

THE ESSENSE OF

COMPUTER SYSTEM

ENGINEERING

Prabhas Chongstitvatana

CHULALONGKORN UNIVERSITY

To my father I dedicate this book.

i

Preface

The computer system engineering requires a unified view of hardware and

software, from the level of data path to application software. Understanding the

relationship throughout all levels is an essential knowledge to deal with complex

computer systems today.

Most students in computer science or computer engineering department must face

a rapid change in technologies. It is no wonder they usually feel bewildered from

menageries of subjects that are driven by the most up-to-date technologies.

Teachers also face the same dilemma, if we teach only the fundamentals students

will not be able to practice. The tools change too fast. There are too many

subjects to teach and there is not enough time to learn. Throughout my years of

teaching, there is a swing from giving too much practical projects to not giving

any practical projects. Parnas, a famous professor in computer science who

invented the term “module”, once lamented that we were giving out too many

useless projects to our students. I am also a victim of these “fashions”. I am

afraid that my students will not know the latest software tools. I am also afraid

that my students do not know enough fundamentals. The fact is both the number

of tools and fundamentals always increase. Both our students and us, teachers,

are facing the impossible task.

Computer science is a young science. The first electronic computer was invented

in the 1950 era. Computer engineering is not yet a mature engineering discipline.

The microelectronics era has just begun in 1965. I do believe that the present

state of the art in computing, the technologies that are in used nowadays, have

just scratched the surface of possibilities. There are so many wonderful

inventions lying in the future. Let us be patient.

What has been taught in computer science and computer engineering today is

adequate. Many new subjects find their way into the curriculum. Most old

fundamentals have been through revision and condensation. However, helping

students to navigate through these subjects is not always a success as it should be.

The most striking feeling in my teaching career is that students in the senior year,

who have been through the whole curriculum, are unable to “put all the pieces

together” to form a coherent view of the field they studied. There are too many

subjects that they become unrelated, inconsistent, or sometimes irrelevant.

ii

It is my attempt in this book to put a whole picture to students, to ask them to

build a whole system by themselves. The essences of computer system

engineering are the ability to understand components and compose them into a

system. To tackle a project of this size is not possible without critical assessment

of the system we intend to build. My selections are: language, compiler, code

generator, processor and operating system. All these components are

implemented under one language which itself is also a subject to be studied. Each

component is carefully designed so that it is as simple as possible and yet is able

to demonstrate the principle of its operation.

Building a whole computer system always gives a good insight to understand the

current technologies. The ability to ask “what if” questions throughout all levels

of a computer system is a great benefit. Students can discover many principles

by themselves. They can also gain a large factor of confidence in handling a

complex system. They will understand how components interact, how to make

tradeoff between various constraints and how to choose among alternatives.

The book is divided into nine chapters. They present a sequence of system

building, from the language to processor, and then the operating system is

implemented to complete the whole system. The outline of each chapter is as

follows.

Chapter 1 An overview of computer system engineering − the chapter

introduces a computer system structure, the relationships between

hardware and software, the nature of computation, the performance issue

and a brief history of computer.

Chapter 2 High level language Nut − the chapter lays down the first tool for

building our computer system, the language, Nut; the design principle is

discussed; the syntax and semantic of the language are given; the internal

forms and the instruction set are studied.

Chapter 3 Nut compiler − the compiler for Nut language is studied; the parser,

the symbol table, the run-time support and finally the evaluator.

Chapter 4 Code generation − the N-code to machine code translation is studied;

the target machine code, S-code, is elaborated; a three-address instruction

set is also illustrated.

Chapter 5 Microprogramming − in order to study a processor, the control unit is

implemented in microprogram; the chapter discusses the basic and

variations of microprogramming and illustrates a systematic design of

microprogram.

iii

Chapter 6 Processor Sx − the main processor, its data path and its instruction set

are studied; the execution cycle is explained; the microprogram is

developed; the performance on benchmark programs is measured.

Chapter 7 Performance enhancement − to address the issue of performance of a

processor, this chapter studied stack frame caching; the data path is

modified; the effect of the mechanism is analysed.

Chapter 8 Operating System Nos − the Nut operating system is studied in this

chapter; its service includes interprocess communication, message passing

and timer; the supervisor that provides an interface to the processor

simulator is discussed.

Chapter 9 Optimisation − the last chapter takes a look at the performance

improvement at every level of the system; macro expansion, introduction

of new primitives, improve code generation, and new instructions.

The prerequisite is basic knowledge of digital design, computer architecture, and

some knowledge in computer language and compiler. No extensive knowledge

of operating systems is required. Some programming skill is required as students

will run and modify various given simulators.

The book is suitable for senior undergraduate students and the first year graduate

students. I do not cover the basic of all topics discussed in this book. I assume

that they can be learnt from other textbooks or students already acquired them

before tackling the project in this book. However, this book also serves many

practitioners who want to reinforce or refresh some of their skills. I have used

various chapters of this book to teach graduate students for a number of years.

Graduate students usually have diverse background; teachers must supplement

the necessary materials. I also offer this course for senior undergraduate students

who have a uniform background. The material must be condensed to fit the

available learning load.

We will be using one high level language to describe and to model an executable

system in all levels of details throughout. This will force us to be consistent and

to be complete in the sense that every concept can be implemented and measured

in a system. We have three kinds of languages used in this text. The first one is

a normal English text. It will be printed in Times-Roman font. The second one

is the pseudo code, used to describe the algorithm or the specification. It is

printed in Italics. The third language is the implementation language, it is the

executable code, and is printed in Arial font.

iv

For example, a quicksort algorithm can be described as follows.

 An English prose

A quicksort algorithm does the sorting in place using the partition

function to divided elements into two sub-arrays according to the pivot.

Then it is applied recursively to sort both sub-arrays.

The input is an array ax[p..r]. q is the pivot, it divides ax into two

sub-arrays ax[p..q] and ax[q+1..r].

An algorithm

quicksort(ax,p,r)

 if(p < r)

 q = partition(ax, p, r)

 quicksort(ax, p, q)

 quicksort(ax, q+1, r)

A concrete program

(def quicksort (ax p r) (q)
 (if (< p r)
 (do
 (set q (partition ax p r))
 (quicksort ax p q)
 (quicksort ax (+ q 1) r))))

All programs discussed in this text will be presented as many individual functions

that will be composed together, similar to constructing a shape from building

blocks.

This is not a read-only text. It is a construction kit for a whole computer system.

Students will be given a number of pieces of software (a set of functions) that can

be put together to perform a task. Some piece will be left out so that students

have to write it by themselves. However, with the given pieces, the system can

be built to demonstrate its working condition and will process the input and will

give the correct output. Students are asked to extend this working prototype, to

implement some piece in a different way. Students can measure all the effect

v

from their changes. They can decide after analysing the execution profile,

whether any change is good or whether the change is cost effective.

Because of the highly vertical integration of this system, the effect of any level

can be observed, from the top level of applications down to the lowest level of

data path and machine cycle. This can bring insight and appreciation of seeing a

computer system as a whole, completely transparent.

The appendices provide all the code referred to in the text. However, the initial

tools such as an executable Nut-compiler and the most up-to-date version of

program (including updates and bug-fixes) are available from the website

supporting this course. They should be used to build the system.

http://www.cp.eng.chula.ac.th/faculty/pjw/ecse/

Acknowledgements

First and foremost I thank my parents who gave me spirit, knowledge and

compassion. I thank all my teachers; Susak Thongthammachart is my mentor,

Yuen Pooworawan is my true advisor, Boonklee Plunksiri taught me the

wonderful world of switching and finite state automata, Paisan Saguanmoo gave

me the first glimpse of computer architecture, Robin Popplestone is my research

inspiration, Tim Smithers carefully shaped my idea, Chris Malcolm carried me

through my doctoral program, and all teachers who taught me. My existence in

the past fifteen years owed so much to my students as much as to my colleagues.

Somchai Prasitjutrakul is my best friend from the first question he asked me

“why do you want to be a teacher?”. I think now I can answer that question with

confidence. I thank all my colleagues in my department and in other universities.

I thank all my students, without them, there would not be this book. They are my

source of motivation. Several times indeed, they suffered from my effort in

teaching! However, looking back, I think all my students taught me so well how

to be a good teacher. I thank the department of computer engineering,

Chulalongkorn university that provides me with the best environment to teach

and to be taught. It is also the place where I spent most of my time wondering

about the meaning of education. Lastly, I thank my family, my wife who did all

the figures in this book, and my two daughters who suffered negligence during

my time focusing on this book. They gave me the energy!

Prabhas Chongstitvatana

vi

vii

Contents

Preface .. i

Chapter 1 Computer System Engineering 1

1.1 Introduction ... 1
Computation ... 2
Hardware and Software .. 2
Components of a computer .. 3

1.2 Computer system structure .. 4
1.3 Computer hardware ... 6

Instruction execution cycle .. 7
Hardware level ... 8
Data path .. 9

1.4 How a processor performs computation .. 9
1.5 Computer languages and architecture ... 13
1.6 Performance .. 14

Relative performance ... 15
Amdalh’s law ... 16

1.7 Brief history of computer .. 17
1.8 Summary ... 21
References .. 21
Exercises .. 23

Chapter 2 High Level Language Nut 25

2.1 Motivation ... 25
2.2 Language Nut .. 25

Variables .. 26
Simple illustrative examples of Nut programs 26
Access data structure .. 27

2.3 Nut syntax ... 28
2.4 Nut semantic.. 30

viii

System calls ... 32
2.5 Data structures ... 32
2.6 String ... 34
2.7 Readability .. 35
2.8 Iteration versus Recursion ... 36
2.9 Internal forms .. 39
2.10 N-code ... 41
2.11 N-code instruction set ... 42

Encoding .. 43
2.12 Meaning of instructions ... 47

Control-instruction ... 47
Value-instruction .. 48
Arithmetic .. 49
System .. 49
Example of programs written in N-code .. 50

2.13 Summary ... 52
2.14 Further reading .. 52
References .. 53
Exercises .. 53

Chapter 3 Nut Compiler 55

3.1 N-code ... 56
3.2 Compiler .. 58
3.3 How to compile and run Nut-compiler ... 65
3.4 Run-time system and the evaluator ... 68
3.5 Run-time supports ... 69

How the evaluator arranges its memory? ... 69
3.6 Evaluator ... 71
3.7 Lab session .. 78
3.8 Further reading .. 79
References .. 80
Excercises .. 81

ix

Chapter 4 Code Generation 85

4.1 S-code .. 85
Zero argument instructions .. 86
One argument instructions ... 87

4.2 S-code format .. 87
4.3 How the code generator works? .. 92
4.4 Three-address code generation .. 99

S2 description ... 99
S2 addressing mode ... 100
S2 instruction format .. 100
Meaning ... 101
How an expression be transformed into sequence of instructions ... 103
Access simple scalar .. 104
Access an array .. 105
Using jump for conditional branching ... 106
Using jump to do if-then-else ... 106
Generate code for a simple while loop ... 107
Function call ... 107

4.5 Lab session .. 111
4.6 Summary ... 112
References .. 113
Exercises .. 114

Chapter 5 Microprogramming 115

5.1 Hardwired control unit .. 115
5.2 Microprogrammed control unit ... 116

How microprogram work ... 117
5.3 Realisation of microprogrammed systems .. 120
5.4 Equivalence of hardware and software ... 125
5.5 Microprogram for a simple data path .. 126

Data path specification ... 126
5.6 How complicate is a control unit? ... 131
5.7 Advantage and disadvantage of microprogram 132

Advantage .. 132
Disadvantage .. 132

5.8 Summary ... 133

x

5.9 Further Reading ... 133
References .. 134
Exercises .. 135

Chapter 6 Sx Processor 137

6.1 Data path ... 137
Memory access ... 138
Register access ... 141

6.2 Execution cycle ... 141
Execution cycle in RTL ... 142
Microprogram .. 146

6.3 Performance .. 151
6.4 Sx processor simulator .. 152

Data path .. 152
Control unit .. 153

6.5 Lab session .. 156
How to microprogram Sx .. 158

6.6 Summary ... 161
6.7 Further reading .. 161
References .. 162
Exercises .. 163

Chapter 7 Performance Enhancement 165

7.1 Profile analysis .. 165
7.2 Key ideas ... 167

Push/pop ... 168
Implementing the SP unit ... 169
Stack frame .. 170

7.3 New data path .. 171
7.4 Microprogram of Sx2 .. 174
7.5 Performance .. 178
7.6 Summary ... 180
7.7 Further reading .. 180
References .. 181
Exercises .. 181

xi

Chapter 8 Nut Operating System 183

8.1 Operating system concepts .. 183
8.2 Nut operating system ... 187
8.3 Process .. 188
8.4 Scheduler ... 189
8.5 Nos supervisor (Noss) ... 190
8.6 Simulation of interrupt .. 192
8.7 Processor simulator ... 193
8.8 How a process is created ... 194
8.9 How to generate code for run .. 195

Example session ... 198
8.10 Interprocess communication ... 199

Share variables ... 199
8.11 Message passing .. 201

Example of use of send/receive message ... 203
8.12 Timer ... 205

How a timer is implemented? .. 205
Timer process ... 206
Granularity of timer ... 206
What Noss needs to do? ... 206

8.13 Lab session .. 206
8.14 Summary ... 208
8.15 Further reading .. 208
References .. 209
Excercises .. 210

Chapter 9 Optimisation 213

9.1 Framework .. 213
What are we going to measure and how? .. 214
Tools .. 215
Baseline .. 215
Observation .. 216

9.2 Macro expansion ... 217
Example ... 220
How to do macro .. 221

xii

9.3 Introduce new primitives into the language .. 224
9.4 Improving the quality of code from the code generator 227
9.5 Instruction set level ... 232

How to generate microprogram ... 236
Code generation for new instructions .. 237

9.6 Microarchitecture level ... 240
9.7 Summary ... 240
9.8 Further reading .. 241
References .. 242
Exercises .. 243

Appendix A Common Functions 249

Appendix B Nut Compiler 253

Appendix C Nut Completion Solution 263

Appendix D N-code Evaluator 265

Appendix E Code Generator 271

Appendix F Code Generator Solution 279

Appendix G Sx Simulator 281

Appendix H Microprogram 285

Appendix I NOS Supervisor 293

Appendix J Nut Operating System 297

References ... 305

Publications related to this project 311

1

Chapter 1

Computer System Engineering

This chapter covers basic knowledge of the subject. An overview and the

perspective of computer system engineering are given. The components and the

organisation of computer systems in many levels of abstractions are discussed.

The relationship between architecture and computer languages is important and

several issues have been addressed. One important aspect of modern computer

systems, the performance issue, is discussed. Finally, a brief history of computer

is narrated. Computer history itself is a very fascinating subject.

1.1 Introduction

A computer system consists of many parts. A part can be divided into subparts

and forms a hierarchy. Computer system engineering concerns how to compose

these parts to provide a system that has desired functions under various

constraints. A computer system has a central processing unit (CPU), memory,

input/output, interconnections. A CPU consists of an arithmetic logic unit

(ALU), data path, and a control unit. The memory subsystem consists of

hierarchical structure: cache memory (high speed memory), main memory,

virtual memory. The input/output system consists of various peripherals such as

a visual display unit, a keyboard, input devices, an interface to the network,

various kinds of secondary storage, bulk memory, a hard disk etc. The

interconnections link every parts together, the internal bus, the external bus, I/O

channels, ports.

There are many possibilities of choosing and integrating various components of a

system to satisfy a set of constraints stated in a requirement. A computer system

engineer must make decision how to select and integrate various components

such as processors, memory, input/output into a computer system. A computer

system is driven by the advancement of technology. Various parts of a computer

system can be either hardware or software. Hardware and software are

interchangeable depending on technology.

2

Computation

A computer system performs computation. What is computation? Computation

can be defined as symbols transformation. It is a process that transforms input

symbols to output symbols. Symbol is an abstraction. A symbol can represent

something in the real world, or it can represent some mathematical object. The

real world is connected to a computation by sensors and actuators. A sensor

transforms real world events, such as temperature, into symbols that are fed into

computation. An actuator transforms symbols from a computation to affect the

real world. An actuator such as a motor has effect in the real world. It may

change the state of the world. The relationship between computation and the real

world can be shown as the figure 1.1.

Figure 1.1 Relationship between computation and real world

Software is a specification of a computation. From this point of view, a software

does not describe sensors, actuators nor the events in the real world. Hence, it is

necessarily incomplete, i.e. it cannot describe the computation plus the real world

connected to that computation completely.

Hardware and Software

The most important property of computer systems is it programmability. This

property differentiates a computer from all other artifacts. Software is the result

of this property. Software as a specification of computation enables a computer

Computation process

Real world

Actuators

Sensors

Input symbols Output symbols

3

to be multi-function, and even adaptive. An application software runs on a

computer system. At the bottom level of a computer there are electronic circuits

which are called hardware. The interface between a program and a hardware is

the instruction set. An instruction set defines an abstraction of hardware. This

abstraction allows a programmer to program a hardware to perform multiple

functions.

