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Abstract—In this paper we propose three techniques to
improve the performance of one of the major algorithms for
large scale continuous global function optimization. Multilevel
Cooperative Co-evolution (MLCC) is based on a Cooperative
Co-evolutionary framework and employs a technique called
random grouping in order to group interacting variables in
one subcomponent. It also uses another technique called adap-
tive weighting for co-adaptation of subcomponents. We prove
that the probability of grouping interacting variables in one
subcomponent using random grouping drops significantly as
the number of interacting variables increases. This calls for
more frequent random grouping of variables. We show how to
increase the frequency of random grouping without increasing
the number of fitness evaluations. We also show that adaptive
weighting is ineffective and in most cases fails to improve
the quality of found solution, and hence wastes considerable
amount of CPU time by extra evaluations of objective function.
Finally we propose a new technique for self-adaptation of the
subcomponent sizes in CC. We demonstrate how a substantial
improvement can be gained by applying these three techniques.

I. INTRODUCTION

Many Evolutionary Algorithms(EAs) have been used for

optimization problems, but the performance of these algo-

rithms deteriorate as the dimensionality of problem increases,

commonly referred to as the curse of dimensionality. The

problem of finding the global optimum becomes even harder

when some or all of the decision variables have interac-

tion amongst themselves. This class of problems are called

non-separable problems. Variable interaction in large scale

problems drastically increases the total number of function

evaluations in order to find a reasonable solution. Large-scale

non-separable problems are considered as very difficult type

of optimization and they usually require a large number of

fitness evaluations.

The expensive nature of these problems gets magnified in

dealing with real world problems specially in engineering.

In many real world problems the cost of evaluating the

objective function involves interaction with other modules

such as simulation software. RoboCup simulation software

M. N. Omidvar and X. Li are with the Evolutionary Computing and
Machine Learning Group (ECML), the School of Computer Science and
IT, RMIT University, VIC 3001, Melbourne, Australia (emails: momid-
var@cs.rmit.edu.au, xiaodong.li@rmit.edu.au).

X. Yao is with the Centre of Excellence for Research in Computa-
tional Intelligence and Applications (CERCIA), the School of Computer
Science, University of Birmingham, Birmingham B15 2TT, UK (e-mail:
x.yao@cs.bham.ac.uk).

Z. Yang is with Nature Inspired Computation and Application Labora-
tory, the Department of Computer Science and Technology, University of
Science and Technology of China, Hefei, Anhui 230027, China. (email:
zhyuyang@mail.ustc.edu.cn)

is a perfect example[1]. In Evolutionary Robotics, Multidis-

ciplinary Design Optimization(MDO), Shape Optimization,

and other areas the cost of only one evaluation of the

objective function is more than a few minutes if not a few

hours. The expensive nature of objective function specially

in real world problems along with the difficult nature of large

scale non-separable problems demands new ways of cutting

down the total number of fitness evaluations.

Many techniques have been proposed for solving large

scale problems. Cooperative Co-evolution(CC) proposed by

Potter et al.[2] uses a divide-and-conquer approach to divide

the decision variables into subpopulation of smaller sizes and

each of these subpopulations is optimized with a separate

EA in a round robin fashion. CC seems to be a promising

framework for large scale problems, but its performance

degrades when applied to non-separable problems[2]. In an

ideal setting all the interacting variables should be grouped

in one subcomponent in order to enhance the performance

of optimization, but in real world problems there is almost

no prior information about how the variables are interact-

ing. This arises the need for more sophisticated techniques

capable of capturing the interacting parameters through the

course of evolution and grouping them together in one single

subpopulation.

MLCC[3] is a new techniques for large scale non-

separable function optimization which extends another algo-

rithm called DECC-G[4] by self-adapting the subcomponent

sizes. DECC-G relies on random grouping of decision vari-

ables into subcomponents in order to increase the probability

of grouping interacting variables in non-separable problems.

