solution’s
possibility into (n!). The objective of PFSP is divided into two main criteria; makespan
and flowtime. The makespan is the completion time of the last jobs while flowtime is the
summation of completion time of each job. The makespan criterion is well-known to lead
to rapid turn-around of jobs, uniform utilization of resources and minimization of work-in-
process inventory.

The permutation flow shop scheduling problem (PFSP) has become an interesting
research topic for many researchers since Johnson[1] introduced in 1950s. Later, the
complexity of PFSP is proved to be a NP-hard (Garey et al [2] and Lenstra et al [3]).
Many heuristic optimization methods have been developed to achieve high quality
solutions in a reasonable computational time such as Nawaz et al.[4], Palmer [5],
Campbell et al. [6], Dannenbring [7], Taillard [8], Framinan et al. [9] and Framinan and
Leisten [10]. However, those heuristics are not only failed to achieve the optimum
solutions but also consume a lot of CPU time. Even the results given by the most

2

powerful heuristics, NEH, proposed by Nawaz et al. [4] are still far at almost 7% from the
optimal value. When it comes to a conclusion that only heuristics may not capable
enough to overcome the optimum solution for the PFSP, many researchers developed
more complex methods, metaheuristics, such as tabu search [11-16], genetic
algorithms (GAs) [15, 16], ant colony optimization [17-19], particle swarm
optimization[20], iterated local search (ILS) [21]or the Estimation of Distribution
Algorithm (EDA) [22]. Although these methods provide better results, a long
computational time or a lot of resources is required. Later, the complexity of the
algorithms is even enhanced by integrated two or more metaheuristics called the hybrid
metaheuristics. This technique was used by G.I. Zobolas [23] and H. Liu [24] to achieve
optimal solution with high computational speed.

However, at the end of the day, all industrial world need is neither an optimum
solution nor a complex method, but is a simple algorithm that can provide a reasonable
solution in a short period of time. It is worth noting to implement such a complex
algorithms that people in the field are hardly replicate or implement in the real world
situation. The proposed method Node-Base Coincidence Algorithm(NB-COIN), is easy
to implement and can provide high quality solution.

1.2 Research Purpose and Objectives

The objective of this research is to find the optimum solution in the makespan
criteria of the Flowshop scheduling problem by Node Based Coincidence Algorithm
(NB-COIN).

1.3 Research Scope

1. The proposed method is able to find the work’s sequence in the permutation
flowshop scheduling problem.

2. The work’s sequence generated from Node Based Coincidence Algorithm is
makespan minimization.

3. The CPU time is provided and use as the termination of the method.

3

1.4 Research Limitation

1. All jobs are independent and ready to enter to the machines.

2. The processing time of all jobs are provided upfront.

3. Every machine is ready to work and multitasking is prohibited.

4. The job cannot be divided.

5. The processing time of job on each machines cannot be changed during the
production period

6. There is unlimited buffer between the machines.

1.5 Contribution

This research involved the development of an algorithm for the permutation
flowshop scheduling problem. This improvement to warehousing performance would be
beneficial for both manufacturing industry and academic research.

On the one side, the manufacturing can improve their flowshop scheduling by
using this algorithm since it provides good quality of result using only small amount of
resource and time. Such improvements could reduce costs and lead time of overall
operations, and increase customer service levels by providing faster processing time
which then lead to faster delivery. Therefore, the overall performance of manufacturing
could be increased significantly.

On the other side, it can enlighten researchers to focus on practical algorithm that
easy to use in real life where the quality, complexity and computational time are
balances.

4

1.6 Research Structure

This research consists of six chapters.

Chapter 1: Introduction

This chapter provides the background of the research area and the importance of the
problem. The research purpose, research objectives, research scope and limitations is
identified.

Chapter 2: The permutation Flowshop Scheduling Problem

The research problem, the permutation flow shop scheduling, is determined in detail in
Chapter 2 including, the models formulated and well-known objectives to the problem.

Chapter 3: Well-known approaches for the permutation flowshop scheduling

In this chapter, the well-known algorithms to solve the permutation flow shop scheduling
are elaborated. This chapter includes well-known heuristic, metaheuristic and hybrid
heuristic that has been applied to the problem.

Chapter 4: Node-based Coincidence Algorithm

The algorithm to solve research problem is discussed in this chapter, covering the
characteristic of an algorithm, general procedure and example of an algorithm in
optimization problem

Chapter 5: Computational Experiment and Results

The computational experiment and results are presented in this chapter. The design of
experiments such as test instance and user define parameter are determined. The
proposed algorithm is tested against well-known approaches for the research problem
and will be analysed in two criteria; CPU time and performance.

Chapter 6: Conclusion and Future work

A summary of the research is presented in this chapter, together with limitations of
research and suggestions for future work

5

 Chapter 2
The Permutation Flowshop Scheduling Problem

The previous chapter set a background of the research. The purpose of the
research, objectives of the research, research scope and limitation were identified. The
need to implement an algorithm to solve the permutation flowshop scheduling problem
was also highlighted.

In this chapter, the overview of flow shop and the permutation flowshop
scheduling problem will be illustrated in order to provide a solid understanding of the
important of research problem. Moreover, the model formulated and the well-known
objectives for the problem will be determined. Finally, the complexity of the problem will
be discussed.

2.1 Flow shop

Flow shop is a type of production line that has been widely used in many
manufacturing and assembly facilities since it can produce variety of products from one
set of machines. In the flow shop, each job processes on a set of machines in the same
order so all jobs have to follow the same route. The processing time of each job for each
machine is different. In addition, the machines are assumed to be set up in series and
either idle or occupied by only one job at the time with no pre-emption and interruption.

In the general flow shop, it considers the operation of n job on m machine. It
assumes that there is unlimited buffer all storage between the machines so all the job
that has been completed in the upstream machine can be waited at the buffer which will
not cause the delay or blocking. The manufacturing usually uses general flow shop
when the size of products that need to process in the machines are physically small
such as printed circuit boards or integrated circuits, it doesn’t require large space or
buffer between the machines which is also very easy to be stored at large quantity.

However, there are other kind of flow shop such as flow shop with blocking or zero-
buffer flow shop, no wait flow shop and hybrid flow shop.

6

2.1.1 Flow shop with zero buffer or blocking flow shop

The Blocking issue happens when the buffer is full so the job that has been
completed at the upstream machine cannot be released to the buffer. It needs to remain
at the upstream machine until the buffer is free which then prevent the next job from
beginning its processing. Flow shop with zero buffer is often used with the products that
are physically large such as television set, car or copier require large buffer between
two machines.

There are many approaches for blocking flow shop scheduling problem
including both heuristics and metaheuristics. In heuristics, the constructive Greedy and
NEH heuristic have been proved to be an effective heuristic to solve a problem[4].
These heuristic can rapidly yield feasible solution but it needs to trade off with the quality
of the solution on large scale problem. On the other hand, Metaheuristics have
proposed to increase the quality such as Genetic algorithm[25] and particle swarm
optimization[26].

2.1.2 No Wait flow shop (NWFSP)

No-wait flow shop is one of flow shop production line where all jobs need to
process on the machine continuously until completion at the last machine without
interruption. Therefore, the job on the first machine sometime needs to be delayed to
ensure that the whole production process meet no-wait restriction[27].

There are several No wait flow ship application in practical such as chemical
processing, Steel production and plastic molding. Moreover, No wait flow shop is also
adapted in the manufacturing to achieve Just In time operation system and robot cells to
avoid waiting time in the production process[28].

The parameter for no wait flow shop is similar to general flow shop but it require
some restriction where the starting time of job ji on machine mi need to be equal to the
completion time of job ji on the upstream machine mi-1 for each i and j.

7

No wait flow shop has been interested by many researcher and several
metaheuristics has been proposed to achieve high quality of solution within the
reasonable time. Genetic Algorithm was proposed by Aldowaisan and Allahverdi in 2003
[29]. Furthermore, other metaheuristics were also designed and implemented such as
estimation of distribution algorithm (EDA) [30], Particle Swarm Optimization (DPSO) [31]
and ant colony optimization (ACO)[32].