Components of a computer

There are many possibilities in realizing a programmable system. The most

influencial concept is the stored program concept invented by John Von

Neumann. In this model, a computer is composed of two parts: processor and

memory. Memory stores both data and program. Furthurmore, memory can be

accessed directly at any location. This is called random access model. Other

possible realization of a programmable system includes data flow architecture,

systolic architecture etc. We will restrict our study to the stored program

concept.

A processor is connected to memory through two ports: address and data. The

access to memory by a processor is done by sending an address to a memory

device then a value can be read or write through the data port. The size of value

(measured in the number of bits) that can be accessed is the width of the data.

This size defines the bit-size of a processor, such as 8-bit, 16-bit, 32-bit, 64-bit

processor.

A processor contains an arithmetic-logic unit (ALU), registers, a program counter

(PC), an instruction register (IR) and a countrol unit. An ALU performs

arithmetic and logic functions: add, substract, multiply, divide, and, or, not and

others. Registers are the fast memory used by a processor to store the

intermediate results. A program counter keeps track where the current instruction

is. It is changed by instructions that alter the flow of control of a program (if-

then-else, loop, and function call in a high level language). An instruction register

stores the current instruction fetched from memory. Its content (the instruction)

signals the control unit to initiate the execution of that instruction. The control

unit sends control signals to all parts in the processor to co-ordinate their

activities. The control unit is a large finite state machine. It is the most complex

part of a processor.

4

Figure 1.2 Components of a computer

1.2 Computer system structure

A computer system can be seen as many level of descriptions, from the

applications to the lowest level of electronic circuits. A computer system

consists of many parts of which can be regarded as layers. These layers are

described at different level of abstraction. There are many ways to define the

level of abstractions. For example, a computer system at the bottom level

consists of the actual hardware devices: a central processing unit, a memory,

input/output devices and interconnections. These hardware devices can be

described at the level of: functional units, finite state machines, logic gates down

to the electronic circuits. On top of hardware of the system, an operating system

gives services to application programs. The interface between programs and

hardware is the instruction set description. A computer system can also be

viewed as having two aspects: physical and logical. The physical system is

composed of the actual physical components. The logical system describes the

design and the organization.

register
s

ALU

Control units

Instruction register

Program counter

program

data

data

address

memory processor

5

Figure 1.3 The level of description of computer systems

Application level is what a user typically sees a computer system, running his/her

application programs. An application is usually written in a computer language

which used many system functions provided by the operating system. An

operating system is abstraction layers that separate a user program from the

underlying system-dependent hardware and peripherals.

The level of traditional computer architecture begins at the instruction set. An

instruction set is what a programmer at the lowest level sees of a processor

(programming in an assembly language). In the past, instruction set design is at

the very heart of computer design. The concept of the family of computer was

promoted by IBM around 1970. They proposed the concept of one instruction set

with different level of performance for many models. This concept is possible

because of the research effort of IBM in using “microprogram” as the method to

implement a control unit. However as the present day processor designs

converge, their instruction sets become more similar than different. The effort of

the designer had turned to other important issues in computer design.

Finite state machine description is a mathematical description of the behaviour of

a system. It is becoming an important tool for verification of the correct

behaviour of the hardware during designing of a processor. As a processor

becomes more and more complex, a mathematical tool is required in order to

guarantee the correct working behaviour since an exhaustive testing is impossible

and partial testing is expensive (but still indispensable). Presently it is estimated

Applications

Operating system

Instruction set

Functional units

Finite state machine

Logic gates

Electronics

6

that more than half of the cost in developing a processor is spent on verifying that

the design works according to its specification.

The lower level of logic gates and electronics describe the logical and actual

circuits of a computer system and belongs to the realm of an electrical engineer.

This level of abstraction enables separate layers to be designed and implemented

independently. It also provides a high degree of tolerance to changes. A change

in one layer has limited effect on other layers. This degree of decoupling is

important as a computer system is highly changeable and technology-dependent.

The changes are very frequent; a new microelectronic fabrication process leads to

a higher speed device, a new version of operating system provides more

functionality, new applications are created. Without separation into layers all

these changes will interact in a complex and uncontrollable way. The level of

abstraction is a key concept in designing and implementing a complex system.

1.3 Computer hardware

The basic elements are logic gates. A complete set of gates composed of: AND,

OR, NOT gates. (This is not the only basis, there are several others). NAND

gate (NOR gate) is complete because it can performed the same function as

AND, OR, NOT gates. Logic gates are used to build larger functional units

which are the building blocks of a computer. There are two types of logic gates,

one with memory and one without.

A combinational logic has no memory; its output is the function of its input only.

To create memory, the output is fed back to the input. The resulting circuit is

called a sequential logic.

A sequential logic is the logic gate with memory. The basic element is called

flip-flop. There are many types of flip-flop such as RS, JK, T and D-type flip-

flop. A sequential logic has “states”. The output depends on both inputs and

states. There are two types, synchronous and asynchronous. A synchronous logic

has a common clock. It is a rule of thumb for design engineers to choose a

synchronous logic because it is much simpler to design and to debug. One draw

back of synchronous design is that the maximum speed of the clock is determined

by the slowest part of the circuit. Therefore it is a worst-case design. An

asynchronous logic has no central clock, hence it can be much faster than

synchronous design when the clock rate is very high and clock skew becomes a

problem. The output of one stage is used to drive the next stage. It is difficult to

7

arrange the timing for the circuit to operate properly as the delay of each element

affects the timing of the whole circuit. There are large variation of delay when

fabricating each logic element. This fact often makes asynchronous design

impractical or very expensive.

An example of asynchronous design illustrates the point above. The super

computer ILLIAC from the university of Illinois at Urbana-Champaign has

asynchronous design to achieve high clock rate [BEL71]. Each connecting wire

has to be trimmed manually to properly adjusted the delay time of each module.

In the era of VLSI, most design is synchronous because it is much easier to get

the design to work properly. Presently due to the advancement of asynchronous

design methodology and the promise of very high speed result (and low power

consumption) the asynchronous design is coming back. It is an active area of

research. There are many standard textbooks on digital logic design which

students can explore the subject in much more details such as the one by Katz

[KAT93].

In order for a computer to execute a program, many functional units are

necessary. Functional units are the building blocks of processors. These building

blocks plus the control unit constitute the basic structure of a processor. Basic

units to perform arithmetic functions are: adder, multiplier, shifter etc. A

functional unit may be built on smaller units, for example, in an adder, a Half

adder is built out of basic gates and two Half adders combined into a Full adder.

The length of operand affects the speed of adder circuits. The delay comes from

the need to propagate the carry bits. Carry-look-ahead logic, invented by Charles

Babbage [LEE95] who was considered the father of modern computer, is used to

speed up the propagation of the carry bits.

Instruction execution cycle

Instructions reside in memory. This is why this architecture is called stored

program. Instructions can be accessed from a processor similar to any piece of

data in memory. A sequence of instructions is a program. A processor starts

running a program by reading instructions from memory and executing them one

instruction at a time.

The cycle starts by a processor sending the address of the current instruction to

memory via the address bus. The current instruction is read from the memory via

the data bus and is stored in the instruction register (IR). IR causes the control

unit to co-ordinate activities in the processor to execute that instruction. The

8

processor then starts to read the next instruction (the program counter is

increment to point to the next instruction) and executing it and so on.

The result of executing of an instruction can effect many parts: registers, data in

the memory, or the program counter. When an instruction changes the program

counter, it causes the program to change the flow, either the program entering the

loop or selecting the next statement depending on the conditional statement.

Hardware level

A processor consists of a data path and a control unit. A data path contains all

the necessary computing elements to carry out a computation task. The control

unit sends control signals to harmonise the data flow in the data path so that the

desired computation occurs. To give an analogy of a processor to an orchestra,

the data path is the musician, the control unit is the conductor.

Components in a data path consist of: logic, register, multiplexer and bus.

• Logic is a combinational function, out = f(in1 ... inn) where f is a Boolean

function {not, and, or}. For example

out = x1 + x2 · x3 + x1 ·x2

Where denotes not, + denotes or, · denotes and functions. A Boolean

expression can be represented as a truth table. An enumeration of all cases

of input values to output values. Logic minimisation is a process to realise a

desired function with minimum number of logic elements (such as gates).

Logic minimisation is an NP-hard problem.

• Registers are storage elements, out(t+1) = in(t), with the control signal

“load” (the change can be either on the positive or the negative edge of the

clock depends on the model). The width of a register defines the number of

bits that can be stored.

• Muliplexors have n inputs (of width m) and select one input to be the output,

called n:1 multiplexer. The control signal to determine the output is called

the select signal.

• Bus consists of wires and buffers. Wires carry data (signal). Buffer controls

the traffic of data from any element to a bus. A bus can be shared to reduce

9

the number of wire within a circuit. A bus can broadcast data to many

receivers limited by the fan-out electrical characteristic of the bus, the ability

to drive other circuits.

With these four elements: logic, register, multiplexor and bus, a processor can be

built.

Data path

The simplest data path consists of a loop from registers to functional units (logic)

and back.

Figure 1.4 A simple data path

For example, suppose there are two registers, named A and B, and an adder. This

data path can perform

A = A + B

with the following control,

1. read two registers into two inputs of the adder.

2. the adder outputs the result of adding its two inputs.

3. the result is written back to a register.

There can be multiple function units working in parallel. The result is more work

done in one cycle round the loop. There are complexities involving in doing

many tasks concurrently such as competing for the same resource.

1.4 How a processor performs computation

Suppose we want to calculate value of a polynomial

f(x) = a x + b x2

registers logic

10

The functional units required to do this computation are multipliers and adders.

The desired computation can be performed by directly connecting an appropriate

number of functional units together (Fig 1.5).

Figure 1.5 A computation graph to evaluate a polynomial

The solution of this computation problem becomes a graph whose nodes are

functional units and arcs are connections of data through these units. The

computation is performed by the flow of data. In this model every units can be

active concurrently. “Programming” in this model becomes specifying the

computation graph.

Another way to compute f(x) is by sequentialise the operations (Fig 1.6). The

required functional units are memory and a general processing unit. A memory

stored all the necessary values: input x, constant a, b, temporary places to keep

intermediate values t1, t2, and the final result f(x). The memory can be read and

written to. Two values can be read from memory at once and the data is fed to a

general processing unit, so called Arithmetic Logic Unit (ALU).

× ×

×

+

a

b

 f(x)

x

11

Figure 1.6 A sequential model of computation

The processing unit can perform multiplication and addition. It has internal

storage to store two input values and one output value. In general, ALU can do a

number of computations. Assume its inputs are x, y, output z, ALU performs

z = f(x, y) where f = { add, sub, mul, increment, ...}. The output of the processing

unit (z) is connected to the write port of the memory. Now the desired

computation can be performed by executing these steps:

 read(x,a)
 alu(mul)
 write(t1)
 read(x,x)
 alu(mul)
 write(t2)
 read(t2,b)
 alu(mul)
 write(t2)
 read(t1,t2)
 alu(add)
 write(result)

Sequential approach to computation enables functional units to be reused as the

computation is performed step-by-step. The intermediate values can be saved in

the memory and they can be used in the later steps. The general processing unit

can perform a number of different functions such as add, subtract, so that only

one unit is sufficient for most kinds of computation. The trade-off is the speed as

x

a

b

t1

t2

f(x)

R
e
a
d

W
rite

z

x

y

Memory
ALU

. . .

. . .

12

the computation becomes sequential there is no opportunity for concurrent

operations as in the graph model. Sequential machines are highly flexible, use

less resource to implement a computation but are slower than the graph

machines. However both graph model and sequential model are similar in the

sense that the computation is carried out by directing the flow of data through

functional units.

The step-by-step instructions of computation in sequential machines become

“program”. Burks, Goldstein and Von Neumann [BUR46] are the first to

propose that programs can reside in the same memory as data. This gives rise to

a class of architecture called Stored program computer (Fig 1.7).

Figure 1.7 Von Neumann (or Princeton) architecture

This is the most popular organisation even today. Storing programs and data in

the same memory enables a processor to be able to manipulate programs easily.

The main disadvantage is the limit of memory bandwidth, which affects the

speed of running an application. As the need for more complex applications

which required large amount of computation increases, having only one

connection between a processor and a memory becomes bottleneck. This

phenomenon is called Von Neumann bottleneck.

Other organisation is possible such as storing programs and data in separate

memories (Fig. 1.8).

program

data

processor

13

Figure 1.8 Harvard architecture

This organisation is called Harvard architecture and is extensively used in the

high-speed processor for the purpose for signal processing. This class of

processors is called Digital Signal Processor (DSP). DSP has many applications.

It is used in modems, in sound synthesizer, in graphic generators etc.

1.5 Computer languages and architecture

Programming techniques influence the design of computers since the early days

of assembly language programming. Most computers today are implemented as

sequential machines. They are suitable to be programmed in a class of high level

programming language, procedural languages. The examples of procedural

languages are C, Pascal, C++, Java. In these languages, the computation is

viewed as step-by-step manipulation of values of variables stored in memory.

There are other paradigms of programming. Backus, the father of FORTRAN,

gave a lecture in the occasion of his reception of Turing award, titled “Can

computers be liberated from Von Neumann bottleneck?” [BAC78]. This lecture

advocated a different programming paradigm called Functional Programming. In

functional paradigm, programming is viewed as the activity of composing

functions. The computation of a function has an important property of

referencial transparency. This means the result of computing a function

depends only on its arguments and does not change by where the function

resides. This property is contrasted to procedural programming which computes

by side effect, i.e. manipulation of variables depends on states. Functional

programming helps to promote the correctness of programs. As this paradigm of

programming views computation as composing functions, it maps nicely to the

graph model of computation. Many proposals being put forward to build

machines those are suitable for this class of programming languages, for example

a graph reduction machine [KOO90].

program

processor

data

14

Different programming paradigms lead to different architectures. Logic

programming paradigm (Prolog programming language and others) requires

architecture capable of inferring facts and rules and ability to backtrack

efficiently, for example [WAR83]. A LISP machine has special instructions to

manipulate the type-tag bits [STE88]. Japanese proposed and built various types

of these machines in the period of their research on Fifth generation computer.

Presently, object-orientated programming paradigm is becoming the dominate

paradigm. The object-oriented programming languages (Java, C++, Smalltalk

etc.) will benefit from machines whose architecture are suitable to implement

them.

1.6 Performance

This section discusses the performance issue. How performance of a computer

system is defined and measured. There are many standard references used to

interpret performance figures. Performance can be used in a relative sense, it is

the measurement of one system compares to another system.

The first commercial electronic computer appeared around 1950. In the first 25

years the performance improvement came mostly from technology and better

computer architecture. Later, the improvement mostly came from the advent of

microelectronics. The speed of components increased 18-35% per year.

Technology progresses from vacuum tubes to transistors to integrated circuits.

The birth of microprocessor around 1970 [FAG96] has great impact on

performance of computers. The growth of performance has been highest for

microprocessors. Since 1980 the performance double every two years. For

example, around 1980 the first IBM PC appeared. Its CPU was an Intel 8088, a

16-bit CPU with 8 MHz clock. It had 16K bytes of memory, one floppy disk and

no hard disk. The later model offered 5M bytes hard disk (so called IBM XT).

Today, a PC is equipped with 32/64-bit CPU with 3 GHz clock, 1G bytes of

memory and 100 G bytes disk. Its performance is around 10,000 times of the first

PC.

Performance is measured by running mixed jobs. Therefore it is not an absolute

figure. It depends on the kind of jobs that are used to measure the performance.

One phenomenon that occurs in the computer technology is that the performance

of a processor has been double every 18 months. This observation is proposed by

Moore [SCH97], who is the pioneer (among a number of other engineers) of

integrated circuit fabrication. He was with Fairchild, one of the earliest IC

15

manufacturer. That observation is known as Moore’s law. The main reason that

makes this law possible is the rapid advance of the IC manufacturing technique,

the shrinking of the physical dimension of the electronic circuits. For the last 30

years semiconductor technology has been roughly quadrupling every three years.

This gives an exponential base of about 1.59 instead of the base 2 proposed in

Moore’s original paper. A more accurate formula for Moore’s law is:

N device on chip = 1.59 (year – 1959)

We define performance as:

Performance = how fast a processor complete its job.

Performance is measured by its execution time of a suite of programs called

benchmark programs. The execution time depends on three factors.

execution time = number of instruction used  cycle per instruction  cycle time

These factors depend on various designs:

• number of instruction depends on instruction set design

• cycle per instruction depends on micro architecture

• cycle time depends on technology

The performance can also be measured by response time and throughput. The

response time is the time between the starting of a user job and the time when the

computer replies. Under multiple jobs, a better measurement is the throughput.

Throughput measures how many jobs can be completed in a unit time. The

response time is called latency of a system. The throughput is also called the

bandwidth of a system.

Performance = how fast a computer can run

performance = response time (latency)

performance = throughput (bandwidth)

Relative performance

To compare the performance of two machines, it is natural to state “X is n%

faster than Y”. The ratio of the execution time is used to state how much one

16

machine is faster than the other machine. The performance is the inverse of the

execution time. The following relationships can be derived.