It also evolves a weight vector for co-adaptation of subcom-

ponents for further improving the solutions. In this paper we

investigate the internal mechanism of these algorithms and

demonstrate two major bottlenecks that degrades the perfor-

mance of these algorithms. We also propose some techniques

for further improving the performance of MLCC. First we

show that more frequent random grouping could result in

finding a solution with fewer number of fitness evaluations

without sacrificing solution quality. Secondly we show that

adaptive weighting does not play a major role in the whole

process and in most cases fails to improve the solution and

wastes considerable number of fitness evaluations. Overall,

we demonstrate the followings in this paper:

• Extend the theoretical background of random grouping

to include more than two interacting variables.

• Show that more frequent random grouping is beneficial,

specially when there are more than two interacting
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variables.

• Identifying two major bottlenecks in MLCC and show

how to increase the frequency of random grouping with-

out increasing the total number of fitness evaluations.

• Demonstrate that adaptive weighting is ineffective,

wasting valuable fitness evaluations, and show that how

the overall performance will be significantly improved

by simply disabling this feature.

• A simpler and more intuitive and yet more efficient

alternative to self-adaptation of subcomponent sizes

which is used in MLCC. This new algorithm is called

DECC-ML

• Showing that DECC-ML shows faster convergence

compared to previous techniques. This faster conver-

gence results in saving up to 2

3
of fitness evaluations

which is a significant improvement specially in expen-

sive optimization problems.

The organization of the rest of this paper is as fol-

lows: Section II describes the preliminaries and background

information, Section III describes the new techniques for

cutting down the number of fitness evaluations. Section

IV demonstrates and analyzes the experimental results, and

finally section V summarizes this paper.

II. PRELIMINARIES

A. Cooperative Co-evolution

Divide-and-conquer is an effective technique in solving

complex problems. Cooperative Co-evolution [2] uses a

similar technique to decompose a complex problem into

several simpler sub-problems.

Potter and De Jong made the first attempt to incorporate

CC into Genetic Algorithm for function optimization[2]. The

success of CC attracted many researchers to incorporate

CC into other evolutionary techniques such as Evolutionary

Programming [5], Evolutionary Strategies[6], Particle Swarm

Optimization[7], and Differential Evolution [4], [8].

The original CC decomposes a n-dimensional decision

vector into n subcomponents and optimizes each of the

subcomponents using GA in a round robin fashion. This

algorithm was called CCGA.

The first attempt for applying CC to large scale opti-

mization was made by Liu et al. using Fast Evolution-

ary Programming with Cooperative Co-evolution(FEPCC)[5]

where they tackled problems with up to 1000 dimensions,

but it converged prematurely for one of the non-separable

functions, confirming that Potter and De Jong decomposition

strategy is ineffective in dealing with variable interaction.

van den Bergh and Engelbrecht[7] were first to apply

CC to PSO. They developed two dialects of Cooperative

PSO(CPSO) based on the original Potter’s framework, but

unlike the original CCGA[2] they divided a n-dimensional

problem into m s-dimensional subcomponents as depicted in

Figure 1.

CPSO follows the following steps [5], [2].

1) Divide the variables of the objective function into m-

dimensional subcomponents.
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Fig. 1. The n-dimensional objective vector is divided into m s-dimensional
subcomponents. Pm,b denotes the best individual in mth subcomponent.

2) Optimize each of the m subcomponents in a round-

robin fashion with a certain EA. Note that the number

of evaluations is predetermined.

3) Stop the evolutionary process once the halting criteria

is satisfied or the maximum number of evaluations is

exceeded.

Every individual in a subcomponent is evaluated by con-

catenating it with the best-fit individuals in the rest of the

subcomponents to form what is called a context vector[7].

This context vector contains all the parameters required by

the objective function and is fed into it for fitness evaluation.

This is actually where the cooperation happens.

One major drawback of CPSO is that its performance de-

grades rapidly as the dimensionality of the problem increases,

mainly due to exponential growth of the size of search space.

This problem is magnified when applied to non-separable

problems due to parameter interactions.

CC has also been applied to Differential Evolution in [4],

[8]. Shi et al. [8] used splitting-in-half strategy where they

divide the variables into two equally sized subcomponents

each of which is optimized using a separate DE. Their

decomposition strategy does not scale up efficiently as the

number of dimensions increases. Yang et al.[4] made the first

attempt to develop a more systematic way of dealing with

variable interactions by random grouping of decision vari-

ables into different subcomponents. They have shown that

random grouping of variables will increase the probability

of grouping interacting variables in one subcomponent. This

is further explained in Section II-C.