2.1.3 Hybrid flow shop

Hybrid flow shop is more complex than other flow shop since it involves parallel
operation. In Hybrid flow shop, there are a number of stages in series with one or more
number of identical machine in parallel at each stage. All jobs have to operate in the
same route through the stage. Therefore, it needs to be focus on not only a permutation
of jobs for each machine but also the assignment of job and the sequence of job on
each machine.

Hybrid flow shop is used in several industrial sector such as glass, paper, steel
and fabric industries[33].

This kind of flow shop has attracted several researchers. An example of solution
approaches of hybrid flow shop are NEH heuristic[4], Tabu search algorithm [34], ant
colony optimization[35] and quantum-inspired immune algorithm (QIA)[36].

2.2 The permutation Flowshop Scheduling Problem

The permutation flowshop scheduling Problem (PFSP) was presented by Johnson’s
seminal paper[1]. Since then, it has always been interested by many researchers and
the number of literatures published to solve this problem has been increasing rapidly.
Day and Hottenstein has reviewed PFSP in 1970[37]. Then, Dudek investigated the
problem highlighting the solving problem strategy and diverse optimization criterions.
Reisman et al [38] also provided a statistic review while comprehensive review and
evaluation of permutation flow shop heuristic was done by Ruiz and Maroto[9, 39].

The permutation flowshop is a simple multistage scheduling problem. The model of
flowshop include a set J of n jobs, J={j1,…jn}, and set K of m machines, K={k1,…,km}. All

8

jobs have to visit to all machines in the same route. The flowshop process is determines
in Figure 2.1.

Figure 2.1 The production process of job sequence 6-2-5-1-3-4 entered to 4 machines
in the PFSP

2.2.1 Model Formulation

n= number of jobs to be process

m = number of machines in the production line

J = a set J of n jobs where J={ j1,…, jn}

K= a set of m machines where K={ k1 ,…, km}

 t k,j = the processing times of job J on machine K and

C(k,j) = the completion time of job J on machine K.

Thus, the completion time, C(k,j) can be calculated as follows:

 𝐶(1,1) = 𝑡1,1 (2.1)

 C(1,j) = C(1,j-1)+t1,j, j=2,…,n, (2.2)

 C(k,1) = C(k-1,1) + tk,1, k = 2,…,m, (2.3)

 C(k,j) = max{C(k,j-1) ,C(k-1, j)}+ tk,j, (2.4)

2.2.2 Well-known objectives for the permutation flowshop scheduling problem

The common objective of PFSP is divided into two main criteria; makespan, total
flowtime objectives. The makespan is the completion time of the last jobs while flowtime
is the summation of completion time of each job.

9

Makespan minimization

The makespan is the classic objective function that has always attracted many
researchers. It is the finished time of the last job in the schedule. The performance of
solutions is defined as the duration between the starting time of first job in the first
machines and the finished time of last job in the last machine. The makespan criterion is
well-known to lead to rapid turn-around of jobs, uniform utilization of resources and
minimization of work-in-process inventory.

The makespan minimization is described as n/m/P/Cmax. It consists of a set J of n
jobs, J={ j1,…, jn} and set K of m machines, K={ k1 ,…, km} Let t k,j denotes as the
processing times of job J on machine K and C(k,j) be the completion time of job J on
machine K.

Therefore, the makespan is denoted as

Cmax = C(Km,Jn) (2.5)

Total Flowtime minimization

Total flowtime minimization focus on the total completion time. It has been an
increasing objective functions for many researchers since minimizing total flow time can
lead to the reduction in Work In Process (WIP) or in-process inventory and increase
stability of machine utilization.

The total flowtime is defined n/m/P/Cj To calculate total flowtime the completion time
(makespan) of each job need to be calculated. To calculate the total flowtime, the
equation is defined as follow:

TFT=∑ 𝐶[k][m]
𝑛
𝑘=1 (2.6)

𝐶[k][m] denotes the completion time of job k on the last machine. The completion time of
job k, 𝑘 ∈ {1,2, … , 𝑛} on the machine i, 𝑖 ∈ {1,2, … , 𝑚} can be denotes as 𝐶[𝑘]𝐼 where
𝐶[𝑘] 0 and 𝐶[0] 𝑖 = 0.The processing time of job j on machine i is denote to t[k] j. Therefore,
C[k]j is computed as follows:

𝐶[𝑘]𝑗 = 𝑚𝑎𝑥{ 𝐶[𝑘]𝑗−1, 𝐶[𝑘−1] 𝑗} + 𝑡[𝑘] 𝑗 (2.7)

10

2.2.3 An Example of the permutation flowshop Scheduling Problem

In the automotive parts manufacturing, there is 6 jobs and 4 machines. Each job
requires different processing time on the machines as input time in Table 1. The best
solution in term of makespan is obtained from the job’s sequence 6-2-5-1-3-4 with a
minimum makespan at 322 seconds.

Job Processing time (tk,j)

K1 K2 K3 K4 Total processing
time (s)

J1 25 45 52 40 162

J2 7 41 22 66 136

J3 41 55 33 21 150

J4 74 12 24 48 158

J5 7 15 72 52 146

J6 12 14 22 32 80

Table 2.1 The Processing Time Of Jobs on the Machines
2.2.4 Complexity of Flowshop Scheduling Problem

In a small problem where the machine number is less than 3, flow shop can be
solved optimally. Since 1954, Johnson has proposed Johnson’s algorithm to solve
flowshop scheduling problem in 2 and 3 machines which can guarantee optimal[1].
However, many researchers has been proved that flowshop scheduling problem is np-
hard problem when the number of machine is higher than 2 machines where it is
extremely difficult to find the optimal result for all variables within a tolerable computation
time since the run-time grows exponentially when the number of variables is increased,
as when adding more machines.

For the flowshop scheduling problem (FSSP), the job can either process in all
machine or pass another when the machine is busy and there is a queue so it may not

11

operate as first come first serve or no always need to follow the job sequence. In this
case, the permutation of jobs for every machine can be scheduled in (𝑛!)𝑚 solutions
where n is the number of job and m is the number of machine. Hence, the maximum
solutions can be extremely large even in a small instance. For example, in 10x10
instance, the maximum number of possible solutions is (10!)10 = 3.96 × 1065.

On the other hand, in the permutation flowshop scheduling problem(PFSP), passing
any jobs is not allow to simplify and reduce the solution’s possibility into (n!). However,
Garey et all [2] was proved that the permutation flowshop scheduling is also be strongly
np-hard when the number of machine exceed 3 machines.

Therefore, it is very important to limit search space to only best solutions by
identifying the characteristics that optimal solution possess and focus only the sequence
that contain those characteristics.

2.3 Conclusion

This chapter provides a solid understanding of flow shop and the permutation flow
shop scheduling problem. Although there are several kind of flow shop, This research
focuses on the classic flow shop which is permutation flowshop scheduling problem in
makespan minimization.

It is clear that the permutation flowshop scheduling has interested many
researchers and many literate has reviewed the methods to solve the problem. Since the
PFSP is np-hard, the methods need to consider both computational time and quality of
solutions.

In the next chapter, the well-known approaches for the permutation flowshop
scheduling problem with makespan minimization will be illustrated. The stage of art of
each method and its advantage and disadvantage will be discussed.

12

 Chapter 3
Solution Approaches for the Permutation Flowshop Scheduling Problem

In this chapter, some well-known methods to solve PFSP will be described. The methods
are as follows:

1. Two heuristic approaches: NEH and Greedy heuristics,

2. Two metaheuristic approaches: Any Colony System and Coincidence Algorithm
and Hybrid Metaheuristic algorithm.

In addition, the strength and weakness of these methods will be also discussed in detail.

3.1 Heuristics

Heuristic is a category of problem solving approaches which are not guaranteed
globally optimal solutions. However, these approaches were created to satisfy some
acceptable goals.