X is n% faster than Y

execution time Y / execution time X = 1 + n/100

performance = 1/ execution time (or 1/t)

execution time Y / execution time X = performance X / performance Y

n = (performance X − performance Y) / performance Y

Amdalh’s law

The performance improvement can be measured in term of “speedup”. With the

advent of speed enhancement design such as pipeline and parallelism, Amdalh’s

law [AMD67] states how much performance improvement can be achieved for a

given task using the enhancement. The speedup is defined as follows.

speedup = Pe / P

speedup = T / Te

Where Pe is performance with enhancement use, P is performance without

enhancement use, Te is execution time with enhancement use, T is execution time

without enhancement use.

If enhancement is used only partially, the speedup will be severely limited. Let f

be the fraction that enhancement is used.

execution time new = execution time old ((1 − f) + f / speedup)

speedup overall = 1 / ((1 − f) + f / speedup)

Therefore the limit depends on how much the enhancement has been used. In

achieving speedup by parallelization, Amdalh’s law predicts that speedup will be

limited by the sequential part of the program. Let see some numerical example.

Example: A computer has an enhancement with 10 times speedup. That

enhancement is used only 50% of the time. What is the overall speedup?

speedup overall = 1/ ((1 − 0.5) + 0.5/10) = 1.82

17

Please note that Amdalh’s law applies only with the problem of fixed size. When

the problem size much larger than the machine, Amdalh’s law does not applied.

This is why the massively parallel machine is still possible.

1.7 Brief history of computer

The history of computer is full of interesting episodes. We will to start off with

asking the question “Who made the first computer?” To find out the answer we

need to clarify some definition. What kind of machine is considered to be a

computer?

In mechanical era, the computing machine is really a mechanical calculator. In

1890, Charles Babbage designed and attempted to build Analytical Engine, which

contained many ideas that are used in modern computers such as Arithmetic

Logic Unit. However, it was never finished as the British government finally

stopped funding for the construction of Babbage’s Analytical Engine.

The MARK 1 (also known as the IBM automatic sequence controlled calculator)

developed in 1944 at Harvard University by Howard Aiken with the assistance of

Grace Hopper. It was used, by the US Navy, for gunnery and ballistic

calculations, and kept in operation until 1959. The computer was controlled by

pre-punched paper tape and could carry out addition, subtraction, multiplication,

division and reference to previous results. Numbers were stored and counted

mechanically using 3000 decimal storage wheels. It was electro-mechanical

computer and was slow requiring 3-5 seconds for a multiplication operation. This

machine is a configurable calculator, in an essence it is an implementation of

Babbage’s machine with newer technology.

When does a machine become a computer? We will define a modern computer

as a general purpose programmable machine. The “programmability” is

considered an essential characteristic of a computer. Alan Turing was the genius

who proved that the general purpose computer was possible and simple in 1937

in his seminal paper “On computable numbers” [TUR37]. To have this

programmability a computer must have the stored program.

18

Figure 1.9 The ABC diagram [IOW99]

The ABC (Atanasoff Berry Computer) was built in 1937-1942 at Iowa State

University by John V. Atanasoff and Clifford Berry [BUR88] [MOL88]. It

introduced the ideas of binary arithmetic, regenerative memory, and logic

circuits. This machine was essentially a powerful configurable calculator.

Mauchly spent many days with Atanasoff in 1940 studying this machine. This

was the first computer to use electronic valves (tubes) to perform arithmetic.

Atanasoff stopped developing this with the advent of war, and never returned to

it. This machine doesn’t have the “stored program” ability.

In 1943 Flowers in Bletchley Park built the first Colossus machine, a

programmable computer specially designed to crack the German Enigma military

cypher machines. It is not a general purpose and has no stored program. In

1944 Zuse in Germany started work on a truly general purpose programmable

computer of modern type, known as the Z4. The end of the war interrupted

development. Zuse’s earlier machines (Z1-Z3) were elegant and sophisticated in

design, for example using the much more economical binary representation of

numbers, but were basically modernised Babbage machines.

A group of scientists and engineers at the University of Pennsylvania, Moore

School of Electrical Engineering built ENIAC (Electronic Numerical Integrator

and Computer) in 1946 [BUR81]. It was programmed by a plug board, which

wired up the different calculation units in the right configuration, to evaluate a

particular polynomial. Eckert and Mauchly, the designers, at this time patented a

19

digital computing device, and are often claimed to be the inventors of the first

computer. It was later proven in a 1973 US court battle between Honeywell and

Sperry Rand that while spending five days at Atanastoff’s lab, Mauchly observed

the ABC and read its 35-page manual. Later it was proven that Mauchly had used

this information in constructing the ENIAC. Therefore, John Vincent Atanasoff is

now (by some US historians) heralded as the inventor of the first electronic

computer.

In 1945 John Von Neumann published the EDVAC report, a review of the design

of the ENIAC, and a proposal for the design of EDVAC. This is widely regarded

as the origin of the idea of the modern computer, containing the crucial idea of

the stored program. A processor fetches instructions from memory. It also reads

and writes data to and from memory. This is called Von Neumann architecture

where data and instruction co-resides in a memory. This idea came from the

proposal of an electronic computer by US Army Ordnance in 1946. Surprisingly,

Von Neumann himself is not the first author of that proposal [BUR46].

However, Von Neumann name is honored because of his contribution to the

development of this type of computer which has now becomes ubiquitous. The

implementation of this design was completed in 1952.

In 1946 The National Physical Laboratory appointed Turing, who had been

developing ideas of implementing his Turing Machine concept of general

purpose computation in electronic form, to a rival British project intended to

outclass EDVAC, known as the ACE. ACE design was at the time the most

advanced and most detailed computer design in existence. Its construction was

completed in 1950 and named the Pilot ACE.

On 21st June 1948 the first stored program ran on the Small-Scale Experimental

Machine (SSEM), nicknamed “Baby”, the precursor of the Manchester Mk 1

[LAV80]. So Manchester machine was the first to work.

20

Figure 1.10 SSEM Baby from Manchester University archive [MAN]

The first program was written by Tom Kilburn. It was a program to find the

highest proper factor of any number a. This was done by trying every integer b

from a − 1 downward until one was found that divided exactly into a. The

necessary divisions were done not by long division but by repeated subtraction of

b (because the “Baby” only had a hardware subtractor).

Figure 1.11 The first program [MAN98]

21

Trying the program on 218; here around 130,000 numbers were tested, which took

about 2.1 million instructions and involved 3.5 million store accesses. The correct

answer was obtained in a 52-minute run.

By April 1949 the Manchester Mark 1 had been finished and was generally

available for scientific computation in the University. With the integration of a

high speed magnetic drum by the autumn; this was the first machine with a fast

electronic and magnetic two-level store (i.e. the capability for virtual memory).

In 1951 the UNIVAC 1 commercial computer was produced in US, based on the

EDVAC design, and made by Eckert and Mauchly, who by this time had sold

their UNIVAC Company to Remington Rand. It employed decimal arithmetic.

We will stop our trip to the history of computer here. To find out more, there is a

wonderful journal devoted to all aspects of history of computing, “Annals of the

History of Computing”, IEEE Computer Society.

1.8 Summary

We have outlined the whole spectrum of a computer system. A computer system

can be understood as layers of abstraction. Each layer has well defined

characteristic. A computer system engineering requires understanding each

component and how many components interact in a computer system. The most

important character of a computer system is its programmability. We have

focused on computation and its relation to the hardware level, the data path.

Computation can be realised as parallel or sequential in a data path. There is

interchangeability between hardware and software. This fact gives rise to many

choices in the design of a computer system.

References

[AMD67] Amdahl, G., “Validity of the single processor approach to achieving

large scale computing capabilities”, AFIPS Conf. Proc., April 1967, pp. 483-

485.

[BAC78] Backus, J. “Can programming be liberated from the von Neumann

style? A functional style and its algebra of programs”, Communications of

the ACM, August 1978, 20(8):613-641.

22

[BEL71] Bell, C., and Newell, A. Computer structure: Readings and examples.

McGraw-Hill, 1971.

[BUR46] Burks, A. W., Goldstein, H. H. and von Neumann, “Preliminary

discussion of the logical design of an electronic computing instrument”, US

Army Ordnance Department Report 1946.

[BUR81] Burks, A., and Burks, A., The ENIAC: First General Purpose

Electronic Computer, The University of Michigan Press, Ann Arbor,

Michigan, 1981.

[BUR88] Burks, A., and Burks, A., The First Electronic Computer: The

Atanasoff Story, the University of Michigan Press, Ann Arbor, Michigan,

1988.

[FAG96] Faggin, F., Hoff, M., Mazor, S., and Shima, M., “The history of 4004”,

IEEE Micro, December, 1996, pp.10-20.

[GOL47] Goldstein, H., von Neumann, J., and Burks, A., “Report on the

mathematical and logical aspects of an electronic computing instrument”,

Institute of advanced study, 1947.

[IOW99] Iowa State University, Department of computer science, http://

www.cs.iastate.edu/jva/jva-archive.shtml

[KAT93] Katz, R., Contemporary Logic Design, Addison-Wesley, 1993.

[KOO90] Koopman, P., An Architecture for Combinator Graph Reduction,

Academic Press, 1990.

[LAV80] Lavington, S., Early British Computers, Manchester University Press,

1980.

[LEE95] Lee, J., Computer Pioneers, IEEE CS Press, Los Alamitos, California,

1995.

[MAN98] Manchester university, computer science department, MARK1, http://

www.computer50.org/mark1/firstprog.html

[MAN] The university of Manchester celebrates the birth of the modern

computer, http://www.computer50.org/mark1/

[MOL88] Mollenhoff, C., Atanasoff: Forgotten Father of the Computer, ISU

Press, 1988.

[SCH97] Schaller, R., “Moore’s Law: Past, Present and Future”, IEEE Spectrum,

June, 1997.

23

[STE88] Steenkiste, P., Hennessy, J., “Lisp on a reduced-instruction-set

computer: characterization and optimization”, Computer, vol.21, no. 7, July

1988, pp.34-45.

[STN80] Stern, N., “Who invented the first electronic digital computer?”,

Annals of the History of Computing, 2:4 (October), 375-376.

[TUR37] Turing, A., “On Computable Numbers, with an application to the

Entscheidungsproblem”, Proc. Lond. Math. Soc. (2) 42 pp 230-265 (1936-

7); correction ibid. 43, pp 544-546 (1937).

[WAR83] Warren, D., “An abstract Prolog instruction set, Technical report 309,

SRI, 1983.

Exercises

1.1 Write two realisations of the computation of summation of 1..n, one is

data flow paradigm, the other one is in a conventional data path.

1.2 A conventional way of thinking about program is that a program

processes input to output. A new way of thinking about program is that

an event occurs then program responds to it. One can form “if..then”

rules into a program to reflect this new thinking. Write a program to sum

1..n using the “if..then” rules.

1.3 Suppose we do not have programs. How can we built a circuit to solve

Tower of Hanoi problem? (It requires a recursive program to solve it).

1.4 The performance factors: the number of instruction executed and the

cycle per instruction are interrelated. Can it be possible that we design a

computer system to succeed in reducing both factors at the same time?

Please give examples from existing computer systems.

1.5 The question “who built the first electronic computer?” was a topic of

debate in the last decade. There was the case of Maunchly and Eckert

versus Atanasoff. In the end Atanasoff is credited. Look up the detail of

the case in the internet. Describe what happened.

24

25

Chapter 2

High Level Language Nut

Programming is still an art. It requires skill which is acquired through a lot of

practice. Its foundation lays in mathematics. The study of programs as an object

in itself is interesting and useful. By such study we can understand more

thoroughly the relationship between a program and the result we want it to

accomplish. It is my intention in this chapter to introduce the study of programs.

It will give some insight into programming and gives an appreciation of programs

as beautiful man-made objects. A particular high level language called Nut is

defined. Nut is the language used to describe all aspects of the system studied in

this text. Its syntax and semantic including the internal form will be studied in

this chapter.

2.1 Motivation

I will describe a language, Nut language. Nut is inspired by a language defined

by S. Kamin in the chapter 1 of his textbook [KAM90]. The beauty of this

language stems from its smallness and its elegance. There are 11 words which

are already defined (called reserved words). Only one form of syntax rule is

required, using only two characters as syntactic features (the left and right

parenthesis). The grammar for this language can be written down in just a few

lines. Despite of its look of a toy-language, the beauty of its completeness can be

illustrated by showing that the whole executable system including a parser and an

evaluator can be completely written in itself.

2.2 Language Nut

Nut employs the same syntax. It is actually originated in LISP [MCA65]. Nut

has a few simple data types such as array and string. The aim of Nut language is

for teaching. It has been used in several computer architecture classes to teach

26

how high level programming languages and machine codes are related. The

whole language translation process is simple enough that students can modify it

to generate code for their studies.

Nut has a very simple syntax. It is a prefix language and has only one form, (op
arg*). It is designed to be minimal to make it easy to understand. The internal

code is a non-linear code (called N-code). N-code is the data structure

representing a program in Nut language. It has a simple static memory model for

efficiency, and it also has dynamic allocation for flexibility.

The basic element in Nut is an expression. An expression returns a value, except

for an assignment which does not return any value. A variable is evaluated to its

value. Nut has a very small set of operators as it is intended to be used as a

teaching tool. It has a small set of reserved words:

def, let, enum, if, while, do, set, setv, vec, new, sys.

The operators are: + - = < >

Variables

Nut has three types of variable: global, local, array. A global variable must be

declared outside a function definition before it is used, for example (let v)
declares a global variable v. A local variable’s scope is in its defined function.

An array variable has its space allocated by calling (new n) where n is the size of

the array and assigns the return value to the array variable. An array is

dynamically created. Its space is allocated from the heap.

Simple illustrative examples of Nut programs

The easiest way to introduce a new language is to illustrate many examples of the

use of elements of language. The Nut language is printed in Arial font.

1. A simple expression

b + c + d => (+ b (+ c d))

2. An assignment

27

a = b - d => (set a (- b d))

3. A while loop

while i < 11

 i = i + 1

(while (< i 11) (set i (+ i 1)))

4. An if expression

if a > 2 then b = 3 else b = 4

(if (> a 2) (set b 3) (set b 4))

5. A sequence of expression

s = 0

a = a + 2

b = 3

(do (set s 0) (set a (+ a 2)) (set b 3))

Access data structure

6. Declaring and allocating an array. A global variable must be declared before

its use.

ax[20] =>

(let ax)
(set ax (new 20))

7. Getting a value of an element of an array

ax[i] => (vec ax i)

8. Setting a value of an element of an array

ax[k] = 4 => (setv ax k 4)

28

9. Defining a function

sq(x) is x * x

(def sq (x) () (* x x))

A function with local variables, swap interchanges ax[a] and ax[b] using a local

variable t.

(def swap (ax a b) (t)
 (do
 (set t (vec ax a))
 (setv ax a (vec ax b))
 (setv ax b t)))

10. To help readability, the enum is used to create symbolic names.

(enum 10 xAdd xSub xLit)

xAdd is 10, xSub 11, xLit 12.

Some elegant examples: define some primitives using only: if , =, <.

(def and (x y)() (if x y 0))
(def or (x y)() (if x 1 y))
(def not (x)() (if x 0 1))
(def eq (x y)() (= x y))
(def neq (x y)() (not (= x y)))
(def lt (x y)() (< x y))
(def le (x y)() (or (< x y) (= x y)))
(def gt (x y)() (not (le x y)))
(def ge (x y)() (not (< x y)))

2.3 Nut syntax

Every sentence in Nut is expression. An expression has the form

29

(op e)

Where e denotes an expression, op can be any reserved word or a user-defined

word. The control-op has the following syntax.

(set name e)
(if e1 e2 e3)
(while e1 e2)
(do e1 e2 ... en)

The name of a variable and a user-defined word can be any string of characters

except the reserved words. The syntax for defining a user function (not built-in)

is

(def name (formals) (locals) e)

where formals are the list of formal parameters, locals is the list of local

variables. e is the body of the function.

The grammar for Nut is as follows. (* denotes zero or more repetition, terminal

symbols are in bold)

toplevel -> e | define-op

e -> name | control-op | value-op | data-op

control-op -> (if e1 e2 e3) |

 (while e1 e2) |

 (do e1 e2 ... en)

value-op -> (op args)

data-op -> (set name e) |

 (vec name idx) |

 (setv name idx v)

define-op ->

 (def name (formals) (locals) e) |

 (let name) |

 (enum number name ...)

op -> + | - | = | < | > | name

args -> name* | number*

formals -> name*

locals -> name*

number -> integer

30

A name is the identifier name. There are three types of names: global, local and

enumerate. A global variable must be declared (using “let”) before its use. A

local variable is declared inside a scope of the function definition. The

enumerate is used as a symbolic name referring to some constant value. The

define-op is the defining operator. There are three define-ops: def, let,

enum. The value-op is the value producing operator. The operators are + -

= < >. The control-op is the flow control operator: if, while, do. The

data-op is the data access operator: set, setv, vec.