B. Differential Evolution

Differential Evolution (DE)[2] is a relatively new EA for

global optimization. Despite its simplicity it has shown to be

very effective on a set of benchmark functions [9].

DE[10] is designed to be less greedy compared to other EA

techniques[9] such as PSO [11] which makes it a good choice

for large scale optimization. In large scale optimization,

due to the vastness of the search space, more exploration

is needed in order to find the global optimal point, so



more greedy techniques run the risk of finding a suboptimal

solution.

DE’s control parameters are problem dependent and hard

to determine[12], [13]. Self-Adaptive Differential Evolu-

tion with Neighborhood Search(SaNSDE)[14] self-adapts

crossover rate CR, scaling factor F, and mutation strategy. It

has been shown that SaNSDE performs significantly better

than other similar DE algorithms.

C. Random Grouping and Adaptive Weighting

In the framework proposed by Yang et al. [4], follow-

ing a CC approach, the problem is decomposed into m

s-dimensional subcomponents, and each subcomponent is

optimized using a certain EA. Their method differs from

ordinary CC approaches in two major ways. First they use

random grouping of decision variables in order to increase

the probability of grouping two interacting variables in one

subcomponent, and secondly, the co-adaptation of subcom-

ponents which is done using a technique known as Adaptive

Weighting.

The motivation for random grouping is that in most real-

world non-separable problems, only a proportion of variables

interact with each other, so if an optimization algorithm

manages to group highly dependent variables in one sub-

component there will be a better chance to further improve

the performance of the algorithm. Since there is no prior

information about how the variables are interacting Yang

et al.[4] showed that by random grouping of the decision

variables one can increase the probability of grouping two

interacting variables in one subcomponent for at least some

predetermined number of cycles. They demonstrated that ran-

dom grouping results in a probability of 96.62% in grouping

two interacting variables together for at least two cycles in

a CC setting with 10 subcomponents and a total of 1000
decision variables. However, it remains unclear what the

probability will be if more than 2 variables interacting with

each other, which is more likely the case in most optimization

problems. In Section II-C we show how the probability of

grouping interacting variables drops significantly when there

are more than two interacting variables and we also show

that given the same number of evaluations how to increase

the probability of grouping more than two variables together.

In adaptive weighting, a numeric weight value is applied

to each subcomponent. All of these weight values form a

vector called weight vector. This weight vector is optimized

using a separate optimizer for some predetermined Fitness

Evaluations(FEs). The motivation behind adaptive weighting

is to co-adapt interdependent subcomponents. It is obvious

that optimizing the weight vector is far simpler than the

original problem because the dimensionality of the wight

vector with only m variables is smaller than the original

problem with m × s variables.

Yang et al. [4] outline the steps of weight vector co-

adaptation as follows.

1) set i = 1 to start a new cycle.

2) Randomly split a n-dimensional objective vector into

m s-dimensional vector. This essentially means that

any variable has equal chance of being assigned to any

of the subcomponents.

3) Optimize the ith subcomponent with a certain EA for

a predefined number of FEs.

4) If i < m then i + +, and go to Step 3.

5) Construct a weight vector and evolve it using a separate

EA for the best, worst, and a random member of the

current population.

6) Stop if the maximum number of FEs is reached or go

to Step 1 for the next cycle

This scheme that uses a cooperative co-evolutionary EA

with weight co-adaptation was named EACC-G in [4]. Since

SaNSDE[14] is used as the subcomponent optimizer in Step

3 the algorithm is called DECC-G.

D. Multilevel Cooperative Co-evolution

One major problem with DECC-G is determining the

size of subcomponents. This parameter is problem depen-

dent and is hard to determine. Multilevel Cooperative Co-

evolution(MLCC) [3] is an extension of DECC-G that dy-

namically self-adapts the subcomponent sizes.

MLCC uses a more flexible way of choosing the sub-

component sizes by choosing a group size from a set

S = {s1, ..., st} of predefined group sizes. The selection

probability is calculated based on the performance history of

each of decomposers through the course of evolution.