3.1.1 The NEH Heuristic

NEH algorithm [4] is a heuristic approach to solve PFSP proposed by Nawaz,
Enscore and Ham in 1983. The objective of this algorithm is to minimize the makespan
of the problem by iteratively taking new jobs into consideration. The main idea of this
heuristic is that the high priority should be given to the job with more total processing
time on all machine. In 1984, the performance of this algorithm was discussed by Park
et. al. [40]. In addition, there are also some researches which consider this algorithm to
be an efficient way for makespan minimization [8, 28].

Let 𝐽1, 𝐽2, 𝐽3, … , 𝐽𝑛 are 𝑛 jobs to be considered in PFSP on 𝑚 machines and 𝑃𝑖𝑘 is the
processing time of job 𝑘 on machine 𝑖 where 𝑖 = 1, 2, … , 𝑚 and 𝑗 = 1, 2, … , 𝑛. Briefly,
NEH algorithm can be explained simply by these 3 steps as follows:

13

1. Step1: sort the jobs as a non-increasing sequence according to their total
processing time.

To begin with, the total processing time 𝑇𝑘 of each job is calculated as:

𝑇𝑘 = ∑ 𝑃𝑖𝑘
𝑚
𝑖=1 (3.1)

 Then all jobs 𝐽1, 𝐽2, 𝐽3, … , 𝐽𝑛 are to be sorted to 𝐽′1, 𝐽′2, 𝐽′3, … , 𝐽′𝑛 in the way that
𝑇′1 ≥ 𝑇′2 ≥ 𝑇′3 ≥ ⋯ ≥ 𝑇′𝑛.

2. Step 2: schedule first two jobs (which have two highest total processing times) to
minimize the makespan as if there are only these two jobs.

In this step, only 𝐽′1 and 𝐽′2 are considered. The makespan of the sequence 𝐽′1 − 𝐽′2
and 𝐽′2 − 𝐽′1 are calculated. The one with the minimum value of makespan will be
selected. Please note that the relative order between 𝐽′1 and 𝐽′2 will remain
unchanged in the output (i.e. 𝐽′1 before 𝐽′2 or 𝐽′2 before 𝐽′1).
3. Step 3: iteratively take new job into consideration one at a time (from 𝑘 = 3 to 𝑛)

according to the sequence obtained from step 1.
Each 𝐽′𝑘 is iteratively taken into consideration in order. To put it simply, 𝐽′𝑘 is inserted
into the previous selected sequence of length 𝑘 − 1 in each possible position. For
each insertion, its makespan is calculated. The sequence with the minimum
makespan is selected. Then, the algorithm proceeds to its next iteration.

The complexity of this approach depends on the number of makespan computations. In
step 2, makespan is computed two times. In step 3, for each 𝑘𝑡ℎ iteration, makespan is
to be computed 𝑘 times. Therefore, the number of makespan computation is:

2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
− 1 (3.2)

In other words, the complexity of this algorithm is 𝑂(𝑛2).

Overall, the advantage of the NEH algorithm is that it can give reasonable results
using only easily implemented algorithm. However, as discussed above, the

14

computational complexity can be unacceptable or the output can be even far from the
optimal solution when the number of jobs is high.

3.1.2 Greedy Heuristic

In 2012, M. Ancau proposed two heuristic approaches based on greedy concept
for PFSP [29] which are the constructive greedy heuristic (CG) and the stochastic
greedy heuristic (SG). In this subsection, only stochastic greedy heuristic approach will
be described as it was shown by the author that this approach is likely to give better
solutions.

Constructive Greedy Heuristic (CG)

The constructive heuristic algorithm (CG) generates a job's sequence using

two lists called job list and optimal schedule. A job list consist of n elements

(j1; j2; :::; jn). Firstly, a pair of jobs from the job list will be selected and arranged

to find the minimum completion time passing to the optimal schedule. Then,

repeat the first step, however either increase the selected elements to k(n-k-1),

k is the number of rounds, or pass to the optimal schedule in the relative position

that minimize completion time.

Stochastic greedy heuristic (SG)

In the stochastic heuristic (SG), the job list consists of n random job's elements.

In detail, stochastic greedy heuristic approach can be described as follows:

1. Randomly generate a permutation of jobs, 𝐽𝜋1
, 𝐽𝜋2

, 𝐽𝜋3
, … , 𝐽𝜋𝑛

.

2. Pick 𝐽𝜋1
 and 𝐽𝜋2

 as the starting positions for an optimal sequence. Their relative
position is also adjusted to minimize the makespan.

3. Select the next candidate 𝐽𝜋3
 and its relative position to be placed on the optimal

sequence which minimize the makespan among all possible positions.

4. Repeat step 3 fo𝐽𝜋4
, 𝐽𝜋5

, … , 𝐽𝜋𝑛
r to obtain an instance of the optimal sequence.

15

5. Repeat step 2 - 4 by using𝐽𝜋𝑖
 and 𝐽𝜋𝑖+1

 as the starting positions where 𝑖 is an
integer in range [2, 𝑛 − 1].

6. Repeat step 1 - 5 for 𝑠𝑚𝑎𝑥 times while keeps tracking of the best optimal
sequence. Finally, the one with the minimum makespan is returned.

As confirm by the experiment [29], this approach provides better results compared
to the result from NEH algorithm significantly. However, the drawback of this approach is
its longer time consumption.

3.2 Metaheuristics

In the previous section, some heuristic approaches related to PFSP were
presented. Notice that, heuristic approaches are problem-dependent approaches which
cannot be adapted to other problems. In this section, some metaheuristics approaches,
which are problem-independent approaches, will be described.

3.2.1 Ant Colony System

This idea was first introduced by Dorigo [41] . Then, in 2004, Rajendran proposed a
variation of Ant Colony Optimization (ACO) application for PFSP [19] which is extended
from the M-MMAS algorithm proposed by Stutzle in 1998 [21].

The general concept of ACO is based on the behaviour of how ants build and
find their optimal paths. This mechanism is guided by a chemical substance called
pheromone. Briefly, the algorithm will be executed back and forth between path
generation phase and pheromone update phase. Each position along the way from the
start to end positions are associated with their pheromones (in [19], these are called trail
intensities). In the path generation phase, a path is generated based on those trail
intensities. When the generation is completed, its value of objective function of the path
will be computed. The value is then used in the pheromone update phase to make the
next path generation phase likely to generate optimal solutions. Figure 3.1 illustrate a
behaviour of ants in searching for the shortest path from nest to food source

16

Figure 3.1 Ant's behavior when searching for food source

The mentioned approach proposed by Rajendran is called PACO [19]. Regarding to the
approach, the path of ants or seed sequence is treated as the sequence of jobs. The
sequence is to be iteratively updated through the ACO process. The algorithm can be
briefly described as follows (More detail can be found in [19]):

1. Initialize seed sequence using the solution from NEH algorithm mentioned in
section 3.1.1.

2. Refine the initial seed sequence using the following job-index-based local
search procedure three times:

a) For each job index 𝑖, insert the job in each other possible positions while
keep the relative positions of other jobs to be the same.

b) Choose the best sequence to update the current seed sequence.

c) Repeat the above step for all possible values o 𝑖 f (all jobs).

3. Initialize each trail intensity 𝜏𝑖𝑘 (the desire of placing job 𝑖 in position 𝑘).

4. Construct a new ant-sequence by selecting jobs from the unscheduled lists in
order from the positions 1 to 𝑛. The selection is done according to a uniform
random 𝑢 ∈ [0,1],

a) If 𝑢 ≤ 0.4: the first unscheduled job in the best sequence is selected.

17

b) Else if 𝑢 ≤ 0.8: a job with maximum value o𝑇𝑖𝑘f among the first five
unscheduled jobs in best sequence is selected. 𝑇𝑖𝑘 can be computed by:

𝑇𝑖𝑘 = ∑ 𝜏𝑖𝑞
𝑘
𝑞=1 (3.3)

c) Else: a job is selected according to the probability distribution:

𝑝𝑖𝑘 =
𝑇𝑖𝑘

∑ 𝑇𝑙𝑘𝑙
 (3.4)

, where 𝑙 is a member of the set of all indices the first five unscheduled jobs
in best sequence.