2.4 Nut semantic

To understand the meaning of a program, the meaning of each of its element

must be understood. The arithmetic operators (value-op) have their usual

meaning on the domain of integer. They evaluate all their arguments which must

return integers then apply the operator to these arguments and return the value of

integer. The value-op including a function call evaluates all of its arguments

before applying the operator. This is called call-by-value semantic. The other

possible meaning is the call-by-reference, it is not used in this language. The

control-op treats its arguments in a different way.

(set name e)

“set” assigns a value of an expression e to the variable “name”. A variable can

be local or global. A variable is local when its name is listed in the formal

parameters of the current function otherwise it is global. The returned value is

the value of e.

(if e1 e2 e3)

“if” evaluates e1 and if its value is non-zero (true) it evaluates e2 otherwise

evaluates e3. The returned value is the value of the last expression it evaluates.

(while e1 e2)

“while” is an iterative operator. It evaluates e1, if its value is non-zero it

evaluates e2. This process is repeated until e1 returns zero. The returned value

is the value of e2 before the loop terminate.

31

(do e1 e2 ... en)

“do” is a sequencing operator. It evaluates e1 e2 ... en sequentially and returns

the value of en.

(def name (formals) (locals) e)

The define-op is used to define a user-defined function. Recursion is quite

natural in Nut.

fib n is

 if n < 3 then

 return 1

 else

 return fib(n-1) + fib(n-2)

(def fib (n) ()
 (if (< n 3)
 1
 (+ (fib (- n 1)) (fib (- n 2)))))

Example: a program to solve tower of Hanoi problem

(let num) ; a global array

; define function “mov” with 3 arguments: n, from, t

; and one local variable: other

(def mov (n from t) (other)
 (if (= n 1)
 (do
 (setv num from (vec num (- from 1)))
 (setv num t (+ (vec num t) 1))
 ; else

 (do
 (set other (- 6 (- from t)))
 (mov (- n 1) from other)
 (mov 1 from t)
 (mov (- n 1) other t))))

32

(def main () (disk)
 (do
 (set num (new 4))
 (set disk 6)
 (setv num 0 0)
 (setv num 1 disk)
 (setv num 2 0)
 (setv num 3 0)
 (mov disk 1 3)))

System calls

To enable input/output and other system functions, Nut uses a primitive “sys”.

Sys has a variable number of arguments; the first one is a constant, the number

that identifies the system function. Sys is used to implement library functions

such as print, printchar, etc. Its implementation is dependent on the platform.

For a PC, sys is implemented with an implementation language (our

implementation used C). The following is the list of available system functions:

(sys 1 a) print integer

(sys 2 c) print character

(sys 3) get character

Many system calls are introduced in the later chapters to facilitate low-level

system dependent functions.

2.5 Data structures

How all the data structure can be implemented in a system which provides only

scalar values in integer domain? For example, how to implement a pointer (so

that we can have linked-list and others)? In order to provide an aggregate of data,

a general mechanism to provide an indirect access to memory is an array. An

indirection can be regarded as accessing an array using the “base” address and the

“index”. An index is not an “address”, it is an ordinary integer. If we know the

“base” of the data, then the reference to the data is just an offset (the index) from

the base. To access an array we need 3 operators: new, setv, vec in this syntax:

33

(new size)
(vec name index)
(setv name index value)

“new” allocates memory of “size”, where “size” is an expression, for example

(* 4 10) or 40. What really is “name”? It is a variable, just like the variable that

is defined and set its value by “set”, for example,

(set name 1)

and the name stores the reference to that memory.

Figure 2.1 A name stored a reference to a memory

The memory in our system is a heap, a large block of memory with the base

address at “heap”. To address anywhere in the heap we use “ref” which is an

index into this array of integer.

Figure 2.2 A heap in a memory

ref variable

memory
heap

. . .

. . .

name value

memory

. . .

. . .

34

“vec” evaluates its argument (“name”), gets its value, which is the “ref” to the

data segment and using this reference (plus index) to get the value. This

indirection is called dereferencing. “setv” similarly performs storing a value into

a name indirectly.

With “vec” and “setv” you can define access functions to your user-defined data

structure. A calculation on pointer to a variable becomes an ordinary arithmetic

on integer because the reference is just an integer.

The following is a program to copy one array to another (in the example copy y

to x)

(enum 10 N)
(let a1)
(let a2)

(def array-copy (x y n) ()
 (if (= 0 n) 0
 (do
 (setv y n (vec x n))
 (array-copy x y (- n 1)))))

(def main () ()
 (do
 (set a1 (new N))
 (set a2 (new N))
 (array-copy a1 a2 N)))

2.6 String

An array is used to store a string in Nut. A constant string is useful in a source

program, for example to present an error message. It is converted into a constant

array at compile time. Strings in Nut are implemented with a word-aligned

addressing in mind. A string is an array of integer. The string is terminated by an

integer 0. See the following program for string manipulation, a string copy.

35

; copy s1 = s2

(def strcpy (s1 s2) (i)
 (do
 (set i 0)
 (while (neq (vec s2 i) 0)
 (do
 (setv s1 i (vec s2 i)
 (set i (+ i 1))))
 (setv s1 i 0)))

(def main () (s1)
 (do
 (set s1 (new 20))
 (strcpy s1 “test string”)))

The compiler translated a constant string in the program text into a constant

pointed to data segment storing the string.

2.7 Readability

How easy it is to read a program? This is very much dependent on prior

experience. It is a matter of syntax or form of the language. Three major types

of syntax (based on the concept of operator) are: prefix, infix, and postfix. Most

of us grow up to be familiar with infix syntax; (a * 2) + b. For us, this is easier

to read than prefix syntax; (* a (+ 2 b)), or postfix syntax; a 2 b + *. The

meaning of three forms is the same. However, the difficulty of parsing them is

different. The infix syntax requires specifying precedence of operators for the

correct association and needs parentheses in places where that precedence must

be overridden. A grammar can be written to deal with the precedence. On the

other hand, parsing of a prefix and a postfix expression is trivial. Parsing the

infix and prefix expression naturally results in a structure of tree while the postfix

expression can be transformed into a linear structure easily. However, although a

prefix language is trivial to parse, it tends to need a lot of parentheses especially

on the far right-hand of the expression which is hard to get it right without the

help from an editor that can match parentheses automatically.

The model of language also affects its form. The current language distinguishes

between statement and expression. An expression has well-defined mathematical

meaning, evaluating an expression returns a value. A language can have

36

expression as the only basic unit. This will make it more compact. Consider the

following example:

(if x y 0) is the same as if(x) then return y; else return 0;

We are more familiar with the right-hand side than the left-hand side (LISP).

However you can notice that the left-hand side is much more compact than the

right-hand side. The meaning is “evaluate x, if true then evaluate y else evaluate

0”. The value returned is the value of the last evaluated expression. There is no

need to explicitly “return”. The examples of real languages with different syntax

are; prefix language, LISP [MCA65], postfix language, FORTH [MOO70] and

Postscript.

Let us consider an example of adding one to a variable.

infix syntax a = a + 1
prefix syntax (= a (+ a 1))
postfix syntax &a a 1 + =

For the infix and prefix syntax, the operator “=” (assign) treats its first argument

“a” as special, it is an address. For postfix syntax this must be done explicitly

using another operator “&”. You can not write it the other way. The postfix

expression must be understood using the model of stack. The central concept is

the evaluation stack. Evaluating a variable pushes its value into the stack. An

operator takes its argument from the stack and pushes its result back. Form also

affects the way an operator works. This is an infix language (C):

a[1] = a[2] + 1;

It actually means *(&a + 1) = *(&a + 2) + 1;

The “=” here does not have the same meaning as in a = a + 1 because it takes the

left-hand argument as an expression which must be evaluated to give a value as

address where as the “=” in a = a + 1 takes a simple value directly. The parser

must know this difference.

2.8 Iteration versus Recursion

Programs can be written in iterative or recursive style. The following examples

contrast two styles.

37

(def findName2 (name i) (found)
 (do
 (set found 0)
 (while (and (<= i numNames) (not found))
 (if (streq (def-name-at i) name)
 (set found 1)
 (set i (+ 1 i))))
 (if found i 0)))

(def findName3 (name i)
 (if (> i numNames) 0
 (if (streq (def-name-at i) name) i
 (findName3 name (+ 1 i)))))

“findName2” performs a linear search for a name in the symbol table (def-
name). “findName2” is iterative and uses “found” to break the while loop. “i”

is set to “i + 1” for the next iteration. “findName3” is recursive, “i + 1” is

passed as a parameter to the next recursion. Please note the absence of “set” in

the recursive version.

The next example is the function “atoi” which converts a string such as “-1234”

into its value -1234.

(def atoi4 (s1 i) (m)
 (do
 (set m 0)
 (if (= 45 (vec s1 0)) (set i 1) 0)
 (while (!= 0 (vec s1 i))
 (do
 (set m (+ (* 10 m) (- (vec s1 i) 48)))
 (set i (+ 1 i))))
 (if (= 45 (vec s1 0))
 (- 0 m)
 m)))

(def atoi (s1) ()
 (if (= 45 (vec s1 0))
 (- 0 (atoi2 (+ 1 s1) 0))
 (atoi2 s1 0)))

38

(def atoi2 (s1 m) ()
 (if (= 0 (vec s1 0))
 m
 (atoi2 (+ 1 s1) (+ (* 10 m) (- (vec s1 0) 48)))))

“atoi4” uses iteration with “i” as an index of character and “m” as a local

variable storing the converted value. “atoi” and “atoi2” are the recursive

version. “atoi” handles the negative sign and calls “atoi2” to convert the string.

You can see the simplicity of the structure in the recursive version and the lack of

“set”.

You may think that recursion consumes more memory and runs slower than

iteration. Let us expose more details of this argument. First, the memory

concern, most procedural languages use stack to store all local variables and

actual parameters. Recursive call will consumes this stack where as iteration

does not. However, for the case that the recursive call is the last function

executed in a user-defined function, so called tail-recursion, this stack growth

can be eliminated.

Figure 2.3 A nested call (including recursion) causes growing of activation
records

We can eliminate the activation record of the next call (n+1) by realising that the

call is the last function executed hence all local variables and parameters of the

current activation need not to be saved (as they are not used anymore). The

actual parameters of the next recursive call can substitute the current activation

Activation record
for call n+1

Activation record
for call n

D
ir
e
c
ti
o

n
 o

f
s
ta

c
k
 g

ro
w

th

39

record in-place. A parser or a compiler can recognise tail-recursion and performs

this optimisation.

Second, the speed concern, the speed of recursive call can be slow due to the

overhead of a function call. A function call requires calculating a number of

pointers to adjust the stack. Where as for the iteration the loop can be achieved

by “jumping” which is a cheaper operation than a call. It depends on the

implementation how much this difference will be.

2.9 Internal forms

When an expression (in a source language) is processed, it is transformed into an

internal form before it is evaluated (the internal form is also used to generate

executable codes). This internal form has the structure in the form of a tree

(inverted, the root is at the top). This internal form is distinct from the surface

language. One surface language may have different internal forms and different

surface languages may have the same internal form. You can think of an internal

form as a machine language and a surface language as a high level language.

However, an internal form is not a machine language. It is not directly executable

by any processor (except you want to design a special processor for it). There is

a program that takes an internal form and runs it. This program is called in many

names: an interpreter, a virtual machine or an evaluator.

Suppose we have a function power(x, y) which raises x to the power y.

(def power (x y)
 (if (= 0 y) 1
 (if (= 1 y) x
 (* x (power x (- y 1))))))

The expression defining the body of power can be drawn as Fig. 2.4. A general

purpose linked structure is used to represent this tree structure, called list. List

composed from two kinds of nodes: dot-pair and atom. A dot-pair stores two

components; first component is a pointer to an element of the list and second

component is a link to other dot-pair. An atom stores information (or element of

list). See the following example: (atom is shown in CAPITAL letter and list is

(.). / is NULL pointer signifying the end of a list.)

40

Figure 2.4 The tree representing an expression

Figure 2.5 Lists can be represented by linked dot-pairs and atoms

The internal form composed of the linked-list nodes with two fields: head and

tail. Now we will draw the previous program (power) in this concrete form. The

type of node is denoted by V (value), L (local), G (global) and A (application).

(A B C) (A (B C))

A B C / A /

B C /

if

if 1 =

0 y =

1 y

*

x power

x

1 -

y 1

41

Figure 2.6 The internal form showing the function (power x y)

How this internal form is implemented depends on the choice of data structure.

In the next section we will discuss this implementation issue in more details.

2.10 N-code

N-code is the internal form of Nut language. The structure of program is a list,

composed of dot-pairs. An instruction has the form (op a1... an) represented by

“op” is an atom. Arguments can be either atom or list. A dot-pair composed of a

pair of head and tail cells:

head tail

op a1 a2 … an /

A if

A =

V 0

/

V 1

/ L y

A if

 / L x

A =

V 1 / L y

A *

… …

42

The head stores an atom or a pointer to other cell. If it is an atom, the first bit is

“1”, otherwise it is a dot-pair (a pointer to other cell), and the first bit is “0”. The

tail stores a pointer to other cell, called “link”. The basic data structure is a pair

of consecutive cells which each cell is large enough to store an atom or a link.

There are two kinds of pairs: dot-pair/link and atom/link.

An atom encodes an instruction and one argument.

For a 32-bit system, a cell is 32-bit. A pointer to cell is 31-bit (as one bit is used

to encode atom/dot-pair). The “op” is 7-bit, the “arg” is 24-bit.

2.11 N-code instruction set

N-code instruction set is a definition for the internal representation of Nut

language. The instruction follows from the Nut language pluses some extra

instructions to implement precise operational semantic of Nut language. The

instruction set is divided into four groups: control, value, arithmetic and system.

Each instruction has the form of an atom with 7-bit opcode and 24-bit argument.

1 op arg

 1 5 24

0 dot-pair 0 link

1 atom 0 link

43

Control if while do call fun
Value get put ld st ldx stx ldy sty lit str
Arithmetic + - = < >

System new sys

Encoding

Table 2.1 N-code and its encoding

1 if 2 while 3 do 5 new 6 add
7 sub 10 eq 11 lt 12 gt 13 call
14 get 15 put 16 lit 17 ldx 18 stx
19 fun 20 sys 25 ld 26 st 27 ldy
28 sty 32 str

Totally there are 22 instructions in N-code instruction set. Only value-

instructions have arguments, denoted by “op.arg”. “fun” has special arguments

(to be explained later). “call” has a pointer to its body of a function (the N-code)

as its argument.

To understand its operational semantic, we need to know its run-time

environment. The run-time environment consists of an evaluation stack and the

data segment which provides the place to hold all global, strings and array data.

The evaluation (execution) of a program employs a stack data structure. This

evaluation stack has two purposes, one is to store a dynamic local context, called

activation record, and the second purpose is to be a temporary stack to store the

intermediate results. All local variables are accessed through the activation

record. When a function is evaluated, it has its local environment (local variables

and stack area). The activation record is maintained through two global pointers:

FP (frame pointer), and SP (stack pointer). FP points to the activation record. SP

points to the temporary stack area. SP is on top of FP.

44

Figure 2.8 An activation record

An activation record has the following structure. At FP, the previous FP (FP’) is

stored so that the old context can be restored after the current context is complete

at the end of a function call. The return address is stored next on the top of FP.

This return address is used to restore the instruction pointer (or so called program

counter) to enable a program to return to its caller. Storing a return address in the

context is necessary in a real processor which implements a data path based on

traditional architecture. It is not necessary if we implement an evaluator of N-

code as software because the evaluator can be implemented as recursive calls to

evaluate each instruction and follows the “link” field without using any

instruction pointer (the next chapter discusses this Nut-evaluator)1.

To access local variables, the argument of value-instruction is an index relative

to the frame pointer. For example, to get a value of a local variable 3, the

instruction “get.3” accesses Mem[FP-3] where Mem[.] is the N-machine

memory. Usually this part of memory is called stack segment.

1 Another possibility is to implement a special processor to execute N-code directly

using the recursive evaluation style (with recursive microprogramming). This

alternative also does not need to store a return address in the context.

(ret’)

fp’

lv1

lv2

…

lvn

hi mem

…

lo mem

sp

fp

45

The program written in N-code is presented as a list of N-code. It looks similar

to the source language Nut but the node values are the operational codes not the

tokens of the high level language.

Here is a simple example. A program in Nut to compute a Fibonacci value is

shown below.

(def fib (n) ()
 (if (< n 3)
 1
 (+ (fib (- n 1)) (fib (- n 2)))))

This program when translated into N-code will look like this.

(fun.1
 (if (lt get.1 lit.3)
 lit.1
 (add (call.fib (sub get.1 lit.1)) (call.fib (sub get.1 lit.2)))))

The object code represented in the code segment is shown below. The format of

object code is as follows. Each line of object code represent one pair of cells

written as a tuple of {address tag op arg link} where address

denotes the address of this cell in the code segment, tag denotes the first bit – 0

for dot-pair, 1 for atom, op denotes the operation code, arg denotes its

argument, link denotes the address of the next cell. The code is generated

using the preorder traversal of the source expression; hence the code is generated

with the left-most, depth-first order. The last line of the object is the entry point

of the expression.