MLCC uses a sophisticated formula for calculating the

selection probability of decomposers at the beginning of

each cycle. The formula contains some arbitrary constants

which are based on some empirical studies. In this paper

we propose a new technique for self-adaptation of the

subcomponent sizes which simply choose randomly a group

size from a predetermined set. DECC-ML shows substantial

improvement compared to MLCC.

III. PROPOSED TECHNIQUES

In this paper we propose two techniques for optimizing

the performance of DECC-G, and an alternative to MLCC

for self-adapting subcomponent sizes which is easier to

implement and more intuitive, and yet more efficient. In our

algorithm we perform the random decomposition of objective

vector at every iteration which results in more frequent

random grouping.

A. More Frequent Random Grouping

In their paper Yang et al. proved that random grouping

of decision variables and grouping them together at the

beginning of each cycle increases the chance of putting

two interacting variables in the same subcomponent. In [4]

they used 50 cycles and have shown that the probability of

grouping two parameters together at least for two iterations

would be 96.62% in a CC setting with 10 subcomponents

with a total of 1000 variables.

We further generalized their theorem here to any number

of interacting variables. Equation(1) calculates the probabil-

ity of grouping v interacting variables in the same subcom-

ponent for at least k cycles.



Theorem 1. Given N cycles, the probability of assigning

v interacting variables x1, x2, ..., xv into one subcomponent

for at least k cycles is:

P (X ≥ k) =
N∑

r=k

(
N

r

)(
1

mv−1

)r (

1 −
1

mv−1

)N−r

(1)

where N is the number of cycles, v is the total number of

interacting variables, m is the number of subcomponents,

and the random variable X is the number of times that

v interacting variables are grouped in one subcomponent

and since we are interested in the probability of grouping v

interacting variables for at least k cycles, X takes the values

greater than or equal to k. k is also subject to the following

condition k ≤ N .

Proof 1. A variable can be assigned to a subcomponent in

m different ways, and since there are v interacting variables,

the probability of assigning all of the interacting variables

into one subcomponent would be:

psub =
1

m
× ... ×

1

m
︸ ︷︷ ︸

v times

=
1

mv

Since there are m different subcomponents, the probability of

assigning all v variables to any of the subcomponents would

be:

p = m × psub =
m

mv
=

1

mv−1

There are a total of N independent random decompositions

of variables into m subcomponents, so using a binomial dis-

tribution the probability of assigning v interacting variables

into one subcomponent for exactly r times would be:

P (X = r) =

(
N

r

)

pr(1 − p)N−r

=

(
N

r

) (
1

mv−1

)r (

1 −
1

mv−1

)N−r

Thus,

P (X ≥ k) =

N∑

r=k

(
N

r

) (
1

mv−1

)r (

1 −
1

mv−1

)N−r

Given n = 1000, m = 10, N = 50 and v = 4, we have:

P (X ≥ 1) = 1 − P (X = 0) = 1 −

(

1 −
1

103

)50

= 0.0488

which means that over 50 cycles, the probability of assigning

10 interacting variables into one subcomponent for at least 1

cycle is only 0.0488. As we can see this probability is very

small, and it will be even less if there are more interacting

variables. Figure 2 shows how the probability of grouping

interacting variables for at least one cycle drops significantly

as the number of interacting variables increases. The solid

line shows how the probability will change by v for 50 cycles

and the dashed line shows how the probability will change

when there are 1e4 cycles. We can see from the graph that the

probability of grouping 5 variables for at least once using 50
cycles is close to zero whereas the probability of grouping

the same number of interacting variables for at least once

will increase to approximately 60% using 1e4 cycles. Note

that the number of fitness evaluations will be the same by

applying the techniques described later in this section.