5. Refine the generated sequence using the job-index-based local search
procedure three times.

6. Update each trail intensity 𝜏𝑖𝑘 according to the generated sequence.

7. Repeat the step 4 – 6 for a certain number of times (e.g. 40).

8. Final best sequence is then refined by job-index-based swap scheme.

The ACO algorithm was shown to be an effective algorithm. The main advantage is
that the reasonable solution can be generated only within a small amount of time.
However, the drawback of this approach is that the result is highly depended on the
parameters setting.

3.2.2 Coincidence Algorithm

Coincidence algorithm (COIN) was introduced by Wattanapornphom et al in 2009
[42]. It is one of the evolutionary algorithm that use source of model to incremental
learning from the previous candidate solution. Specially, COIN is not only train the data
from positive feedback but also use negative feedback to avoid bad building block and
reduce search space to focus only good solutions.

18

The algorithm consists of 6 steps. It is simply starts with initialize parameters and the
joint probability matrix, H. Each element, Hxy, in the matrix denotes to the probability of
y found in the absolute position x. Then, the candidate solution is generated in
sequence to ensure that only valid permutations are sampled. In the third step, the
candidate solution is evaluated by its objective or fitness value. All candidates are
sorted from best to worst solution and divided into two groups of candidates, better
group and worst group from the top and bottom C% of the rank. Then, the joint
probability matrix is updated from these two groups as reward and punishment in the
fifth step. Finally, repeat all steps until the termination condition is met. Figure 3.2 shows
the process of NB-COIN.

Figure 3.2 General procedure of Coincidence Algorithm
The complexity of COIN relies on the problem and candidate size in each

generation. In the initialization stage, the complexity is 𝑂(𝑛2). Population sampling
require computational time at 𝑂(𝑚𝑛2) with 𝑂(𝑚𝑛) space while Sorting and Candidate
selection consumes 𝑂(𝑚𝑙𝑜𝑔𝑚) and the update stage requires 𝑂(𝑚𝑛2).

19

The performance of COIN and NB-COIN was proven in many combinatorial
optimization problems including path finding [42], production line sequencing and
balancing [43], and puzzle [44, 45]. It is proved to be an effective algorithm that
provides good quality solutions within small amount of computational time and
resources. Also, the implementation of COIN is simple and require only a few user
define parameters. Therefore, while other methods tend to either consume a lot of
computational time and use complex operation to achieve high quality of solutions or
use small amount of resources but provide lower quality, COIN becomes an alternative
simple method which can provide competitive solutions in using less resources and
time.

3.3 Hybrid Metahuristics Algorithm

The hybrid metaheuristic approaches are the approaches which combine
metaheuristic approaches with other optimization techniques such as local search.

An example of metaheuristics approaches is the method proposed by Zobolas [23]
in 2009. The method is based on well-known Genetic Algorithm (GA) [15, 16] and
Variable Neighbourhood Search (VNS) [46]. Briefly an overview of the procedure of this
approach is as follows:

1. Initial population generation: As the same as in traditional GA algorithm, the first
step is to initialize the population. Let 𝑖_𝑝𝑜𝑝 is the size of population, initial
population can be partitioned as follows (the parameter 𝑎 is a real number
between 0 and 1):

2. solution obtained from NEH [47],

a) 1 solution obtained from CDS [6],

b) 1 solution obtained from Palmer [5],

c) 1 solution obtained from Gupta [48],

d) 𝑖_𝑝𝑜𝑝 ∗ 𝑎 − 4 solutions sampled from GRNEH (Greedy Randomized
procedure based on the NEH heuristic) and

20

e) 𝑖_𝑝𝑜𝑝 ∗ (1 − 𝑎) solutions generated randomly.

3. Population improvement: In this step, the population is updated in the manner of
traditional GA. The detail of each phase is as follows:

a) Tournament selection approach proposed in [49] is used for parents
selection,

b) Crossover is done by the two-point crossover (version I) proposed by Murata
[33],

c) Shift mutation operators proposed in [50]is also applied.

4. Intensification phase using VNS: In this step, shaking function is to be processed
in order to avoid locally optimal issues (i.e. a solution selected for intensification
is replaced with the best solution from another neighbourhood if some criterion
are met).

5. Population renewal: To avoid local optima, ages of the solutions are also taken
into consideration. Some old solutions are to be replaced with respect to some
random factors.

6. Repeat step 2 – 4 for 𝑡_𝑚𝑎𝑥 times

This approach performs quite well in some cases such as when the number of jobs
is low (less than 50). Anyway, there is also a drawback of this approach that the
computational speed is still low.

3.4 Conclusion

In this chapter, some state of the art approaches to solve PFSP was discussed
including heuristic, metaheuristic and hybrid heuristic.

Firstly, heuristic approaches were presented. NEH algorithm is simple algorithm
and can give a good approximation for the optimal solutions. However, its computational
complexity is high and, it can subject to local optima issues. Moreover, the heuristics
approach based on stochastic and constructive greedy heuristics is also illustrated.

21

Even though it can generate better solutions compare to NEH, it still takes long time to
process. Then, two metaheuristic approaches were presented. PACO algorithm for
PFSP was proved to be efficient algorithm but its problem is the sensitivity with
parameter setting. Alternatively, Coincidence algorithm can be used which can provide
a good quality of solution using small amount of resources. Finally, a hybrid
metaheuristic approach was presented. It is a combination of GA and VNS approaches.
However, its computational complexity is still high.

Next chapter will identify the methodology of the research which is Node based
Coincidence Algorithm. The characteristic of the algorithm will be discussed together
with its advantages and disadvantages. Then the procedure of the algorithm for the
PFSP with makespan minimization will be determined.

22

 Chapter 4
Node-Based Coincidence Algorithm

In the previous chapter, the well-known approaches for the permutation
flowshop scheduling problem were determined. It includes both heuristics,
metaheuristic and hybrid metaheuristics approaches. The advantage and disadvantage
of each approach solution was identified.

As discussed in the previous chapter, there is always a trade-off between the
complexity of the solution approach, computational time and the quality of the result.
The higher complexity of the algorithm tends to contribute better quality of results and/or
consume longer computational time. Therefore, it is worth looking for solution
approaches that able to provide acceptable solution with a simple implementation in a
short period of time.

This chapter will introduce new alternative approach for the permutation flowshop
scheduling problem called Node-based Coincidence Algorithm which is used as a
methodology of this research. The characteristic of the algorithm will be discussed to set
the solid understanding of the algorithm and its applications. In addition, the general
procedure of the algorithm on the PFSP with makespan minimization will be explained in
details.

4.1 Characteristic of Node-based Coincidence Algorithm

Node Based Coincidence Algorithm(NB-COIN) is adapted from Coincidence
Algorithm(COIN) proposed by Wattanapornprom W. et al. in 2009 [42]. Both COIN and
NB-COIN belongs to Estimation of Distribution Algorithm(EDA) class [22] that
represented the model in joint probability matrix as Markov Chain where the candidate
solutions are developed by using model or knowledge extracted from previous
candidate solutions. The main characteristic of these algorithms is the incremental
learning from both good and bad solutions to avoid bad building block and expand
more diverse solutions. However, instead of representing the element as an adjacent

23

pair called coincidence in the traditional COIN, NB-COIN adopts the node based
representation from Node Histogram Sampling Algorithm (NHBSA) [51] where each
element denotes as an independent node.

There are many advantages of NB-COIN. First, it is an algorithm that easy to
implement or replicate. It neither contains complex operation nor requires advance
mathematic formulation. Furthermore, NB-COIN can provide good quality of solutions
using small amount of computational time due to its incremental learning. Moreover the
algorithm learns from both positive and negative knowledge.

 The performance of NB-COIN was proven in many combinatorial optimization
problems including flowshop scheduling problems with total flowtime minimization[52]
and order acceptance problems [53]. In the flowshop scheduling problems with total
flowtime minimization, it is proved to be an effective algorithm that can provide a good
quality of solutions with an average of 1.7% different from the best known result.
Moreover, the performance of NB-COIN in order acceptance problem is also
competitive with other metaheuristic algorithms such as Genetic Algorithm and NHBSA.