2 1 16 3 0

4 1 14 1 2

6 1 11 0 4

8 1 16 1 0

10 1 14 1 8

12 1 7 0 10

14 0 0 12 0

16 1 13 44 14

18 1 16 2 0

20 1 14 1 18

22 1 7 0 20

46

24 0 0 22 0

26 1 13 44 24

28 0 0 26 0

30 0 0 16 28

32 1 6 0 30

34 0 0 32 0

36 1 16 1 34

38 0 0 6 36

40 1 1 0 38

42 0 0 40 0

44 1 19 257 42

The code above can be read as follows.

44 1 19 257 42

It is an atom “fun”, the next link pointed to Mem[42].

42 0 0 40 0

This is a dot-pair with the Mem[40] as the first element and the only element of

this list as the next link contains 0 signified the end of list. This 0 is usually

called a NIL atom.

40 1 1 0 38

This is an atom “if”, the next link pointed to Mem[38].

38 0 0 6 36

This is a dot-pair, the first element is Mem[6], the next link pointed to Mem[36].

6 1 11 0 4

This is an atom “lt”, with its argument at Mem[4].

4 1 14 1 2

This is an atom “get.1” and the next argument is Mem[2].

2 1 16 3 0

47

This is an atom “get.3” and the list of argument ends here. These three lines can

be written out as:

(lt get.1 get.3)

Other lines of object code can be read similarly. We will not pursue reading the

object code of the argument of “if” at Mem[36] any further.

2.12 Meaning of instructions

Now we discuss the meaning of each instruction with respect to its run-time

environment. Mem[.] denotes the memory. SS[.] denotes part of the memory

that is designated for the stack segment. The code and data are stored in Mem[.]

and are called the code segment and the data segment respectively.

The notion of meaning is best explained as the effect of each instruction on its

environment. This style of describing the meaning to a program is called

operational semantic (other ways to describe semantic are axiomatic,

denotational and functional). This can be presented as a function “eval()” which

takes a valid expression of N-code and produces its result. This function eval() is

the evaluator of N-code. It can be implemented both in software (as a virtual

machine) or hardware (a special processor that executes N-code directly).

Control-instruction

(if e1 e2 e3)

“if” does a conditional execution. If eval(e1) is true then eval(e2) else eval(e3)

(while e1 e2)

“while” performs a repeat loop. While eval(e1) is true eval(e2) repeatedly, it

returns the last eval(e2)

(do e1 ... en)

“do” is a sequencing operator. eval(e1) then eval(e2) ... eval(en) return eval(en)

48

(call.x e1 e2..en)

The above expression calls a function with the argument list (e1..en). The

element of this list is evaluated one-by-one, eval(e1)... eval(en), the results are

pushes to the evaluation stack and then goto eval the body of function at x.

(fun.a.v e)

“fun” is an operational code at the beginning of a function definition. It creates a

new activation record. The arguments of the function call are passed from the

evaluation stack to this environment, and the body of function is evaluated. Once

the evaluation of the body is finished, the activation record is deleted. Two

parameters are required to handle creation and deletion of the activation record:

arity and the size of frame. The encoding is “fun.a.v” where a is arity, v is the

size of frame. The size, v, is used in the deletion of activation record, k is v-
arity+1, used in the creation of activation record

The action of “fun.a.v” is:

SS[.] denotes stack segment

k = v-a+1 offset from SP

SS[sp+k] = fp new frame
fp = sp+k

sp = fp

v = eval(e) eval body

sp = fp-v-1 delete frame

fp = SS[fp] restore old FP

Value-instruction

The argument is the index to a local variable. It is relative to the frame pointer.

get.a return SS[FP-a].

(put.a e) SS[FP-a] = eval(e), return eval(e).

(ld.a) load, a is global, return Mem[a].

49

(st.a e) store, a is global, Mem[a] = eval(e), return eval(e).

(ldx.a e) load with index, a is local, return Mem[SS[FP-a] + eval(e)].

(stx.a e1 e2) store with index, a is local, Mem[SS[FP-a] + eval(e1)] =

eval(e2), return eval(e2).

(ldy.a e) load with index, a is global, return Mem[Mem[a] + eval(e)] .

(sty.a e1 e2) store with index, a is global, Mem[Mem[a] + eval(e1)] =

eval(e2), return eval(e2).

lit.a return a.

str.a a string constant, a is a pointer to a string, return a.

Arithmetic

(bop e1 e2) bop are + - = < >. The operators have their usual meaning,

return eval(e1) bop eval(e2).

System

System instructions perform the task of input/output and other services related to

operating system. On a real processor, the system instructions are implemented

differently due to their dependency on a target machine. However, we define

these instructions for their use in the simulation. The result of input/output can

be simulated on the simulator.

(new e) return pointer to a newly allocated chunk of memory of size

eval(e).

(sys.a e) system call sys.a
a = 1 print integer eval(e)

a = 2 print character eval(e)

return eval(e)

50

Example of programs written in N-code

An expression

(= a (+ b 1))

(put.a (+ get.b lit.1))

Function definitions

(def double (x) () (+ x x))

(fun.1.1 (add get.1 get.1))

(def sum (a b s) ()
 (if (> a b)
 s
 (sum (+ a 1) b (+ s a))))

(fun.3.3
 (if (gt get.a get.b)
 get.s
 (call.sum (add get.a lit.1) get.b (add get.s get.a))))

A quicksort program

(def partition (a p r) (x i j flag)
 (do
 (set x (vec a p))
 (set i (- p 1))
 (set j (+ r 1))
 (set flag 1)
 (while flag
 (do
 (set j (- j 1))
 (while (> (vec a j) x)
 (set j (- j 1)))
 (set i (+ i 1))
 (while (< (vec a i) x)
 (set i (+ i 1)))
 (if (< i j) (swap a i j) (set flag 0))))
 j))

51

(fun.3.7
 (do
 (put.4 (ldx.1 get.2))
 (put.5 (- get.2 lit.1))
 (put.6 (+ get.3 lit.1))
 (put.7 lit.1)
 (while get.7
 (do
 (put.6 (- get.6 lit.1))
 (while (> (ldx.1 get.6) get.4)
 (put.6 (- get.6 lit.1)))
 (put.5 (+ get.5 lit.1))
 (while (< (ldx.1 get.5) get.4)
 (put.5 (+ get.5 lit.1)))
 (if (< get.5 get.6)
 (call.swap get.1 get.5 get.6)(put.7 lit.0)))
 get.6))

(def quicksort (a p r) (q)
 (if (< p r)
 (do
 (set q (partition a p r))
 (quicksort a p q)
 (quicksort a (+ q 1) r))
 0))

(fun.3.4
 (if (< get.2 get.3)
 (do
 (put.4 (call.90 get.1 get.2 get.3))
 (call.135 get.1 get.2 get.4)
 (call.135 get.1 (+ get.4 lit.1)get.3))
 lit.0))

52

2.13 Summary

We have introduced a high level language that will be used to describe all levels

of the computer system in this text, Nut. The language itself is intended to be a

minimal language in a sense that it is a very small language usable for our

purpose and yet Nut is complete. It can be used to write its own compiler and

evaluator which will be the topic of the next chapter. The smallness of Nut

allows us to investigate its semantic in full details. The intermediate

representation of Nut language is N-code. N-code is a concrete presentation of

Nut language. The operational semantic of N-code can be defined over its run-

time environment. Given this semantic, a code generator for a target processor

can be implemented or a special processor can be designed to directly execute N-

code.

2.14 Further reading

Language design is a topic of broad spectrum. Most languages in the past have

been constrained by the machines that existed in their period. Overwhelming

concern was the issue of machine efficiency. A large survey of computer

language is described in [HOR83]. However, as the computing machines

become faster and are available abundantly, the emphasis is shifted to the topic of

compatibility and standardisation. The history of programming languages is

interesting, see [WEX78] [BER96]. It takes time for a language to be widely

used and for programmers who are skillful with a language to become available

for the industry. Presently, Java [JOY00] dominates the programming in IT

industries. It popularises the concept of the intermediate language (as JVM the

virtual machine [LIN97] is available on almost any platform). The computer

language is still evolving. A new language, especially the dynamic language

such as the special purpose scripting language, comes into being every year. A

special purpose language has its advantage that it can be designed to facilitate the

specific programming task, such as Game design, or real-time control task.

Special language features can be embedded as primitives in the language such

that they are very easy to use. This can reduce the error from programmers. For

example, a concurrent language for control tasks can have the message-passing

primitives including the semaphore as primitive data types [CHO98]. The future

language will take human behaviour into account more than just the machine that

run it.

53

References

[BER96] Bergin, T., Gibson, R., Gibson, R. Jr., History of programming

languages, vol.2, ACM Press, Addison Wesley, 1996.

[CHO98] Chongstitvatana, P. A multi-tasking environment for real-time control.

Final report, Faculty of Engineering, Chulalongkorn university, research

project number 132-MRD-2537, 1998. Also available at

http://www.cp.eng.chula.ac.th/faculty/pjw/r1/

[HOR83] Horowitz, E., Programming languages: a grand tour, Computer Science
Press, 1983.

[JOY00] Joy, B., (Ed), Steele, G., Gosling, J., Bracha, G. Java(TM) Language
Specification (2nd Ed), Addison Wesley, 2000.

[KAM90] Kamin, S. Programming Languages: An interpreter-based approach,

Addison-Wesley, 1990.

[LIN97] Lindholm, T. and Yellin, F. The Java™ Virtual Machine Specification,

Addison Wesley, 1997.

[MCA65] McCarthy, J. et al. LISP 1.5 Programmer’s Manual, MIT press, 1965.

[MOO70] Moore, C., and Leach, G. FORTH: A language for interactive

computing, 1970.

[WEX78] Wexelblat, R., History of programming languages, ACM Press, 1978.

Exercises

2.1 Write a program in Nut to do reversing elements in an array. Try to

compile and run it to see the result. Observe the object code. How is the

object code (in N-code) corresponded to the source code?

2.2 Familiarise yourself with writing a program with the recursive style. Try

the following.

a) Do the question 1 using recursion.

b) Search for an element in a linked list using recursion.

54

c) Write sum 1..n using recursion. (Hint: use an accumulating

parameter)

2.3 Write a Nut program to read the object code and print it out as a readable

N-code in the form of expression in parenthesis.

2.4 The object code (N-code) includes many pointers to other cells. Suggest

a way to save memory by reducing these pointers.

2.5 Due to the way N-code is represented, a maximum literal representable in

Nut language is 24-bit (becuase a code in n-code is a 32-bit cell, an

opcode is 7-bit, an argument is 24-bit). How to represent a larger literal?

55

Chapter 3

Nut Compiler

In this chapter we are going to describe Nut compiler which is written in Nut. A

compiler can be written using the target language (of the compiler). Writing a

compiler with its own target language demonstrates two points:

1. The language is not trivial. At least it can be used to write some complex

program such as a compiler. This shows a kind of completeness of the

language.

2. The understanding of meaning the language is complete enough to use it

to write such a non-trivial program.

And our favourite third point:

3. It is beautiful, in a sense that the language is self-describing.

Writing a compiler with the target language is not new (for example you can

write a C compiler in C and compile your C compiler into the executable code

using any existing C compiler)1. It has been practiced especially in the early days

of computer software development. Some conceptual difficulty must be

overcome concerning the confusion of the “compiler” and the “compiled”

program (since we use the compiler to compile itself!). The run-time facilities are

always posing difficulty as the memory is shared between the compiler and the

compiled program. However, these points are not a priority in our study.

A compiler translates a source code to a target code. In our study, the Nut

compiler translates a Nut program to an N-code object. A code generator

translates an object code to a machine specific code. Our code generator

translates an N-code object to machine codes.

1 The question arises as how the first compiler was written? This question is

explored in [CHO05].

56

compiler

 input source program (in nut)

 output n-code

code generator

 input n-code

 output machine code of a specific processor

To develop “Nut-in-Nut” compiler, we will use a special version of Nut compiler

(written in C), “nutc”. This version of Nut-compiler has many additional

operators that support compilation. To run the compiler, a version of the N-code

virtual machine (or the interpreter for N-code), called “nvm” is used. Nvm

contains many supporting functions to facilitate compilation (which are

cumbersome to write in Nut or which we are not interested in discussing).

Remember that our goal is to develop the Nut compiler itself including its own

virtual machine. Nutc and nvm are the tools to bootstrap these programs. Once

our version of compiler and virtual machine are working, the initial tools will

become unnecessary.

Next, we will explain the output of the compiler. It is important to understand the

N-code; it is what the compiler must produce.

3.1 N-code

An example, the source program to be compiled:

(def add1 x ()
 (+ x 1))

(def main () () (sys 1 (add1 2))

Where (sys 1 x) is a system call (analogous to OS call for I/O). It will print an

integer x to the screen.

The N-code of the above program in human-readable form is:

add1
(fun.1.1 (add get.1 lit.1))

57

main
(fun.0.0 (sys.1 (call.17 lit.2)))

and in an absolute object form (as in the output file a.obj):

22 22

2 1 16 1 0

4 1 14 1 2

6 1 6 0 4

8 0 0 6 0

10 1 19 257 8

12 1 16 2 0

14 1 13 10 12

16 0 0 14 0

18 1 20 1 16

20 0 0 18 0

22 1 19 0 20

0

17 add1 3 10 1 1

19 main 3 22 0 0

There are three parts in the object file:

1 the code

2 the data (the line contains a zero)

3 the symbol table

The code is a contiguous block of memory. The code “main” started at 22. The

format of the object code is:

{address tag op arg next}

tag 0 is dot-pair

tag 1 is atom

op arg is the operator

next is the address of the next cell

Now, we will read the object code as follows.

58

22 1 19 0 20

It is an atom “fun.0” next is 20

20 0 0 18 0

It is a list (dot-pair), the head pointed to 18 and the next is NIL.

18 1 20 1 16

It is an atom “sys.1”, next is 16 (the argument of sys.1)

16 0 0 14 0

It is a list, the head is 14, next is NIL.

14 1 13 10 12

It is an atom “call.10”, next is 12 (the argument of the function)

12 1 16 2 0

It is an atom “lit.2”, next is NIL.

At 10, is the “fun.x” (the function “add1”) etc.

3.2 Compiler

The whole compiler is about 500 lines. We will describe the compiler using a

pseudo code and sometimes in Nut language to illustrate some concrete

implementation. Full listing of the compiler in Nut is available in the appendix

B. We will refer to the source using the notation [name lineno].

The compiler has four main functions.

main [nut 432]
 readinfile

 parse

 resolve

 outobj

59

“readinfile” reads the source program from a standard input stream (stdin in

Unix). The compiler reads the whole input at once and keeps it in a big array of

characters (maximum input size is 50 Kbytes). “parse” is the main parser that

scans the input stream and generates N-code. “resolve” performs renaming and

binding of the actual code to generate the executable code. “outobj” prints out

the object file to a standard output (stdout).

We will concentrate on “parse”. To understand “resolve” you need to know the

run-time system which is the topic of the next section.

Nut has a trivial syntax by design hence the parser for Nut is very simple. Our

parser is a recursive descent parser. It calls parsing routines recursively with one

look ahead symbol and never backtrack (this is called LL(1) parser [AHO86]).

This is a simple and straightforward kind of parser. You can read more about this

kind of parser in any standard textbook in compiler.

Before we look into the parser, we need to be able to scan the input which is the

stream of characters and forms “token”. This is called lexical analyser. The

tokens are separated with special characters called separator. There are only

three separators in Nut: space, “(“ and “)”. “tokenise” is one of the system call

that is implemented in the “nvm”, (sys 3). It parses the token and returns a string

of characters (string of Nut language). Here is the sample use of “tokenise”:

; token is a global variable pointed to the string

(let tok)

(def tokenise () () [nut 169]
 (set tok (sys 3))

; tokenise input stream until end of file
(def testtok () ()
 (do
 (tokenise)
 (while (!= (vec tok 0) EOF)
 (do
 (prstr tok)
 (space)
 (tokenise)))))

60

Where “prstr” is a function to print a Nut string. The end of file is signified by

the first character of the returned string as EOF (127). Run testtok with the

example stream and here is the output:

(def add1 x () (+ x 1)) (def main () ()

(sys 1 (

add1 2))

Now we take a look at the parser.

parse [nut 309]
 tokenise

 while not EOF

 expect “(“

 tokenise

 if token == “def”

 parseDef

 if token == “let”

 parseLet

 if token == “enum”

 parseEnum

 tokenise

The parser gets a token and calls “parseDef” or “parseLet” or “parseEnum”

according to the token then loops until it reaches the end of file.

parseDef [nut 269]
 tokenise get fun name
 parseNL get formal arg
 parseNL get local
 tokenise
 e = parseExp get body
 tokenise skip “)”
 update symtab
 out (fun.k e)

“parseDef” parses the “header” of the function definition then the main part is

“parseExp” to parse the body of the function definition. The declaration part of

a function definition composed of:

(def add1 x () ...)

61

“add1” is the function name. “x” is the list of formal parameters. “()” is the list

of local variables. The list of formal and locals is parsed by “parseNL” (parse

name list) which will store the formal and local names in the symbol table and

gives them the references as a running number 1..n in order of their appearance.