Figure 3 shows the effect of increasing N , which is

the frequency of random grouping for different number of

interacting variables. It is evident that higher rate of random

grouping will increase the probability of grouping interacting

variables, regardless of the number of them. So more frequent

random grouping will not only results in higher probability

in grouping interacting variables, but also increases the

efficiency of the algorithms in dealing with more than two

interacting variables. Our studies on DECC-G and MLCC

revealed that the frequency of random grouping could be

significantly increased without increasing the total number

of fitness evaluations. In order to maximize the frequency of

random grouping the subcomponent optimizers should run

for only one iteration which is equivalent to Npopsize number

of fitness evaluations, where Npopsize is the population size

of the EA.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2  3  4  5  6  7  8  9  10

P
ro

b
a
b
ili

ty

Number of interacting variables(v)

P(X >= 1), N=50
P(X >= 1), N=10000

Fig. 2. Increasing v, the number of interacting variables will significantly
decrease the probability of grouping them in one subcomponent, given n =

1000 and m = 10.

In their experiments, Yang et al. used only 50 cycles with

5e6 FEs while there is a potential for approximately 3800
cycles. This setting is counterintuitive because according to

the above discussion, a higher number of random grouping

will result in higher probability in grouping any two interact-

ing variables in one subcomponent and also better efficiency

in dealing with more than two interacting variables.

B. Removing Adaptive Weighting

Further investigation on DECC-G have shown that Adap-

tive Weighting is not effective, and the computational re-

source can be spent on using more frequent random grouping

instead.

Although in theory it seems to be a good way of reducing

the dimensionality of the original problem, in practice its
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Fig. 3. Increasing N , the number of cycle increases the probability of
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role is insignificant in the whole optimization process. In

order to demonstrate this we counted the number of times

that adaptive weighting subcomponent manages to find a

solution, and based on our experiments we realized that

in most cases adaptive weighting fails to find a better

solution. This essentially means that a significant number

of fitness evaluations are wasted by adaptive weighting. In

order to demonstrate this difference we modified DECC-

G and disabled the adaptive weighting subcomponent and

conducted an experiment with the same settings as DECC-G

with a total of 50 cycles. We called this new variant DECC-

NW. Tables IV, V, and VI summarize the results of running

these two algorithms over the same benchmark functions.

C. Self-adaptation of subcomponent sizes

As we mentioned earlier we also proposed a simpler

technique for self-adapting the subcomponent sizes. In our

method we preserved the same decomposer set S as it was

used in MLCC, but instead of using the sophisticated formula

for probability calculation in choosing a decomposer we

simply use a uniform random number generator for selecting

a decomposer from the set S. This only happens when there

is no improvement in the fitness between the previous and

the current cycles.

IV. EMPIRICAL RESULTS

A. Experiment Setup

We evaluated our proposed techniques with CEC’08 test

suite which was proposed on CEC’2008 special session for

Large Scale Global Optimization[15].

This test suite consists of seven functions which are

summarized in Table I.

We ran each algorithm for 25 independent runs for 100,

500, and 1000 dimensions and the mean and standard devi-

ation of the best fitness values over 25 runs was recorded.

The population size was set to 50, and the maximum number

of fitness evaluations(FEs) was calculated by the following

TABLE I

SUMMARY OF THE 7 CEC’08 TEST FUNCTIONS

Func Description Modality

f1 Shifted Sphere Function Unimodal

f2 Shifted Schwefel’s Problem 2.21 Unimodal

f3 Shifted Rosenbrock’s Function Multimodal

f4 Shifted Rastrigin’s Function Multimodal

f5 Shifted Griewank’s Function Multimodal

f6 Shifted Ackley’s Function Multimodal

f7 FastFractal “DoubleDip” Function Multimodal

formula, FEs = 5000×D, where D is the number of dimen-

sions. For the subpopulation sizes we used the same set as it

was used in[3], S = {5, 10, 25, 50, 100}. The experimental

setup is summarized in Table II. For better clarity all the

algorithms mentioned in this paper are summarized in Table

III

TABLE II

EXPERIMENTAL SETUP PARAMETERS

Parameter Value

Dimensions D = {100, 500, 1000}
FEs 5000 × D

{5e + 5, 2.5e + 6, 5e + 6}
Population size Npopsize = 50

Subpopulation sizes S = {5, 10, 25, 50, 100}
Number of runs 25

TABLE III

SUMMARY OF ALGORITHMS DESCRIBED IN THIS PAPER. THOSE

WITHOUT CITATION ARE PROPOSED IN THIS PAPER.