4.2 General Procedure of NB-COIN for the PFSP

In the permutation flowshop scheduling problem, the population or candidate solution of
NB-COIN represents the sequence of jobs. The objective function or fitness value is the
time from the starting of the first job until all jobs completed. The detail of each stage
can be explained as follow:

4.2.1 Initialization

In this step, the joint probability matrix H(X,Y) is generated. The matrix consists of
n×n elements where n is the number of the jobs waiting to enter flowshop production
line. Each column(Y) present the probability of job Y in the position X of job sequence.

To make a fair start, all elements contain the same probability at
1

𝑛
. The joint probability

matrix in the initialize stage is shown in Fig. 4.1.

24

Figure 4.1 The joint probability matrix based on the problem size of 5

4.2.2 Population Sampling

There are three steps to generate a job sequence in NB-COIN. First, a sequence of
job position is randomly generated. Then, the job sequence (Y) is sampling from the
position’s sequence until desired population size is reached.

Figure 4.2 presents an example of probabilistic model and the population sampling
process. In this example, the position’s sequence is sampled as

𝑋2 − 𝑋4 − 𝑋1 − 𝑋5−𝑋3

Figure 4.2 The example of solution and its probabilistic model

25

4.2.3 Population Evaluation

To calculate the fitness value, makespan (C(Km,Jn)), the candidate solution is
examined using the formula 2.1-2.5 mentioned in Chapter 2.

The calculation can by using the tabl 𝑛 × 𝑛 where n is the number of job to calculate
the completion time C(Km,Jn) where K is a set of machine and J is a set of job. Figure 4.3
show a table for makespan calculation.

Figure 4.3 Makespan table

4.2.4 Candidate Selection

According to the special characteristic of NB-COIN, it trains the population from
both positive and negative knowledge. The algorithm sorts the population from best to
worst by their fitness value. Then, the two sub-population groups, good and poor
population, are selected to update the joint probability matrix. The size of sub-population
groups denoted by the selection pressure(C%).

4.2.5 The matrix update

The joint probability matrix H(X,Yj) is updated by rewarding good solutions and
punishing poor solutions. To reward the good solutions, the probability of node XiYj is
increased by 𝑘

𝑛
 while other nodes in the same row Xi are decreased by 𝑘

𝑛²
. The

parameter k is the learning step, n is the problem size and rij denotes the total number of
good coincidence Hij. The reward equation is shown below.

𝐻𝑖𝑗(𝑡 + 1) = 𝐻𝑖𝑗(𝑡) +
𝑘

𝑛
(𝑟𝑖𝑗(𝑡 + 1)) −

𝑘

𝑛2 (∑ 𝑟𝑖𝑗
𝑛
𝑖=1 (𝑡 + 1) (4.1)

26

On the other hands, the poor candidates are punished by scattering the probability 𝑘

𝑛²

to other node in the same row where k is learning step and n is the size of problem. Pij is
the total number of coincidence from the poor solutions. The punishment equation is
illustrated as follow

𝐻𝑖𝑗(𝑡 + 1) = 𝐻𝑖𝑗(𝑡) −
𝑘

𝑛
(𝑝𝑖𝑗(𝑡 + 1)) +

𝑘

𝑛2 (∑ 𝑝𝑖𝑗
𝑛
𝑖=1 (𝑡 + 1) (4.2)

There are two main important parameters in the matrix update stage; learning step k
and the minimum probability value in the joint probability matrix H(X,Yj). The learning
step, k in NB-COIN is a very important parameter that contributes directly to the quality
of the result. High learning step can fasten the learning rate and increases the speed to
get good quality of result but it trades off with the lower diversity of solutions. Moreover,
the minimum probability value in the joint probability matrix H(Xi,Yj) need to be set to
ensure that the probability of any element is higher than 0 so there is still an opportunity
to sampling population from any elements in the matrix.

For the permutation flowshop scheduling problem, the diversity of solution is very
important to avoid local trap of optima. Therefore, it is better to use small amount of
learning step (less than 0.05) to maintain the diversity of solutions and increase the
change to escape from local trap of optima.

4.3 Conclusion

This chapter has provided an overview of research methodology, the Node-based
Coincidence Algorithm. The characteristic of the algorithm has been identified. The
advantages of the algorithm have been discussed together with successful examples of
its application in other combinatorial optimization problems. Finally, the procedure of
NB-COIN has also explained in details.

According to the discussion in this chapter, NB-COIN is a competitive method that
is easy to implement and able to provide high quality of solutions. It uses simple
probabilistic matrix to generate solutions and updates the solution by using both good
and bad samples to improve solutions and avoid bad solutions and it also reduces
search space.

27

In the next chapter, Node-based Coincidence Algorithm will be used to solve the
permutation flowshop scheduling problem and compared its performance against well-
known approaches mentioned in Chapter 3.

28

 Chapter 5
Computational Environment and Results

The previous chapter discussed the methodology of the research, Node-based
Coincidence algorithm. The characteristic of the algorithm, its advantages and
disadvantage is determined. Also, the procedure of NB-COIN on the permutation
flowshop scheduling problem was illustrated.

This chapter will identify the computational experiment and discusses the
computational result. To begin with, the design of computational experiment such as
computer resources, the test instance and parameter setting will be shown. Then, the
result of the research will be provided and discussed in details to test the effectiveness
of the research methodology.

5.1 Design of computational Experiment

The proposed algorithm, Node Based Coincidence Algorithm(NB-COIN), was
coded in C++ and run on MS Windows 7 using Intel Core i5 450M, 2.40GHz and 4GB of
RAM.

5.1.1 Test Instance

This research uses 40 instances of Taillard benchmark[8] where the number of job
𝑛 ∈ {20,50} and the number of machine 𝑚 ∈ {5, 10, 20}.

Therefore, the test instance were selected and represented in four sets; 20×5,
20×10, 20×20, and 50×5, to determine the efficiency and performance of NB-COIN in
the PFSP. Each set consist of 10 instances.

5.1.2 User Define Parameter

There are several parameters that need to be defined for NB-COIN. For this
research problem, the parameters have been set up and shown on table 5.1.

29

Parameters Value

Population Size 500-1000

Generation Size 100-300

Cutting percentage (C%) 5-10%

Learning Step K (<0.05)

Maximum probability 0.8

Minimum probability 0.1*(1/Population size-3);

Table 5.1 Parameter setting for NB-COIN on PFSP
5.2 Results

The proposed algorithm was tested according to two different criteria;
computational time and performance.

5.2.1 Computational time

The CPU time obtained from NB-COIN were compared against the powerful
metaheuristics such as ant colony systems[18] and the hybrid metaheuristic proposed
by G.I. Zobolas[23] in 2009. For the CPU time, 5, 15, 25 and 100 seconds were
allocated to four sets; 20×5, 20×10, 20×20 and 50×5. In Table 5.2, the results obtained
from all groups of instance are summarized. The computational time of NB-COIN is
superior when the number of job is 20 especially in 20×5 instance. It is twice faster than
the hybrid metaheuristic and the ACS in 20×5 problem. Furthermore, the speed of
hybrid metaheuristic is slower than NB-COIN by 5 and 15 seconds in 20×10 and 20×20
while the proposed algorithm is slightly slower than the ACS problem by 3 seconds and
9 seconds. However, the computational speed of NB-COIN decreases when the number
of job exceeds 50.

30

Instances CPU time (Second)

Hybrid Metaheuristic ACS NB-COIN

20×5 10 11 5

20×10 20 12 15

20×20 40 16 25

50×5 25 44 100

Table 5.2 The computational speed

Since the permutation flowshop scheduling problem is np-hard. It is clear that
the computational time of NB-COIN increases exponentially when the number of
machine increases. It can be seen that the computational speed of NB-COIN is sensitive
to the number of job more than the number of machine. From figure 5.1, the number of
job creates a huge impact on the computational time of NB-COIN. When increasing the
number of machine, the computational speed of NB-COIN is slower by few seconds but
the speed is change dramatically when the number of job is increased.