For sake of clarity, let’s assume that the name list will not be an atom.

parseNL [nut 185]
 tokenise

 while token != “)”

 installLocal token

 tokenise

“parseNL” merely gets a name and stores it in the symbol table using

“installLocal” until exhausting the list (found the token “)”).

Before getting into “parseExp”, let’s study the symbol table.

Symbol table

The symbol table is a one-dimension array of the entry. Each entry has five

fields: name, type, value, arity, lv. “name” is a pointer to a string, the symbol.

“type” is the type of symbol. The type value is shown below. “value” stores the

value of the symbol, which is a reference for function, local/global variable, the

opcode of an operator, the syscall number of “sys.x” or the value of an enum

symbol. “arity” and “lv” are for the function symbol, storing its arity and total

number of local variables.

Table 3.1 Type of symbols

 2 VAR is a local variable
 3 FUN is a function
 4 OP is an operator
 5 OPX is an op that has one special argument
 6 SYS is “sys.x”
 7 UD is undefined
 8 GVAR is a global variable
10 ENUM is an enum symbol

62

The function “install nm” does a scan for “nm” (value of a pointer to a string,

the string of symbol) in the symbol table. Searching a symbol table is efficiently

implemented using a hash table. In our implementation, for simplicity, a

sequential search is used. If “nm” is already present, “install” returns the index

to that entry. If it is a new symbol, it is inserted into the symbol table and the

function returns its index. Initially, all keywords are primed into the symbol

table. They are treated the same as any other symbol.

The main part of “install” is shown here. The “getName”, “setName”,

“setType” are the access functions for the fields in the symbol table. The

variable “numNames” is the number of symbols in the table. “esize” is a

constant value of 5, the size of an entry in the table. The “str=” is a string

comparison function. The “newName nm” returns a copy of the string “nm”.

; search symtab for nm

; if found, return its index, if not found, insert it

(def install nm (i flag end) [nut 77]
 (do
 (set i 0)
 (set flag 1)
 (set end (* esize numNames))
 (while (and flag (< i end)) ; sequential search
 (if (str= (getName i) nm)
 (set flag 0)
 ; else
 (set i (+ i esize))))
 (if flag ; not found
 (do
 (if (> i MAXNAMES)
 (error “symtab overflow”))
 (setName i (newName nm))
 (setType i tyUD)
 (set numNames (+ numNames 1))))
 i))

We conclude the discussion of the symbol table here and go back to discuss the

parser. The next function is “parseExp”.

63

; An expression is a list, a number, a string or a name

parseExp [nut 255]
 if token == “(“

 tokenise

 nm = parseName

 e = parseEL

 out (nm e)

 if isNumber token

 n = atoi token

 out lit.n

 if isString token

 e = makestring token+1

 out str.e

 parseName it is OP, OPX, VAR, FUN

The function “parseExp” parses an expression in Nut language. An expression

can be: a name (such as a variable), a number, a constant string, a list (function

application). For a list, “parseExp” uses two auxiliary functions to parse:

parseName, parseEL (expression list).

parseName [nut 214]
 type = symbol.type

 v = symbol.val

 switch type

 OP: out v

 VAR: out get.v

 GVAR: out ld.v

 FUN: out call.idx

 OPX:

 tokenise get var name
 ty2 = symbol.type

 v2 = symbol.val

 if ty2 == VAR

 switch v

 SET: out put.v2

 SETV: out stx.v2

 VEC: out ldx.v2

 else if ty2 == GVAR

 switch v

 SET: out st.v2

64

 SETV: out sty.v2

 VEC: out ldy.v2

 SYS:

 tokenise

 k = atoi token

 out sys.k

 ENUM:

 out lit.v

“parseName” takes one token and depends on its type, it outputs an appropriate

N-code. The table below shows the type and the N-code associated with it.

Table 4.2 Type and the associated N-code

OP an operator, out opcode
VAR a local var, out get.ref
GVAR a global var, out ld.ref
FUN a fun, out call.ref
SYS a system call, gets sys num, out sys.k
ENUM a enum symbol, out lit.ref
OPX a special op

The operator of type OPX takes the next token as an “unevaluated name”, i.e. a

reference of that name, not its value. Three operators are OPX: “set”, “setv” and

“vec”. Two possibilities for the next token, either it is a local variable or a global

variable.

Local out put.ref, stx.ref, ldx.ref
Global out st.ref, sty.ref, ldy.ref

The last piece of the parser, “parseEL” recursively parses the rest of the list.

parseEL [nut 243]
 tokenise

 if token == “)” return NIL

 e = parseExp

 e2 = parseEL

 out (e e2)

65

Now that the major part of compiler is completed, we turn our attention to the

housekeeping task. The remaining parts are the “resolve” and the low level

“tokenise”. We will discuss only their pseudo code.

Resolve [nut 368]
 for all func in symtab

 reName call and local var

reName [nut 356]
 if op == get, put, ldx, stx

 rename local var (lv-arg+1) 1..n to n..1
 if op == call

 update reference

The rename function changes the number of local variables by reversing their

order. The reason ties to the way an activation record is created. This run-time

behaviour is discussed in the next section. Once the compiler reaches the end of

input source, all references to functions should be known. Initially the “call” to a

function has the argument as the index to that function in the symbol table.

“resolve” also instantiates the actual reference to all “call” instructions. Now

the last bit, the tokeniser.

tokenise

 skip blank

 get a char

 if isSpecial return

 if isQuote it is a string
 get to other quote

 else

 get to delimiter LP RP blank

“tokenise” leaves a token string in token[.]. The tokeniser is implemented in the

nvm and is available to be used as a system call, (sys 3). See the earlier

discussion of the function “tokenise”.

3.3 How to compile and run Nut-compiler

The first Nut-compiler is written in C, “nutc”. It is used to compile the Nut-

compiler describing in this chapter. Nutc outputs the object code to a file, named

66

“a.obj”. This object is executable by a Nut virtual machine “nvm”. Here is a

sample session of compiling the Nut-compiler in the file “nut.txt”:

c:>nutc < nut.txt

!=

(fun.2.2 (if (eq get.1 get.2)lit.0 lit.1))

and

(fun.2.2 (if get.1 get.2 lit.0))

...

main

(fun.0.0 (do

(call.79)(call.124)(call.157)(call.29)(st.3

(sys.9))(call.145)(call.155)(call.156)(call.2

3)))

A lot of human-readable N-code is displayed on the screen. It can be visually

checked whether it is correct (no error message). The object code can be executed

under the nvm simulator. Nvm loads “a.obj” by default (to save stdin for Nut-

compiler to use to read its source) and then starts the execution. The result is the

execution of Nut-in-Nut compiler, now is in an executable form in “a.obj”. The

compiler reads the source from stdin. Suppose we compile the simple example

shows at the beginning of this chapter. Suppose it is in the file “t2.txt”.

c:>nvm < t2.txt

add1

(fun.1.1 (add get.1 lit.1))

main

(fun.0.0 (sys.1 (call.75 lit.2)))

9392 9392

9372 1 16 1 0

9374 1 14 1 9372

9376 1 6 0 9374

9378 0 0 9376 0

9380 1 19 257 9378

9382 1 16 2 0

9384 1 13 9380 9382

9386 0 0 9384 0

9388 1 20 1 9386

67

9390 0 0 9388 0

9392 1 19 0 9390

0

3

add1 3 9380 1 1

x 2 1 0 0

main 3 9392 0 0

The object code is also outputted to stdout 2. The whole output can be redirect

to a file, then select only the code segment to be the object file. Rename the

object file to “a.obj”. This object file can be executed under nvm.

c:>nvm < t2.txt > t2.obj

Edit “t2.obj” to eliminate surplus listing at the beginning then run it.

c:>ren a.obj nut.obj

c:>copy t2.obj a.obj

Rename the previous “a.obj” which is the N-code of Nut-compiler and save it in

other name, “nut.obj”. Prepare “t2.obj” to be executed under “nvm” by renaming

it to “a.obj”. Now, run it.

c:>nvm

3

c:>

This concludes the compilation part. The compiler we discussed so far has no

error recovery capability. The error recovery is very important in a practical

compiler. It helps programmers to find errors in the program being developed.

However, including error recovery will make the compiler itself much more

complex. Hence it has been omitted in this presentation.

2 The reason why the object of the sample program started at some what far address

is because there is the nut-compiler itself (in N-code) already resided in the memory.

The compiler (in N-code) takes around 3600 words; the associated data including the

symbol table occupies another 5700 words.)

68

3.4 Run-time system and the evaluator

The evaluator (function eval) is the machine that executes the internal forms (N-

code). The listing of the evaluator in Nut (N-code evaluator) is in the appendix

D. The global data is allocated from the data segment when the variable is

defined. The local data is dynamic and is allocated from the stack segment. The

local data is created when passing the actual parameters to a function and is

destroyed when exit from the function. Because the function call has the

behaviour of a last-in-first-out queue (LIFO) as the earliest call will exit the last,

a stack structure is suitable for allocating the local data for function calls.

Using a stack gains a huge benefit of an automatic reclamation of the memory

when the local data is no longer in used. (You may think this is obvious but this

is the beauty of it. Think about other alternative way of storing local data such as

linked-list. The local data once ceased to exist will have to be reclaimed by some

method).

The global and local data can be handled in the same way except that the global

data is in the data segment and the local data is in the stack segment.

The evaluation (execution) of a program employs a stack data structure. All

variables are accessed through the structure called activation record. When a

function is evaluated, it has its local environment (local variables and stack area).

The activation record is maintained through two global pointers: FP (frame

pointer), and SP (stack pointer).

The argument of value-instruction is the index relative to the frame pointer. For

example, to get a value of a local variable 3, the instruction “get.3”, the access is

SS[FP-3] where SS[.] is the memory. Usually this part of memory is called

stack segment.

Most instructions take their arguments from the evaluation stack. The result (if

any) is pushed back to the stack. In this sense, N-code is said to be stack-based

instructions. The evaluation stack is local to the current activation record (from

FP upward, pointed to by SP).

The instruction “fun.a.v” creates a new activation record; passing arguments

from the evaluation stack to this environment, (eval e) where e is the body of

function, and deletes the activation record. Two parameters are required to

handle creation and deletion of an activation record: arity and the size of frame.

69

The encoding is “fun.a.v” where a is the arity, v is the size of frame. They are

used in the deletion of activation record. The value k is v− arity+1, it is used in

the creation of activation record. The operational semantic of “fun.a.v” is

discussed in detailed in Chapter 2.

3.5 Run-time supports

To actually run N-code, the simulator provides run-time supports. The memory

model is an important factor. The actual memory is provided through the

implementation language (C in our case). In general, three parts of memory

exist:

• code segment − storing N-code

• data segment − storing static/dynamic data

• stack segment − the run-time stack storing activation record and

evaluation stack

The pictorial view of the memory is given below. The memory is M[.] with size

MEMEND. The code segment and data segment occupied the memory to the

maximum limit MEMMAX. The rest is the stack segment. This is how the nvm

(the base simulator written in C) arranges its memory.

Figure 4.1 The memory layout of the base simulator

How the evaluator arranges its memory?

The loader loads the object into the memory. The N-code starts at the address 2.

The data starts at the address 0 and must be relocated to be next to the code

code segment

data segment

stack segment

memory

MEMMAX

70

segment. In relocating the data, the instructions that involve global variables: ld,
st, ldy, sty, str, must have their arguments offset (this part is done in the function

“resolve”).

The base simulator (nvm) loads the object of the evaluator (a.obj) first, and then

starts executing it. This causes the evaluator to read the object code from stdin

and evaluating it. The evaluator must relocate its N-code to begin behind a.obj

and also its data behind its N-code. To relocate the code, the argument to a call

instruction must be offset. To relocate the data, the argument to the instruction

accessing globals must be offset. The N-code, data, stack of the evaluator is

actually resided in the data segment of the base simulator (nvm). The picture of

the memory becomes:

Once the object code is loaded by the evaluator, it starts its execution by

allocating its stack segment and sets SP, FP appropriately.

Figure 4.2 The memory layout after loading the evaluator

All registers: FP, SP, have been declared as global variables. The stack segment

is allocated. The evaluator initialises them before use.

a.obj

n-code

data

stack

stack segment

memory

evaluator

stack of nvm

71

(let tok DP CS M) ; token, data pointer, code segment, memory
(let SS SP FP) ; stack, stack pointer, frame pointer

(def init () () [eval 23]
 (do
 (set M 0) ; base ads, absolute
 (set SS (new STKMAX)) ; allocate stack
 (set FP SS)
 (set SP SS)))

3.6 Evaluator

The evaluator is implemented as a separate program. It takes N-code produced

from the Nut compiler and runs it. The simulator started by reading the whole

input stream (N-code object) into a buffer. Then processes it to instantiate the

code segment properly and initialises the simulator variables then begins the

evaluation.

main [eval 214]
 readinfile

 loadobj

 initialise

 eval start

The main part is the “eval”. We will concentrate on this function. The function

“loadobj” performs the housekeeping for the relocating the code and data

segment to the appropriate address in the memory. It will be discussed later.

The example below is a fragment of program consists of three functions: prints,

add1 and main. (sys 1) prints an integer. (sys 2) prints a character.

(let tv)
(def prints s () ; print string
 (if (vec s 0)
 (do
 (sys 2 (vec s 0))
 (prints (+ s 1)))))

(def add1 x () (+ x 1))

72

(def main () ()
 (do
 (set tv 5)
 (prints “string”)
 (sys 1 (add1 11))))

This is its N-code in a readable form. A constant string is kept in the data

segment at the location 2, it is presented in the object code as “str.2”.

prints
(fun.1.1 (if (ldx.1 lit.0)(do (sys.2 (ldx.1 lit.0))(call.15 (add get.1
lit.1))))
add1
(fun.1.1 (add get.1 lit.1))
main
(fun.0.0 (do (st.1 lit.5)(call.15 str.2)(sys.1 (call.17 lit.11))))

The object code of the above fragment is shown below. It is the input stream of

the evaluator.

2 1 16 0 0

4 1 17 1 2

6 1 16 0 0

8 1 17 1 6

10 0 0 8 0

12 1 20 2 10

...

66 0 0 64 0

68 0 0 56 66

70 0 0 52 68

72 1 3 0 70

74 0 0 72 0

76 1 19 0 74

The “eval” function takes a pointer to an expression and evaluates it. “eval”

traverses the expression list, when it finds an atom, it evaluates that atom

immediately. When if finds a list, the list is in the form (op arg*), it decomposes

the list into its operator (op) and the argument list (e1). The action of evaluation

is taken according to the operators. The main part of “eval” is this multi-way

branch to do each operation.

73

eval e [eval 160]
 if e is nil return nil

 get the operator and its arg-list, e1

 decode op arg

 switch op

 ADD

 v = (eval arg1 e1) + (eval arg2 e1)

 IF

 if (eval arg1 e1) != 0

 v = eval arg2 e1

 else

 v = eval arg3 e1

 CALL

 eval all arg and push them to eval stack

 v = eval the function

 LIT

 v = arg

 GET

 v = SS[fp-arg]

 ...

 else

 error “unknown op”

return v

To limit the scope of discussion, we will discuss in details only the subset of the

instruction which is suitable to run the following example only (about 11

instructions). These instructions are {fun, if, ldx, lit, do, sys, call, add, get, st}.

The value-op are {add, get, lit, str, ldx}. The control-op are {do, if, fun, call}.

The other instructions are {sys, st}. Their actions are very like the description of

their operational semantic discussed in Chapter 2.

We start with the straightforward value-op.

(if (= op xADD) [eval 181]

 (set v (+ (eval (arg1 e1)) (eval (arg2 e1))))

arg1, arg2, arg3 are the access functions to get the first, second and third

argument from the argument list. The variable v is the value returned by the

function “eval”. The operator “add” evaluates two arguments and adds them.

74

The operator “get” gets a value of a local variable from the activation record.

(if (= op xGET) [eval 194]
 (set v (vec M (- FP arg)))

“lit” and “str” have the same effect. Their difference in the operation code is

used to distinguish two operators. The loader must relocate everything stored in

the data segment. “str” has its argument as a pointer to a constant string stored in

the data segment, therefore its argument must be identified and relocate at the

load time.

(if (= op xLIT) [eval 190]
 (set v arg)

(if (= op xSTR) [eval 192]
 (set v arg)

“ldx” takes the base address from the argument list, and takes the index from its

argument. The effective address is calculated as base + M[FP-arg]. The value

is taken from the data segment. The data segment is just a location in the

memory.

(if (= op xLDX) [eval 202]

 (do
 (set idx (eval (arg1 e1)))
 (set v (vec M (+ (vec M (- FP arg)) idx))))

The control-op alters the sequence of evaluation.

(if (= op xDO) [eval 176]
 (while e1
 (do
 (set v (eval (head e1)))
 (set e1 (tail e1))))

Where (head e) is the first argument of e, (tail e) is the rest of e without (head
e). “do” evaluates all the elements in the list. “if” evaluates the condition and

selects one of the alternate actions.