Algorithm Description

DECC-G[4] Cooperative Co-evolutionary DE with

random grouping and adaptive weighting.

DECC-NW Similar to DECC-G with the adaptive

weighting subcomponent disabled.

DECC Cooperative Co-evolutionary DE without adaptive weighting and

running the subcomponent optimizers for only one iteration.

DECC-ML Similar to DECC, but uses a uniform selection

for self-adapting the subcomponent sizes.

MLCC[3] Similar to DECC-G, but it self-adapts the subcomponent

sizes using historical performance of different decomposers.

B. Analysis of Results

The result of 25 independent runs for DECC-ML is

listed in Tables VII, and VIII for 1000 dimensions. These

tables show the progress of the algorithm and is based on

provided template for CEC’08 competition for Large Scale

Global Optimization[15]. The summary Tables IV, V, and VI

compares all five algorithms for 100, 500, 1000 dimensions

respectively.

According to Tables VII, and VIII, DECC-ML shows

faster convergence than MLCC on 6 out of 7 functions.

A deeper analysis of the 25 runs revealed that existence

of two outliers in results of DECC-ML increased the mean

significantly on f5. Running Wilcoxon rank-sum test using

99% confidence interval has shown that DECC-ML is also

significantly better than MLCC on f5. The p-values of

Wilcoxon rank-sum test is recorded in Table VI.

The global optimum point for f7 is unknown, but from

the Tables VII, and VIII it is clear that the algorithm has



a steady progress in the improvement of the fitness value.

This shows the ability of DECC-ML to converge even on a

difficult function such as f7 which is highly multimodal and

has a rugged surface. It is noteworthy that DECC-ML found

the absolute global point in all 25 runs for f4 and in at least

19 out of 25 runs for f1.

By comparing DECC and DECC-G we can see that

DECC found a better solution using same number of fitness

evaluations in 6 out of 7 benchmark functions which shows

that more frequent random grouping of variables yields better

performance. This trend is almost the same for 100, 500, and

1000 dimensions.

The summary Tables IV, V, and VI also confirm our

speculation about high failure rate of adaptive weighting

subcomponent of DECC-G.

From the results in Table VI, V, IV, we can see that

a significant number of fitness evaluations could be saved

for using more frequent random grouping in order to in-

creases the performance of the algorithm, we can conclude

that using the saved fitness evaluations for increasing the

frequency of random grouping will improve the performance

of the algorithm even further. We incorporated both of these

changes into DECC-G,and created another version called

DECC. Experimental results shows that DECC outperforms

DECC-G over 6 out of 7 benchmark functions.

DECC-NW and DECC-G are identical except that in

DECC-NW the adaptive weighting subcomponent is dis-

abled. We tested both algorithms for 50 cycles and equal

number of fitness evaluations. By looking at the Tables IV,

V, and VI we can observe that DECC-NW converged faster

than DECC-G in 6 out of the 7 functions.

Tables IV, V, VI show that DECC-ML outperforms MLCC

in 6 out of 7 test functions which is quite substantial. The

same trend continues over all dimensions which shows the

better scalability of DECC-ML.

Another observation is DECC-ML’s faster convergence

behavior than MLCC for most of the test functions. This

behavior is specially clear from Figures 4(a), 4(e), 4(f). For

functions f1, f5, f6 a solution is found with almost the same

quality with only half of the FEs. This is a very valuable

property specially in real world problems where evaluation

of the fitness function is very costly. DECC-ML also shows

a quicker convergence over the rest of test functions but the

trend is less significant compared to f1, f5, f6.

TABLE IV

RESULTS OF DIFFERENT ALGORITHMS OVER 100 DIMENSIONS(AVERAGE

OVER 25 RUNS). BEST RESULTS ARE HIGHLIGHTED IN BOLD.