Figure 5.1 The graph shows computational time consumed by NB-COIN over other

compared metaheuristics

0

20

40

60

80

100

120

20 x5 20 x10 20 x 20 50 x 5

Hybrid Meaheuristic Ant Colony System NB-COIN

31

5.2.2 The Performance Analysis

In this section, the solutions acquired from NB-COIN were tested on the Taillard
benchmark against the upper bound. Although NB-COIN achieved the upper bound
only a few solutions, it is essential to mention that NB-COIN runs on the PC and find the
high quality solution in short CPU time while the upper bound are generally generated
by branch and bound techniques and runs on a powerful workstations for extended time
periods.

Moreover, the performance of NB-COIN was measured by the quality of solution. It
is the percentage of gap between the makespan from our algorithm and the upper
bound(UB) of Taillard. Each instance was run 5 times. To calculate is the percentage of
gap, the equation is shown as follow;

𝐺𝑎𝑝 (%) =
𝐶𝑚𝑎𝑥−𝑈𝐵

𝑈𝐵
× 100 (5.1)

The results of three comparison methods; NEH, CG and SG are adopted from
the original paper proposed by Nawaz et al. [4] and M. Ancau[29] to compare against
NB-COIN. Overall, we found that NB-COIN performs far better than the NEH and the
constructive greedy in all problem sizes while it is slightly superior the SG in the small
size of problem (20×5). Moreover, NB-COIN provides a wide variety of solution that
share the same quality.

Table 5.3 shows the result of 20×5 instance. NB-COIN not only found an
optimum solution but the average gap is also a lot lower than both NEH and CG.
However, comparing with SG algorithm, the average gap is a bit higher but NB-COIN
performs better in term of the number of good solutions.

32

The quality of solutions in the 20×10 and 20×20 problem are shown in Table 5.4
and Table 5.5. Since the performance of CG and SG algorithm for the instance where m
∈ {10,20} are not report by M. Ancau[29], NB-COIN is solely tested with the NEH. The
results show that the average gap of NB-COIN is over triple times better than the NEH in
both size of problems.

Instances UB NEH NB-COIN
Gap%

NEH NB-COIN

Ta011 1582 1680 1599 6.195 1.074

Ta012 1659 1729 1679 4.219 1.205

Ta013 1496 1557 1518 4.077 1.471

Ta014 1377 1439 1392 4.502 1.089

Ta015 1419 1502 1433 5.850 0.987

Ta016 1397 1453 1417 4.008 1.432

Ta017 1484 1562 1513 5.256 1.954

Ta018 1538 1609 1575 4.616 2.406

Ta019 1593 1647 1608 3.390 0.942

Ta020 1591 1653 1617 3.897 1.634

Average 4.601 1.419

Table 5.4 Performance comparison of Taillard’s 20×10 instance

Instances UB NEH CG SG NB-COIN
Gap%

NEH CG SG NB-COIN

Ta001 1278 1286 1286 1278 1294 0.626 0.626 0 1.252

Ta002 1359 1365 1367 1366 1363 0.442 0.589 0.515 0.294

Ta003 1081 1159 1141 1097 1090 7.216 5.550 1.480 0.833

Ta004 1293 1325 1358 1306 1304 2.475 5.027 1.005 0.851

Ta005 1235 1305 1301 1244 1244 5.669 5.344 0.729 0.729

Ta006 1195 1228 1224 1210 1210 2.762 2.427 1.255 1.255

Ta007 1239 1278 1264 1251 1251 3.148 2.018 0.968 0.968

Ta008 1206 1223 1268 1206 1206 1.410 5.141 0 0

Ta009 1230 1291 1277 1253 1253 4.959 3.821 1.870 1.870

Ta010 1108 1151 1144 1117 1120 3.880 3.250 0.812 1.083

Average 3.258 3.379 0.863 0.913

Table 5.3 Performance comparison of Taillard’s 20×5 instance

33

Instances UB NEH NB-COIN
Gap%

NEH NB-COIN

Ta021 2297 2410 2323 4.919 1.132

Ta022 2099 2150 2119 2.430 0.953

Ta023 2326 2411 2349 3.654 0.989

Ta024 2223 2262 2242 1.754 0.855

Ta025 2291 2397 2314 4.627 1.004

Ta026 2226 2349 2243 5.526 0.764

Ta027 2273 2362 2300 3.915 1.188

Ta028 2200 2249 2235 2.227 1.591

Ta029 2237 2320 2276 3.710 1.743

Ta030 2178 2277 2200 4.545 1.010

Average 3.731 1.123

Table 5.5 Performance comparison of Taillard’s 20×20 instance

As seen in Table 5.6, NB-COIN performs very well in Taillard’s 50×5 instance. It
is clear that the SG provides slightly better results in this size of problem. However, NB-
COIN found more optimum solutions than SG and has lower average gap than both the
NEH and CG algorithm. In addition, in each instance, although the average gap of SG
algorithm is slightly lower than NB-COIN but the SG consumes more CPU time at almost
double.

34

Instances UB NEH CG SG NB-COIN
Gap%

NEH CG SG NB-COIN

Ta031 2724 2733 2761 2724 2724 0.330 1.358 0 0

Ta032 2834 2843 2889 2848 2848 0.317 1.941 0.494 0.494

Ta033 2621 2640 2674 2622 2640 0.725 2.022 0.038 0.725

Ta034 2751 2782 2782 2782 2771 1.127 1.127 1.127 0.727

Ta035 2863 2868 2908 2863 2863 0.175 1.572 0 0

Ta036 2829 2850 2863 2840 2835 0.742 1.202 0.389 0.212

Ta037 2725 2758 2781 2732 2739 1.211 2.055 0.257 0.514

Ta038 2683 2721 2780 2701 2704 1.416 3.615 0.671 0.783

Ta039 2552 2576 2595 2562 2565 0.940 1.685 0.392 0.510

Ta040 2782 2790 2787 2784 2782 0.287 0.180 0.072 0

Average 0.727 1.676 0.343 0.396

Table 5.6 Performance comparison of Taillard’s 50×5 instance

Overall, it is clear that 10% of the solution found by NB-COIN is likely to be an
optimal solution with 0% from upper bound where 3 out of 4 solutions are found in large
instance (50x5). The gap averaging over all test instances is 0.96% from the upper
bound. Figure 5.2 show the gap percentage of NB-COIN from the optimum value or
upper bound in 4 set of test instances.

Figure 5.2 The performance of NB-COIN in term of gap % from upper bound

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

20 x5 20 x10 20 x 20 50 x 5

35

5.3 Conclusion

This chapter presented the computational environment and result for NB-COIN in
the permutation flowshop scheduling problem. The proposed method was tested on a
set of 40 Taillard instance. The experiment results are compared with powerful heuristics
and metaheuristic such as Ant Colony system, NEH and constructive and stochastic
greedy.

The results show that NB-COIN is an effective algorithm that can provide optimal
solutions by 10% of the test instances. Moreover the average gap between the solutions
and upper bound is also very low at 0.96%. The computational time of NB-COIN is also
short which outperforms well-known complex algorithms such as ant colony system and
hybrid metaheuristics in the small instance. However, the computational time of COIN is
sensitive to the number of job so the computational time is increased dramatically when
increasing the job number.

The next chapter will draw a conclusion of this research as well as provides a
suggestion for future work.

36

 Chapter 6
Conclusion and Future Work

The previous chapter presented the experimental design and computational
result of this research.

This chapter will provide an overall conclusion to the research, based on the
objective that has been achieved. The future work will also be suggested.

6.1 Conclusion

In this research, Node-based Coincidence algorithm was implemented and tested
on the problem to find optimum solutions in the makespan minimization of the
permutation flowshop scheduling.

The permutation flowshop scheduling problem is proved to be np-hard problem
when the number of machine is higher than 2 machines. It is very difficult to find an
optimal solution since the computational time will increase exponentially when the
number of machine increases. Therefore, it is necessary to use heuristic or metaheuristic
to solve the problem.