75

(if (= op xIF) [eval 171]
 (if (eval (arg1 e1))
 (set v (eval (arg2 e1)))
 ; else

 (set v (eval (arg3 e1))))

“call” evaluates all of its arguments and their value in the stack before evaluating

the function.

(if (= op xCALL) [eval 183]

 (do
 (while e1 ; eval all arg
 (do ; and push it to stack
 (push (eval (head e1)))
 (set e1 (tail e1))))
 (set v (eval arg))) ; eval function

And here is how to push a value to the evaluation stack. The evaluation stack is

an array of memory pointed to by SP.

; push a value to the evaluation stack

(def push e () [eval 124]
 (do
 (set SP (+ SP 1))
 (if (> SP (+ SS STKMAX))
 (error “stack overflow”))
 (setv M SP e)))

When evaluating a function, the “fun” performs a complicate task of creating a

new activation record, setting a new SP, evaluating the body of function, then

restore old activation record and SP. The passing of parameters is through the

evaluation stack where the new activation record just happens to overlap these

variables. There is no copying of passing parameters; they are arranged such that

the overlap occurred properly. The numbering of the variables must be ordered

in the reversed order of their appearance. This is done during the final

compilation phase.

76

(if (= op xFUN) [eval 145]
 (do
 (set v (& arg 255)) ; decode a, v
 (set a (>> arg 8))
 (set k (+ (- v a) 1))
 (setv M (+ SP k) FP) ; save old FP
 (set FP (+ SP k)) ; new frame
 (set SP FP)
 (set v (eval (arg1 e))) ; eval body
 (set SP (- (- FP v) 1)) ; delete frame
 (set FP (vec M FP))) ; restore FP

“st” gets the value of local variable and stores it to the memory. The address is

the first argument of argument list.

(if (= op xST) [eval 198]

 (do
 (set v (eval (arg1 e1)))
 (setv M arg v))

The last instruction is special. It performs the input/output which are dependent

on the underlying physical system. It looks strange that xSYS calls to (sys 1)
and (sys 2), but this is absolutely correct because these two functions implement

the correct actions; to print integer and character to a display.

(if (= op xSYS) [eval 208]
 (do
 (set v NIL)
 (set a (eval (arg1 e1)))
 (if (= arg 1) (sys 1 a)
 (if (= arg 2) (sys 2 a)
 ; else

 (error “undef sys”))))

The rest of the instructions are evaluated similarly. This will conclude our

presentation of the main eval.

77

Now we turn our attention to the housekeeping task, the relocation of the code

segment. To relocate the code, the argument to call instruction must be offset. To

relocate the data, the argument to the instruction accessing globals must be offset.

Assuming the object codes have been read and the following variables have been

instantiated: ads, type, op, arg, next. The following code fragment creates a

new node for this code and does the relocation.

(set CS (sys 9)) [eval 80] ; find start of code segment

(set DP (+ (+ CS end) 2)) ; start of data segment

(if (= type 1)
 (set a (reName op arg))
 ; else dot-pair
 (set a (shift (+ (<< op 24) arg) CS)))
(set a2 (new 2)) ; create a new node
(sethead a2 a)
(settail a2 (shift next CS)) ; reloc the next

where CS is the start of our code segment (not the N-code of eval itself!), DS is

the start of data segment, “sethead” and “settail” update the head and next cells,

“shift” performs the offset calculation. The renaming of an atom is done in

“reName”. “mkAtom” creates an atom from op and arg.

; relocate arg of an op

(def reName (op arg) () [eval 62]
 (do
 (if (= op xCALL)
 (set arg (shift arg CS))
 (if (or (= op xLD) (= op xST))
 (set arg (shift arg DP))
 (if (or (= op xLDY) (= op STY))
 (set arg (shift arg DP))
 (if (= op xSTR)
 (set arg (shift arg DP))))))
 (mkATOM op arg)))

; offset a by disp, code segment started at 2

(def shift (a disp) () [eval 56]

 (if (> a 0)
 (- (+ a disp) 2)
 0))

78

Please bear in mind that the evaluator runs on top of the base simulator “nvm”.

The N-code of the evaluator itself is loaded as “a.obj” by the “nvm” then the

evaluator starts by reading the stdin stream which must be the object code to

be evaluated.

Understanding “eval” let us confirm the meaning of each N-code instruction. In

fact, the “eval” itself can be regarded as the specification of the operational

semantic of N-code.

3.7 Lab session

Use the Nut compiler to compile a program, “quick.txt” (a quicksort program).

First, compile the Nut-compiler into “a.obj”. Then run the compiler with nvm to

compile “quick.txt” (the source program). The output is put into a file and edits

it to be “quick.obj” (an N-code object). Run “quick.obj” using nvm to see the

result. First, compile the compiler.

C:\test>nutc < nut.txt

Then, use the compiler to compile “quick.txt”.

C:\test>nvm < quick.txt > q.obj

Edit “q.obj” and put it to the file “quick.obj”. Copy “quick.obj” to “a.obj”. It will

be the input of nvm. The file “quick.obj” looks like this.

516 516

2 1 14 1 0

4 1 20 1 2

6 0 0 4 0

8 1 19 257 6

10 1 14 1 0

12 1 20 2 10

...

510 0 0 474 508

512 1 3 0 510

514 0 0 512 0

516 1 19 1 514

79

0

27

print 3 12952 1 1

...

swap 3 13072 3 4

partition 3 13238 3 7

flag 2 7 0 0

quicksort 3 13298 3 4

q 2 4 0 0

inita 3 13352 2 3

s 2 2 0 0

show 3 13410 2 3

main 3 13460 0 1

Run the N-code object of the quicksort program using nvm.

C:\test>copy quick.obj a.obj

C:\test>nvm

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C:\test>

3.8 Further reading

The intermediate code is a widely known technique used almost in all compilers.

It separates the task of compilation into two major phases; the first phase is to

parse the source language into this intermediate code and the second phase is to

generate the target language (usually machine codes of the target machine) from

this intermediate code. This helps to simplify the compiler and also separating

the target dependent part from the compiler. This separation is useful when there

are many target machines. The first phase can remain the same, only the code

generator needs to be done for each new machine.

80

The evaluator or the virtual machine is one of the most important ideas in

computer science. The emulation of other machine is a powerful concept. It has

been the major cause of the success of computer industry both in terms of

producing different hardware that can use the same executable software and in

terms of software that can be run on different platform virtually unchanged. The

hardware example is the IBM S360 family [PAD81] that can emulate many early

computers of the same company to such a degree that the customers bought the

new machines to run their existing software unchanged. The software example is

the JVM [VEN98] which is the virtual machine that is available on almost any

machines. The use of intermediate code for the purpose of porting a compiler to

a new machine is popularised by P-code [BUR78] [WIR91]. Early Pascal

language was compiled into P-code. This made Pascal compiler to be rapidly

available throughout the microcomputer communities because the task of

creating an executable Pascal compiler was reduced to porting the P-code

evaluator. The latest software emulation can be seen from the Apple computer

company where their latest computers use a different processor than any of their

previous product but the company can made a large number of their existing

software available under this new processor in a short time using the emulation.

The technique of writing an evaluator in its own language is called meta

interpreter [STR88] or more specifically meta circular interpreter. It was in

practice in early days of computing, the example can be drawn from LISP. The

interpreter of LISP was usually written in LISP [MCA65]. The meta interpreter

is also useful to reason about the meaning of program and its correctness.

References

[AHO86] Aho, A., Sethi, R., and Ullman, J., Compilers: Principles, techniques,

and tools. Addison-Wesley, 1986.

[BER78] Berry, R., “Experience with the Pascal-P compiler”, Software –

Practice and Experience, 8:617-627, 1978.

[CHO05] Chongstitvatana, P., “Self-Generating Systems: How a 10,000,0002-

line Compiler Assembles Itself,” Proc. of National Computer Science and

Engineering Conference, Bangkok, 2005.

81

[PAD81] Padegs, A., “System/360 and beyond”, IBM Journal of research and

development, September 1981.

[STR88] Sterling, L., “Constructing Meta-interpreters for Logic Programs”, in

Advanced School on Foundation of Logic Programming, Italy, 1988 .

[VEN98] Venners, B. Inside the Java Virtual Machine, McGraw Hill, 1998.

[WIR81] Wirth, N. “Pascal-S: a subset and its implementation”, in Pascal – The

language and its implementation, Barron, D. (ed.), pp. 199-260, Wiley, 1981.

Excercises

3.1 The Nut-compiler has not been finished. There are no “let”, “enum” and

string. Extend Nut-compiler (nut.txt) to include them. You can have a

look at “nut3-compiler.txt” for a guide, or you can look at the C source in

“nut31/compile” directory, nut.c.

3.2 Complete the Nut-in-Nut compiler. Use Nut completion kit. Write

additional functions so that Nut compiler is able to handle the full Nut

language.

3.3 Extend the Nut-in-Nut compiler to include “let” and “enum”.

3.4 Nut-compiler does not have the operator: mul, div. Add it to the

compiler and simulator (simulator is optional) (Hint: at compiler, you

should look at the following functions:

#define xMUL 8 in nut.h

add reserved word to keynames[] in nut.c

prAtom() in data.c

3.5 Strings in Nut can be more efficient by packing 4 characters into one

word. Do it.

3.6 The symbol table uses a sequential search [nut 82]. It is not efficient.

Implement a more efficient method for searching the symbol table.

(Hint: a hash table is a standard way to handle a symbol table. It has a

constant running time for searching.)

82

3.7 How many symbols are there in the symbol table when we compile the

Nut-compiler?

3.8 The N-code object can be made relocatable, i.e. not dependent on the

absolute location in the memory. This can be achieved by linearising the

N-code tree. The simplest form is the prefix form. See the following

example:

Source (+ 2 3) becomes readable N-code: (+ lit.2 lit.3) which is stored

in the memory (say starts at 6).

2 1 16 3 0

4 1 16 2 2

6 1 6 0 4

This object is not relocatable, it embeds the absolute location in the

“next” link. A list can be represented by prefixing it with its length, no

“next” link is necessary.

(+ lit.2 lit.3)

becomes

3 + lit.2 lit.3

another example:

(+ lit.2 (+ lit.3 lit.4))

becomes

3 + lit.2 3 + lit.3 lit.4

This representation can be converted into an N-code tree (at any

location).

Write a program to output N-code object in linear form to a file and read

it back into the memory properly at a different location. You can use

“prList” to print the readable N-code out to check it.

83

3.9 Study eval-in-nut (eval.txt) and try to add some missing operators to it.

3.10 In the main loop of Nut-evaluator [eval 160], the evaluator spent most of

its time is checking the opcode and performs the operation accordingly.

It uses the form of (if (= op xxx) …). This is a sequential test. Suggest a

way to improve the efficiency of the main evaluator loop.

84

85

Chapter 4

Code Generation

To actually run a program on a real machine, the intermediate code must be

translated into machine codes of that machine. To generate machine codes, the

instruction set of the target machine must be studied. We will study processors in

details in Chapter 5. There will be two illustrative processors. The first one has

instructions of the type zero-address, so called a stack-based instruction set. The

second one will be a more conventional three-address instruction set. It is easier

to translate N-code to a stack-based instruction set. Therefore we will study the

code generator for this instruction set. However, the code generation for three-

address instruction set will also be discussed. We shall begin with the discussion

of the target instruction set.

4.1 S-code

The instruction set for our stack-based processor is called S-code. The processor

itself is named Sx processor. S-code is designed for simplicity; the emphasis is

on a small number of instructions. It is also quite fast to be interpreted by a

software virtual machine. From S-code, it is easy to generate machine dependent

code for a specific purpose, such as, small code size (byte-code, nibble-code)

[KOT03], high performance (extended code) [CHO97], or to fit a particular

hardware. In our system, S-code is the machine code of Sx processor which has

been designed to execute S-code directly in hardware.

S-code has a fixed-length 32-bit instruction format. It is not compact but it is

reasonably fast when interpreting. This format simplifies the code address

calculation and allows code and data segment to be the same size (integer) as

opposed to other format such as the byte-coded instruction format (as in JVM

[LIN97]). There are two types of instructions: zero-argument and one-argument.

The zero-argument instructions are mostly related to the arithmetic and logic

operations. The one-argument instructions are the access operations to variables

86

and the control-flow operations. The description of the instruction set is as

follows.

Notation

n is a 24-bit constant (2-complement)

x is a 32-bit value

v is a variable reference, for a global variable, it is an index to code segment, for

a local variable, it is an offset to a current activation record in stack segment.

f is a reference to CS.

DS[] is the data segment, SS[] is the stack segment.

pc is a program counter, pointed to the current instruction.

stack notation: (before -- after)

Zero argument instructions

add, sub,

mul, div,

mod

are integer arithmetic, take two operands from

the stack and push the result back. (a b -- a op b)

shl, shr take two operands: number, no-of-bit and shift

the number and push the result back. shr is an

arithmetic shift, preserved sign.
band, bor,

bxor, eq,

lt, le, ge,

gt

are logical, take two operands from the stack and

push (T/1, F/0) back. (a b -- 0/1)

bnot is bit inverse, takes one operand and push the

result back. (a -- ~a)
ldx takes an address ads, an index idx, and returns

DS[ads+idx]. (ads idx -- DS[ads+idx])
stx takes an address ads, an index idx, a value x, and

store x to DS[ads+idx]. (ads idx x --)
case takes a value (key), compares it to the range of

label, goto the matched label, or goto else/exit if

the key is out of range. (key --)
array allocate x words in Data segment, return ref v to

the allocated data. (x -- v)

87

One argument instructions

lit n push n (-- n)
inc v increment local variable, SS[fp+v]++
dec v decrement local variable, SS[fp+v]--
ld v push DS[v]. (-- DS[v])
st v takes a value x and store to DS[v] = x. (x --)
get v get local variable v. (-- SS[fp+v])
put v store a value x to local variable v. (x --)
call f new activation record, goto f in CS
ret n returns from a function call, n is the size of

activation record. remove the current activation

record. Return a value if function returns a value.
fun n function header, n is the number of local

variables
jmp n jump to pc+n in CS
jt n jump pc+n if top of stack = 1, pop
jf n jump pc+n if top of stack = 0, pop
sys n call a system function n, for interfacing to

external functions, the arguments are in the

stack, the number of arguments can vary.

4.2 S-code format

Each instruction is 32-bit. The right-most 8-bit is the operational code. The left-

most 24-bit is an optional argument. For a virtual machine, this format allows

simple opcode extraction by bitwise-and with a mask without shifting, but it

needs 8-bit right-shift to extract an argument. Because zero-argument

instructions are used more frequent, this format is fast for decoding an

instruction. However, a decoder in hardware can tap any bit freely, therefore any

format will be equally fast to decode.

88

Encoding

0 -- 1 add 2 sub 3 mul 4 div

5 band 6 bor 7 bxor 8 not 9 eq

10 ne 11 lt 12 le 13 ge 14 gt

15 shl 16 shr 17 mod 18 ldx 19 stx

20 ret 21 -- 22 array 23 <end> 24 get

25 put 26 ld 27 st 28 jmp 29 jt

30 jf 31 lit 32 call 33 -- 34 inc

35 dec 36 sys 37 case 38 fun

The “end” is a pseudo instruction. It does not existed in a real processor. It is

used to stop the processor simulation. S-code supports high-level function call

directly similar to N-code. The run-time data structure must be understood. An

activation record stored a computation state. It is resided in the stack segment.

The computation state consists of: PC (return address), FP, all local variables. SP

needs not be stored as it will be recovered properly when return. The necessary

information, the size of the activation record, is stored as the argument of “ret”

instruction. The following diagram shows the layout of an activation record in the

stack segment (notice that it is exactly the same as the activation record of N-

code).

Figure 4.1 The activation record to support S-code

retads’

fp’

lv1

…

lvn

lo address

fp

lv 1

sp’,
the last passing parameter

sp’’, sp after return

sp

89

A function call creates a new activation record. The new FP is SP + k. The

value k is the argument of “fun k”, k = n - arity + 1. The new activation record

overlaps the evaluation stack such that the passing parameters become the local

variables of the new activation record. A local variable is indexed by an offset

from the current FP. The numbering of the local variables causes the first

passing parameter to be the n-th local variable and so on. This fact is handled by

the code generator. A function call does the following:

1 decode k at function header

2 create new activation record, save old FP

3 set new SP

4 save return address

5 goto body of function

When returning, “ret m”, m is size of the activation record + 1. When restoring

SP (not considering the return value yet):

sp'' = fp - m

A return does the following:

1 restore PC

2 if there is a return value

3 restore SP and FP

4 push the return value

5 else

6 restore SP and FP

“case” is a multiway branch instruction. It requires a jump-table. The layout of

code in “case” is as follows:

case

lit low

lit hi

jmp else

jump table

...

code of each case

90

A case does:

1 extract range of label: low, high

2 if key < low or key > high

3 PC = PC + 3 goto else-case

4 else

5 PC = PC+key-low+4 goto matched label

In this implementation, the jump-table is filled with the labels in the range (from

low to high), hence, finding the matched label is simply an index calculation, a

constant time operation. This enables the case instruction to be fast but it

consumes the memory in the code segment as large as the range of label. This is

wasteful if the label is not dense. For the case of sparse label, a binary search can

be used. The jump-table is the sorted label of the pair (label, goto code).