DECC DECC-G DECC-ML DECC-NW MLCC
f1 2.7263e-29 1.1903e-08 5.7254e-28 8.9824e-28 6.8212e-14
f2 5.4471e+01 6.0946e+01 2.7974e-04 5.9949e+01 2.5262e+01
f3 1.4244e+02 4.6272e+02 1.8871e+02 1.2959e+02 1.4984e+02
f4 5.3370e+01 1.1783e+02 0 4.5768e+00 4.3883e-13
f5 2.7589e-03 3.7328e-03 3.6415e-03 7.3233e-03 3.4106e-14
f6 2.3646e-01 1.0365e+00 3.3822e-14 1.2224e+00 1.1141e-13
f7 -9.9413e+02 -1.2666e+03 -1.5476e+03 -1.3967e+03 -1.5439e+03

TABLE V

RESULTS OF DIFFERENT ALGORITHMS OVER 500 DIMENSIONS(AVERAGE

OVER 25 RUNS). BEST RESULTS ARE HIGHLIGHTED IN BOLD.

DECC DECC-G DECC-ML DECC-NW MLCC
f1 8.0779e-30 1.0326e-25 1.6688e-27 2.4479e-27 4.2974e-13
f2 4.0904e+01 7.6080e+01 1.3396e+00 7.2776e+01 6.6663e+01
f3 6.6822e+02 1.4295e+03 5.9341e+02 1.2499e+03 9.2466e+02
f4 1.3114e+02 5.6116e+00 0 5.2932e+00 1.7933e-11
f5 2.9584e-04 4.1332e-03 1.4788e-03 2.7584e-02 2.1259e-13
f6 6.6507e-14 1.8778e+00 1.2818e-13 1.0634e+00 5.3433e-13
f7 -5.5707e+03 -6.0972e+03 -7.4582e+03 -6.9403e+03 -7.4350e+03

TABLE VI

RESULTS OF DIFFERENT ALGORITHMS OVER 1000

DIMENSIONS(AVERAGE OVER 25 RUNS). BEST RESULTS ARE

HIGHLIGHTED IN BOLD.

DECC DECC-G DECC-ML

f1 1.2117e-29 3.8745e-27 5.1750e-28

f2 4.2729e+01 7.4234e+01 3.4272e+00

f3 1.2673e+03 2.6306e+03 1.0990e+03

f4 2.4498e+02 1.0666e+01 0

f5 2.9584e-04 7.8435e-03 9.8489e-04

f6 1.3117e-13 2.3475e+00 2.5295e-13

f7 -1.4339e+04 -1.3015e+04 -1.4757e+04

DECC-NW MLCC DECC-ML,MLCC

MWW rank-sum test

f1 3.8145e-27 8.4583e-13 2.851e-06

f2 7.2561e+01 1.0871e+02 6.535e-06

f3 2.5411e+03 1.7986e+03 6.535e-06

f4 7.7209e+00 1.3744e-10 6.482e-06

f5 1.4976e-02 4.1837e-13 1.161e-03

f6 1.7613e+00 1.0607e-12 6.506e-06

f7 -1.41679e+04 -1.4703e+04 6.530e-06

V. CONCLUSION

In this paper we proposed three techniques for further

refinement of MLCC aiming to substantially reduce its com-

putational cost. We have shown that more frequent random

grouping will result in faster convergence without sacrificing

solution quality due to increased probability in grouping in-

teracting variables in a subpopulation. More frequent random

grouping will also increase the efficiency of the algorithms

in dealing with problems with more interacting variables. We

have also shown that Adaptive Weighting is not as efficient

as it was initially thought in reducing the dimensionality of

the problem and in most cases fails to improve the fitness

value. This will waste a considerable amount of fitness

evaluations which might be better used for more effective

random grouping and co-evolution of subcomponents.

We have also proposed an alternative technique for self-

adapting the subcomponent sizes in CC framework and have

shown that this simple technique is very effective.

Finally we proposed an algorithm called DECC-ML which

uses the new uniform selection of subcomponent sizes along

with more frequent random grouping. Experimental results

show that this new algorithm outperforms MLCC in most

cases with a considerable difference. Fast convergence of

DECC-ML allows for saving a significant amount of fitness

evaluations for most of the functions. This saves considerable

amount of CPU time specially in real-world problems with

costly objective functions. The findings of this research

is not limited to the CEC’2008 benchmark functions. We

also observed similar behavior on CEC’2010 benchmark
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Fig. 4. Convergence plots for f1 − f6 with 1000 dimensions



TABLE VII

EXPERIMENTAL RESULTS OF 25 INDEPENDENT RUNS FROM DIFFERENT

STAGES OF EVOLUTION( FEs
100

, FEs
10

,FEs).