NB-COIN adopts an idea of incremental learning from the estimation of distribution
Algorithm which belongs to Evolutionary algorithm class. It makes use of positive and
negative knowledge to rapidly improve the solution. With this negative feedback, NB-
COIN can reduce solution search space to focus only on good sampling. Also, the
procedure of NB-COIN is very simple with only a few user defined parameters so it is
very easy to replicate and implement.

On the experiment and results, NB-COIN is tested with a set of 40 Taillard
instances and proved to outperform heuristic such as NEH and Greedy (CG and SG),
the metaheuristic such as ant colony system and hybrid metaheuristic. The proposed
method was tested in two criteria, computational time and performance.

37

1. The computational time

In this criteria, NB-COIN outperforms At Colony system and Metaheuristic in
small instances where the number of job is 20 jobs. However, the computational
time of NB-COIN will be far higher than these two algorithms when the number of
job increases to 50.

2. Performance

The performance of NB-COIN is tested with NEH and greedy heuristics. The
experiment shows that NB-COIN successfully achieves 4 optimal solutions which
is 10% of the instance. Other the solutions of NB-COIN are also very close to the
optimal value, at only 0.96% from the upper bound in average.

Hence, NB-COIN is an outstanding method that is easy to apply in the real world
situation where computational time and quality solution is preferred.

.

6.2 Future Research

This research can be expanded and improved in the future work in various ways.

1. Implement NB-COIN in other flow shop scheduling problem

There are many flow shop scheduling problems such as blocking flowshop
scheduling problem, no wait flowshop scheduling problems and hybrid floshop
scheduling problems. Since NB-COIN has proved to be an effective tool for the
permutation flowshop scheduling problems, it is worth trying on other kind of flow
shop problems.

2. Implement NB-COIN in other scheduling problems.

NB-COIN also can be implemented and tested in other scheduling problems
such as job shop scheduling problems and multi-processing scheduling
problems.

3. Consider multi-objective in the permutation flowshop scheduling problems.

38

Some researchers consider 2 to 3 objectives on the permutation flowshop
scheduling problems in order to cope with the practical environment where only
1 objective is not enough. Therefore, it is interesting to test NB-COIN on the
multi-objective problems such as the combination of flow time and make span
minimization.

4. Combine NB-COIN with some source of local search or convert to hybrid COIN.

The performance of COIN can be increased by combining other methods and
uses it as a local search in order to avoid local trap of optima.

REFERENCES

[1] S. M. Johnson, "Optimal two‐and three‐stage production schedules with setup
times included," Naval research logistics quarterly, vol. 1, pp. 61-68, 1954.

[2] M. R. Garey, D. S. Johnson, and R. Sethi, "The complexity of flowshop and
jobshop scheduling," Mathematics of operations research, vol. 1, pp. 117-129,
1976.

[3] J. K. Lenstra, A. R. Kan, and P. Brucker, "Complexity of machine scheduling
problems," Annals of discrete mathematics, vol. 1, pp. 343-362, 1977.

[4] M. Nawaz, E. E. Enscore, and I. Ham, "A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem," Omega, vol. 11, pp. 91-95, 1983.

[5] D. Palmer, "Sequencing jobs through a multi-stage process in the minimum total
time--a quick method of obtaining a near optimum," OR, pp. 101-107, 1965.

[6] H. G. Campbell, R. A. Dudek, and M. L. Smith, "A heuristic algorithm for the n
job, m machine sequencing problem," Management science, vol. 16, pp. B-630-
B-637, 1970.

[7] D. G. Dannenbring, "An evaluation of flow shop sequencing heuristics,"
Management science, vol. 23, pp. 1174-1182, 1977.

[8] E. Taillard, "Some efficient heuristic methods for the flow shop sequencing
problem," European journal of Operational research, vol. 47, pp. 65-74, 1990.

[9] J. M. Framinan, R. Leisten, and R. Ruiz-Usano, "Efficient heuristics for flowshop
sequencing with the objectives of makespan and flowtime minimisation,"
European Journal of Operational Research, vol. 141, pp. 559-569, 2002.

[10] J. Framinan and R. Leisten, "An efficient constructive heuristic for flowtime
minimisation in permutation flow shops," Omega, vol. 31, pp. 311-317, 2003.

40

[11] J. Grabowski and M. Wodecki, "A very fast tabu search algorithm for the
permutation flow shop problem with makespan criterion," Computers &
Operations Research, vol. 31, pp. 1891-1909, 2004.

[12] E. Nowicki and C. Smutnicki, "A fast tabu search algorithm for the permutation
flow-shop problem," European Journal of Operational Research, vol. 91, pp.
160-175, 1996.

[13] C. R. Reeves, "Improving the efficiency of tabu search for machine sequencing
problems," Journal of the Operational Research Society, pp. 375-382, 1993.

[14] J.-P. Watson, L. Barbulescu, L. D. Whitley, and A. E. Howe, "Contrasting
structured and random permutation flow-shop scheduling problems: search-
space topology and algorithm performance," INFORMS Journal on Computing,
vol. 14, pp. 98-123, 2002.

[15] C. R. Reeves, "A genetic algorithm for flowshop sequencing," Computers &
operations research, vol. 22, pp. 5-13, 1995.

[16] C. R. Reeves and T. Yamada, "Genetic algorithms, path relinking, and the
flowshop sequencing problem," Evolutionary computation, vol. 6, pp. 45-60,
1998.

[17] T. Stützle, "An ant approach to the flow shop problem," in Proceedings of the 6th
European Congress on Intelligent Techniques & Soft Computing (EUFIT’98),
1998, pp. 1560-1564.

[18] F. Ahmadizar, F. Barzinpour, and J. Arkat, "Solving permutation flow shop
sequencing using ant colony optimization," in Industrial Engineering and
Engineering Management, 2007 IEEE International Conference on, 2007, pp.
753-757.

[19] C. Rajendran and H. Ziegler, "Ant-colony algorithms for permutation flowshop
scheduling to minimize makespan/total flowtime of jobs," European Journal of
Operational Research, vol. 155, pp. 426-438, 2004.

[20] M. F. Tasgetiren, Y.-C. Liang, M. Sevkli, and G. Gencyilmaz, "A particle swarm
optimization algorithm for makespan and total flowtime minimization in the

41

permutation flowshop sequencing problem," European Journal of Operational
Research, vol. 177, pp. 1930-1947, 2007.

[21] T. Stützle, "Applying iterated local search to the permutation flow shop problem,"
FG Intellektik, TU Darmstadt, Darmstadt, Germany, 1998.

[22] B. Jarboui, M. Eddaly, and P. Siarry, "An estimation of distribution algorithm for
minimizing the total flowtime in permutation flowshop scheduling problems,"
Computers & Operations Research, vol. 36, pp. 2638-2646, 2009.

[23] G. Zobolas, C. D. Tarantilis, and G. Ioannou, "Minimizing makespan in
permutation flow shop scheduling problems using a hybrid metaheuristic
algorithm," Computers & Operations Research, vol. 36, pp. 1249-1267, 2009.

[24] H. Liu, L. Gao, and Q. Pan, "A hybrid particle swarm optimization with estimation
of distribution algorithm for solving permutation flowshop scheduling problem,"
Expert Systems with Applications, vol. 38, pp. 4348-4360, 2011.

[25] V. Caraffa, S. Ianes, T. P. Bagchi, and C. Sriskandarajah, "Minimizing makespan
in a blocking flowshop using genetic algorithms," International Journal of
Production Economics, vol. 70, pp. 101-115, 3/21/ 2001.

[26] S.-W. Lin and K.-C. Ying, "Minimizing makespan in a blocking flowshop using a
revised artificial immune system algorithm," Omega, vol. 41, pp. 383-389, 4//
2013.

[27] L.-Y. Tseng and Y.-T. Lin, "A hybrid genetic algorithm for no-wait flowshop
scheduling problem," International Journal of Production Economics, vol. 128,
pp. 144-152, 11// 2010.

[28] J.-Y. Ding, S. Song, J. N. D. Gupta, R. Zhang, R. Chiong, and C. Wu, "An
improved iterated greedy algorithm with a Tabu-based reconstruction strategy
for the no-wait flowshop scheduling problem," Applied Soft Computing, vol. 30,
pp. 604-613, 5// 2015.