1000D f1 f2 f3 f4

1
st 1.7161e+05 1.1887e+02 6.6224e+09 4.0066e+03

5 7
th 4.1466e+05 1.3322e+02 3.4286e+10 5.4659e+03

e 13
th 4.7111e+05 1.3836e+02 4.0710e+10 5.6821e+03

+ 19
th 4.8698e+05 1.6499e+02 9.6494e+10 7.1419e+03

4 25
th 5.1115e+05 1.8057e+02 1.0925e+11 8.3134e+03

M 4.3797e+05 1.4607e+02 5.9240e+10 6.1375e+03

Std 7.7341e+04 1.8315e+01 3.5704e+10 1.3938e+03

1
st 9.1964e-01 3.0613e+01 1.0463e+04 3.0303e+02

5 7
th 2.2217e+01 3.5070e+01 3.2238e+04 3.5180e+02

e 13
th 3.0578e+01 5.5145e+01 4.4875e+04 8.6533e+02

+ 19
th 3.2747e+01 9.6366e+01 1.2383e+05 8.9242e+02

5 25
th 1.3197e+02 1.2751e+02 1.4550e+05 9.1424e+02

M 4.1338e+01 6.4509e+01 6.9043e+04 6.8650e+02

Std 4.0586e+01 3.2558e+01 4.7066e+04 2.6892e+02

1
st 0.0000e+00 6.9941e-02 9.2453e+02 0.0000e+00

5 7
th 0.0000e+00 9.0952e-01 9.8941e+02 0.0000e+00

e 13
th 0.0000e+00 2.0454e+00 1.0675e+03 0.0000e+00

+ 19
th 0.0000e+00 2.8289e+00 1.1714e+03 0.0000e+00

6 25
th 1.2937e-26 1.5571e+01 1.4235e+03 0.0000e+00

M 5.1750e-28 3.4272e+00 1.0990e+03 0.0000e+00

Std 2.5875e-27 4.4636e+00 1.3217e+02 0.0000e+00

TABLE VIII

EXPERIMENTAL RESULTS OF 25 INDEPENDENT RUNS FROM DIFFERENT

STAGES OF EVOLUTION( FEs
100

, FEs
10

,FEs).

1000D f5 f6 f7

1
st 9.9964e+02 1.2131e+01 -1.1674e+04

7
th 2.9989e+03 1.4462e+01 -1.1328e+04

13
th 3.1484e+03 1.6667e+01 -1.0720e+04

5.0e+04 19
th 4.1706e+03 1.6810e+01 -9.7556e+03

25
th 4.5463e+03 1.7210e+01 -9.6350e+03

M 3.3631e+03 1.5605e+01 -1.0589e+04

Std 9.4624e+02 1.7201e+00 7.7443e+02

1
st 2.1304e-01 1.5612e-01 -1.3881e+04

7
th 1.1769e+00 3.9539e-01 -1.3812e+04

13
th 1.6448e+00 4.1639e-01 -1.3445e+04

5.0e+05 19
th 2.1568e+00 7.7794e-01 -1.2909e+04

25
th 2.2286e+00 9.7411e-01 -1.2785e+04

M 1.5547e+00 5.2513e-01 -1.3362e+04

Std 6.0200e-01 2.8627e-01 4.1907e+02

1
st 1.3323e-15 2.0606e-13 -1.4780e+04

7
th 1.4433e-15 2.4158e-13 -1.4771e+04

13
th 1.4433e-15 2.5224e-13 -1.4758e+04

5.0e+06 19
th 1.5543e-15 2.7711e-13 -1.4743e+04

25
th 1.7226e-02 2.8777e-13 -1.4731e+04

M 9.8489e-04 2.5295e-13 -1.4757e+04

Std 3.6923e-03 2.3677e-14 1.4880e+01

functions[16], but lack of space does not allow to include

all of the experimental results.
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