[29] T. Aldowaisan and A. Allahverdi, "New heuristics for no-wait flowshops to
minimize makespan," Computers and Operations Research, vol. 30, pp. 1219-
1231, 2003.

42

[30] L. Wang and C. Fang, "An effective estimation of distribution algorithm for the
multi-mode resource-constrained project scheduling problem," Computers and
Operations Research, vol. 39, pp. 449-460, 2012.

[31] Q. K. Pan, M. Fatih Tasgetiren, and Y. C. Liang, "A discrete particle swarm
optimization algorithm for the no-wait flowshop scheduling problem," Computers
and Operations Research, vol. 35, pp. 2807-2839, 2008.

[32] Q. K. Pan, M. Fatih Tasgetiren, P. N. Suganthan, and T. J. Chua, "A discrete
artificial bee colony algorithm for the lot-streaming flow shop scheduling
problem," Information Sciences, vol. 181, pp. 2455-2468, 2011.

[33] Q.-K. Pan, L. Wang, J.-Q. Li, and J.-H. Duan, "A novel discrete artificial bee
colony algorithm for the hybrid flowshop scheduling problem with makespan
minimisation," Omega, vol. 45, pp. 42-56, 6// 2014.

[34] E. Nowicki and C. Smutnicki, "The flow shop with parallel machines: A tabu
search approach," European Journal of Operational Research, vol. 106, pp.
226-253, 1998.

[35] K. Alaykýran, O. Engin, and A. Döyen, "Using ant colony optimization to solve
hybrid flow shop scheduling problems," International Journal of Advanced
Manufacturing Technology, vol. 35, pp. 541-550, 2007.

[36] Q. Niu, T. Zhou, and S. Ma, "A quantum-inspired immune algorithm for hybrid
flow shop with makespan criterion," Journal of Universal Computer Science, vol.
15, pp. 765-785, 2009.

[37] J. E. Day and M. P. Hottenstein, "Review of sequencing research," Naval
Research Logistics Quarterly, vol. 17, pp. 11-39, 1970.

[38] A. Reisman, A. Kumar, and J. Motwani, "Flowshop scheduling/sequencing
research: a statistical review of the literature, 1952-1994," Engineering
Management, IEEE Transactions on, vol. 44, pp. 316-329, 1997.

[39] R. Ruiz and C. Maroto, "A comprehensive review and evaluation of permutation
flowshop heuristics," European Journal of Operational Research, vol. 165, pp.
479-494, 9/1/ 2005.

43

[40] Y. B. Park, C. D. Pegden, and E. E. Enscore, "A survey and evaluation of static
flowshop scheduling heuristics," The International Journal of Production
Research, vol. 22, pp. 127-141, 1984.

[41] M. Dorigo, "Optimization, learning and natural algorithm," Phd., DEI, Politecnico
di Milano, Italy, 1992.

[42] W. Wattanapornprom, P. Olanviwitchai, P. Chutima, and P. Chongstitvatana,
"Multi-objective Combinatorial Optimisation with Coincidence algorithm," in
Evolutionary Computation, 2009. CEC '09. IEEE Congress on, 2009, pp. 1675-
1682.

[43] P. Chutima and N. Kampirom, "A multi-objective coincidence memetic algorithm
for a mixed-model U-line sequencing problem," International Journal of
Advanced Operations Management, vol. 2, pp. 201-248, 01/01/ 2010.

[44] R. Sirovetnukul, P. Chutima, W. Wattanapornprom, and P. Chongstitvatana, "The
effectiveness of hybrid negative correlation learning in evolutionary algorithm for
combinatorial optimization problems," in Industrial Engineering and Engineering
Management (IEEM), 2011 IEEE International Conference on, 2011, pp. 476-
481.

[45] K. Waiyapara, W. Wattanapornprom, and P. Chongstitvatana, "Solving Sudoku
puzzles with node based Coincidence algorithm," in Computer Science and
Software Engineering (JCSSE), 2013 10th International Joint Conference on,
2013, pp. 11-16.

[46] P. Hansen and N. Mladenović, "Variable neighborhood search: Principles and
applications," European journal of operational research, vol. 130, pp. 449-467,
2001.

[47] M. Nawaz, E. E. Enscore Jr, and I. Ham, "A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem," Omega, vol. 11, pp. 91-95,
1983.

[48] J. N. Gupta, "A functional heuristic algorithm for the flowshop scheduling
problem," Operational Research Quarterly, pp. 39-47, 1971.

44

[49] J. H. Holland, Genetic algorithms. New York: Scientific American, 1992.
[50] R. Ruiz, C. Maroto, and J. Alcaraz, "Two new robust genetic algorithms for the

flowshop scheduling problem," Omega, vol. 34, pp. 461-476, 2006.
[51] S. Tsutsui, "Node Histogram vs. Edge Histogram: A Comparison of Probabilistic

Model-Building Genetic Algorithms in Permutation Domains," in Evolutionary
Computation, 2006. CEC 2006. IEEE Congress on, 2006, pp. 1939-1946.

[52] O. Srimongkolkul and P. Chongstitvatana, "Application of Node Based
Coincidence algorithm for flow shop scheduling problems," in Computer Science
and Software Engineering (JCSSE), 2013 10th International Joint Conference
on, 2013, pp. 49-52.

[53] W. Wattanapornprom, L. Tieke, W. Wattanapornprom, and P. Chongstitvatana,
"Application of node based estimation of distribution algorithms for solving order
acceptance with capacity balancing problems by trading off between over
capacity and under capacity utilization," in Computer Science and Engineering
Conference (ICSEC), 2014 International, 2014, pp. 238-243.

45

VITA

VITA

Miss Ornrumpha Srimongkolkul was born on January, 24, 1991 in Bangkok,
Thailand. She achieved her bachelor degree in Computer Engineering at
Cholulongkorn University in 2013. After the graduation, she decided to pursue her
master degree in computer engineering at Chulalongkorn University.

46

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	TABLE OF FIGURE
	TABLE OF TABLE
	Chapter 1 Introduction
	1.1 Background
	1.2 Research Purpose and Objectives
	1.3 Research Scope
	1.4 Research Limitation
	1.5 Contribution
	1.6 Research Structure

	Chapter 2 The Permutation Flowshop Scheduling Problem
	2.1 Flow shop
	2.1.1 Flow shop with zero buffer or blocking flow shop
	2.1.2 No Wait flow shop (NWFSP)
	2.1.3 Hybrid flow shop

	2.2 The permutation Flowshop Scheduling Problem
	2.2.1 Model Formulation
	2.2.2 Well-known objectives for the permutation flowshop scheduling problem
	Makespan minimization
	Total Flowtime minimization

	2.2.3 An Example of the permutation flowshop Scheduling Problem
	2.2.4 Complexity of Flowshop Scheduling Problem

	2.3 Conclusion

	Chapter 3 Solution Approaches for the Permutation Flowshop Scheduling Problem
	3.1 Heuristics
	3.1.1 The NEH Heuristic
	3.1.2 Greedy Heuristic
	Constructive Greedy Heuristic (CG)
	Stochastic greedy heuristic (SG)

	3.2 Metaheuristics
	3.2.1 Ant Colony System
	3.2.2 Coincidence Algorithm

	3.3 Hybrid Metahuristics Algorithm
	3.4 Conclusion

	Chapter 4 Node-Based Coincidence Algorithm
	4.1 Characteristic of Node-based Coincidence Algorithm
	4.2 General Procedure of NB-COIN for the PFSP
	4.2.1 Initialization
	4.2.2 Population Sampling
	4.2.3 Population Evaluation
	4.2.4 Candidate Selection
	4.2.5 The matrix update

	4.3 Conclusion

	Chapter 5 Computational Environment and Results
	5.1 Design of computational Experiment
	5.1.1 Test Instance
	5.1.2 User Define Parameter

	5.2 Results
	5.2.1 Computational time
	5.2.2 The Performance Analysis

	5.3 Conclusion

	Chapter 6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Research

	REFERENCES
	VITA