This is not implemented as it is not suitable to be converted into a machine

specific instruction (maps to a real processor). Because Nut language does not yet

support multiway branch, the “case” instruction is not implemented by Sx

processor.

Input of the code generator is an N-code object. Output is the S-code object.

Let’s study some examples of programs in S-code. Let a, b, c be locals; d, e

be globals; L, M be labels.

a = a + 1

 get a, lit 1, add, put a

a = b[i]

 get b, get i, ldx, put a

d[i] = b

 ld d, get i, get b, stx

e = add2(a,b)

 get a, get b, call add2, st e

if (a == 1) then b = 2 else b = 3

91

 get a, lit 1, eq, jf L,

 lit 2, put b, jmp M,

L: lit 3, put b,

M:

Let give one example what the code generator do. The source program in Nut,

(def add1 x () (+ x 1))

(def main () ()
 (sys 1 (add1 22)))

is compiled into N-code object,

add1

(fun.1.1 (+ get.1 lit.1))

main

(fun.0.0 (sys.1 (call.80 lit.22)))

22 22

2 1 16 1 0

4 1 14 1 2

6 1 6 0 4

8 0 0 6 0

10 1 19 257 8

12 1 16 22 0

14 1 13 10 12

16 0 0 14 0

18 1 20 1 16

20 0 0 18 0

22 1 19 0 20

0

The S-code generator takes this N-code object and outputs S-code object. The

format of S-code object will be discussed later.

5678920

1 12

2080 23 294 280 287 1 532 294

5663 800 292 276

1000 999

92

It means the following:

 1 Call 8

 2 End

 3 Fun 1

 4 Get 1

 5 Lit 1

 6 Add

 7 Ret 2

 8 Fun 1

 9 Lit 22

 10 Call 3

 11 Sys 1

 12 Ret 1

The N-code and S-code are quite similar as they are both stack-based instruction

sets. The mapping between N-code and S-code is simple (see Table 4.1). Only

the control-op must be transformed to jump. To distinguish between two

instruction sets the N-code is prefixed with “x” and S-code with “ic”.

4.3 How the code generator works?

In the last chapter, the evaluator, “eval”, evaluates the N-code and returns the

result. The evaluator performs its task by traversing the N-code tree and applies

the operators to their arguments. The code generator follows the same pattern. It

uses a variant of “eval”. In other words, the generator reads the input N-code

object and traverses the N-code. Instead of executing it by applying the operators

to their arguments, the generator outputs the corresponding S-code. The mapping

between N-code and S-code is simple. Most of the code is one-to-one mapping.

However, the addresses of N-code and S-code are different. This is handled

using the associative list of N-code address to S-code address. The only

instruction that need to relocate its argument is “call” using “insertLab” and

“assoc”.

93

Table 4.1 Mapping between N-code and S-code

n-code s-code

xLIT.a icLit.a
xGET.a icGet.a

xPUT.a icPut.a
xLD.a icLd.a

(xADD e1 e2 e1 e2 icAdd
(xST.a e) e icSt.a
(xLDX.a e) e icGet.a icLdx

(xSTX.a e v) e v icGet.a icStx

(xLDY.a e) e icLd.a icLdx

(xSTY.a e v) e v icLd.a icStx
(xFUN.a.v e) icFun.k e icRet.m

where k = v-a+1, g = v+1

(xCALL.a e...) e ... icCall.a
(xIF e1 e2 e3)

 e1

 icJf F

 e2

 icJmp E

F: e3

E:

(xWHILE e1 e2) L: e1

 icJf E

 e2

 icJmp L

E:

or better
 icJmp I

L: e2

I: e1

 icJt L

(xDO e1 e2 ...) e1 e2

Let look at the “eval” for code generator. “out” outputs an S-code. The whole S-

code is stored in an array, XS[.]. XP is the current S-code address. The listing

of the code generator is presented in the appendix E.

94

eval e [gen 224] ; S-code generator

 ... ; e1 is the argument list
 switch op

 ADD

 eval head e1

 eval arg2 e1

 out icAdd

 LIT

 out icLit arg

 GET

 out icGet arg

 FUN

 insertLab ads XP ; ads is N-code address

 ; XP is S-code address
 lv = arg & 255

 arity = arg >> 8 ; decode a.v
 out icFun (lv-arity+1)

 eval head e1

 out icRet (lv+1)

 CALL

 while e1 not empty ; generate all arguments
 eval head e1

 e1 = tail e1

 out icCall (assoc arg) ; map address to S-code
 ...

 else

 error “unknown op”

For the control-op, the iteration is achieved by the jump instructions. The first

one, “do”, just generates the S-code one-by-one corresponding to the elements in

the argument list of N-code (e1).

 DO [gen 239]
 while e1 not empty

 eval head e1

 e1 = tail e1

95

The “if” generates the testing for the conditional and the alternatives. The first

jump, “icJf”, jumps over the true-alternative (to label F). The second jump is

the jump at the end to exit (label E).

The pattern for code generation is:

(xIF e1 e2 e3)

 e1

 icJf F

 e2

 icJmp E

F: e3
E:

This is how the generator works. The variable ads is used to mark the place

where the offset of the jump will be updated. All jumps in S-code are relative.
Their displacements are calculated relative to the current address (XP).

 IF [gen 186] ; e1 = (cond true false)

 eval head e1 ; gen cond

 out icJf 0 ; <1>

 ads = XP - 1 ; mark S-code ads

 eval arg2 e1 ; gen true
 if (arg3 e1) = NIL

 patch ads (XP-ads) ; patch jf at <1>
 else

 out icJmp 0 ; <2>
 patch ads (XP-ads)

 ads = XP - 1 ; mark S-code ads

 eval arg3 e1 ; gen false

 patch ads (XP-ads) ; patch jmp at <2>

There are two ways to generate code for the while expression. The first one is

straightforward.

96

(xWHILE e1 e2)

L: e1

 icJf E

 e2

 icJmp L

E:

The code is generated in order of the appearance of the arguments, e1 then e2.

However, each time around the loop there will be two jumps. To improve the

quality a bit, we can turn around the order and use the conditional to perform the

loop back.

 icJmp I

L: e2

I: e1

 icJt L

The first jump jumps into the conditional. Only the first time around the loop

that requires two jumps; the subsequent iteration requires only one jump.

 WHILE ; e1 = (cond body)
 out icJmp 0

 ads = XP - 1 ; mark the loop back address

 eval arg2 e1 ; gen body

 patch ads (XP-ads) ; jump into cond

 eval head e ; gen cond

 out icJt (XP-ads+1) ; loop back

Here are the actual nut code to generate S-code for the “if” and “while”

control-op.

; e = (cond true false)

(def genif e (ads e3) [gen 186]

 (do
 (eval (head e)) ; gen cond
 (outa icJf 0)
 (set ads (- XP 1))

97

 (eval (arg2 e)) ; gen if-true
 (set e3 (arg3 e))
 (if (= e3 NIL)
 (patch ads (- XP ads))
 (do ; else
 (outa icJmp 0)
 (patch ads (- XP ads))
 (set ads (- XP 1))
 (eval e3) ; gen else
 (patch ads (- XP ads))))))

(def genwhile e ads [gen 204]

 (do
 (outa icJmp 0)
 (set ads (- XP 1))
 (eval (arg2 e)) ; gen body
 (patch ads (- XP ads))
 (eval (head e)) ; gen cond
 (outa icJt (- (+ ads 1) XP))))

; change arg, preserve op

(def patch (ads v) () [gen 167]
 (setv XS ads (+ (<< v 8) (& (vec XS ads) 255))))

The associative list has two operations: insert-label and get the associated address

of the label. atab is the array storing the tuple {label, address} where label is the

N-code address, address is the S-code address. numLab is the number of tuples

stored in the associative table.

; n1 is the label, n2 is the address

(def insertLab (n1 n2) (i) [gen 135]
 (do
 (set i (+ (* numLab esize) 2)) ; start at 2
 (setv atab i n1)
 (setv atab (+ i 1) n2)
 (set numLab (+ numLab 1))
 (if (> numLab MAXLAB)
 (error “label table full”))))

98

; search assoc for n1

; if found, return adddress, else 0

(def assoc n1 (i flag end) [gen 121]

 (do
 (set i 2) ; start at 2
 (set flag 1)
 (set end (+ (* esize numLab) 2))
 (while (and flag (< i end))
 (if (= (vec atab i) n1) ; sequential search
 (set flag 0)
 ; else
 (set i (+ i esize))))
 (if flag
 0 ; not found
 (vec atab (+ i 1))))) ; found, return n2

The output S-code must be of the correct form so that the processor simulator can

read it properly. Here is the format of the S-code object file.

magic

start end (end inclusive)

code* (code segment)
start end

data* (data segment)

Where magic = 5678920, it is used to distinguish the object code between N-

code and S-code. start, end are the addresses denoting the starting and ending

addresses of the block of data that follow. Take a look at the previous example

of the S-code object.

5678920

1 12

2080 23 294 280 287 1 532 294

5663 800 292 276

1000 999

5678920 denotes that this is the S-code object. 1 12 are the starting and

ending addresses of the code block. The length of the code is 12. 2080..276

are the codes. 1000 999 denote the starting and ending addresses of the data

block. There is no data block in this example (the ending address is smaller than

the starting address).

99

4.4 Three-address code generation

S-code is very similar to N-code, they are both stack-based. It is easy and very

straightforward to translate N-code to S-code. However, there is no modern

processor that has stack-based instruction set. We now turn our attention to

another more conventional instruction set, a three-address instruction set. The

processor that has this instruction set, S2 is a register-based processor. As the

subsequent components of our system will be based on stack-based instructions,

we will only discuss a general scheme of code generation for three-address

instruction set. To begin, we discuss the overview of the processor and the

instruction set.

S2 is a simple 32-bit processor for educational purpose. It exists in a simulator,

although some implementation at Hardware Description Language for S2 exists.

S2 is developed from S1 [CHO01], a simple 16-bit processor used for teaching

several classes in the past 10 years. S2 has an adequate instruction set to

demonstrate the high level language and the assembly language relationships.

Comparing to a real processor (such as Intel Pentium [INT01]), S2 lacks OS

supporting functions, I/O and interrupts, and performance enhancing features

(such as MMX [PEL97]).

S2 description

S2 has 32 registers, r0...r31, r0 is special and always has a zero value. S2

has 32-bit address space, it can access 4G words of memory. Addressing is in

word (32-bit) unit. S2 has no byte-access instruction. All instructions are 32-bit

long (fixed length, one size). S2 has flags that indicate result of previous

operations. Flags are: Z zero, S sign, C carry, O overflow/underflow.

S2 addressing mode

S2 has four addressing modes: absolute, displacement, index, and immediate.

The absolute mode has 22-bit range (0..4M). The displacement mode uses one

register and a 17-bit value (0..128K). The index mode employs two registers.

100

Lastly, the immediate mode uses the literal value in the instruction. Depend on

what instruction the literal is 22-bit (load/store) or 17-bit (arithmetic). For

example, to load a value from memory into a register, all four addressing modes

are as follows:

Absolute ld r1,ads R[r1] = M[ads]

Immediate ld r1,#n R[r1] = n

Displacement ld r1,d(r2) R[r1] = M[d + R[r2]]

Index ld r1,(r2+r3) R[r1] = M[R[r2] + R[r3]]

The opcode format and assembly language format for S2 follow the tradition

dest = source1 op source2 from PDP [BEL76], VAX [LEV89] and

IBM S360 [AMD64].

S2 instruction format

(rd dest, rs source, ads and disp are sign extended)

Figure 4.2 S2 instruction format

Opcode encoding

The S2 instruction set, its encoding and its format is shown in Table 4.2 and

Table 4.3.

 op rd1 ads

op rd1 rs2 disp

 op rd1 rs2 rs3 xop

5 5 22

L-format

D-format

X-format

5 5 5 17

5 5 5 5 12

101

Table 4.2 S2 opcode encoding and format. (1) jump condition uses r1 as
condition, the coding in r1 field: 0 always, 1 eq, 2 neq, 3 lt, 4 le, 5 ge, 6 gt (2)
extended instruction. The code 14..30 are undefined.

Opcode Op Mode Format

0 ld absolute L
1 ld displacement D
2 ld immediate L
3 st absolute D
4 st displacement L
5 jmp (1) absolute L
6 jal absolute L
7 add immediate D
8 sub immediate D
9 mul immediate D
10 div Immediate D
11 and Immediate D
12 or immediate D
13 xor immediate D
31 xop (2)

Meaning

The meaning of each instruction is as follows. We use the following notation to

describe the instruction; “op dest src1 src2”. R0 always returns the

value 0.

ld r1,ads R[r1] = M[ads]

ld r1,#n R[r1] = n

ld r1,d(r2) R[r1] = M[d + R[r2]]

ld r1,(r2+r3) R[r1] = M[R[r2] + R[r3]]

st ads,r1 M[ads] = R[r1]

st d(r2),r1 M[d + R[r2]] = R[r1]

st (r2+r3),r1 M[R[r2] + R[r3]] = R[r1]

jmp cond,ads if cond true PC = ads

jal r1,ads R[r1] = PC; PC=ads; jump and link

jr r1 PC = R[r1]; return from subroutine

102

Table 4.3 S2 instruction encoding for xop. (1) use r1. (2) use r1 as the number
of trap function. The code 13..4095 are undefined.

Xop Op Mode Format

0 add register X
1 sub register X
2 mul register X
3 div register X
4 and register X
5 or register X
6 xor register X
7 shl register X
8 shr register X
9 ld index X
10 st register X
11 jr (1) special X
12 trap (2) special X

The arithmetic operations are two-complement integer arithmetic.

add r1,r2,r3 R[r1] = R[r2] + R[r3]

add r1,r2,#n R[r1] = R[r2] + sign extended n

The instruction add, sub affect Z, C − C indicates carry (add) or borrow (sub).

The instruction mul, div affect Z, O − O indicates overflow (mul) or underflow

(div) and divide by zero.

The logical operations are bitwise operations. They affect Z, S bits.

and r1,r2,r3 R[r1] = R[r2] bitand R[r3]

and r1,r2,#n R[r1] = R[r2] bitand sign

extended n

or xor . . .

shl r1,r2 R[r1] = R[r2] shift left one bit

shr r1,r2 R[r1] = R[r2] shift right one bit

103

As r0 always is zero, many instructions can be synthesis using r0.

or r1,r2,r0 move r1 <- r2

or r1,r0,r0 clear r1

sub r0,r1,r2 compare r1 r2 affects flags

To complement a register, xor with 0xFFFFFFFF (-1) can be used.

xor r1,r2,#-1 r1 = complement r2

How an expression be transformed into sequence of instructions

An instruction in machine language composed of an operator and operands. The

number of operands varies from zero (stack instruction), one, two, and three. Our

hypothetical S2 processor is a 3-operand machine. Each instruction has the form

“op r1 r2 r3” and all operands are registers. Having three operands means

each operation can take two inputs from two operands and stores the result in the

third operand. It is suitable for binary operations such as; add, sub etc. To

translate an expression into S2 instruction, each result of a binary operation needs

to store in a temporary register.

a * b + c - d

t1 = a * b

t2 = t1 + c

t3 = t2 - d

The input variables (a, b, c, d) and the temporary variables will be assigned

registers. Let r1 = a, r2 = b, r3 = c, r4 = d, r5 = t1, r6 = t2, r7

= t3. The above expression can be written in S2 instructions as follows:

mul r5 r1 r2

add r6 r5 r3

sub r7 r6 r4

In fact, at most two temporary variables are needed for any arbitrary long

sequence of binary operations as the temporary value can be accumulated using

104

just one register and another register is used to hold one operand of the binary

operator.

Let use only t1,

t1 = a * b

t1 = t1 + c

t1 = t1 - d

For any expression that has parentheses to control the order of evaluation, the

expression can be transformed into postfix ordering:

(a * b) + (c * d)

This expression is transformed into:

t1 = a * b

t2 = c * d

t1 = t1 + t2

((a * b) + (c * d)) / f)

t1 = a * b

t2 = c * d

t1 = t1 + t2

t1 = t1 / f

Registers can be regarded as local variables. To access global variables, “ld”

“st” is used with their associated addressing mode to transfer values to and from

global memory to registers. Then, the arithmetic-logic operation can be

performed on registers.

Access simple scalar

Let A, B, C, D be global variables, the expression

A = B + C - D

can be translated into the following sequence.

105

Let r1 = A, r2 = B, r3 = C, r4 = D

ld r2 B

ld r3 C

ld r4 D

add r2 r2 r3

sub r1 r2 r4

st A r1

Access an array

Let ax[] be an array, the expression

i = 2

b = ax[i]

ax[i+2] = c

can be translated into the following sequence.

Let r1 = i, r2 = b, r3 be the base address of ax, r4 = c, r5 = temp.

ld r1 #2

ld r2 (r3+r1)

add r5 r1 #2

st (r3+r5) r4

The displacement-addressing mode is used to access data structure, where the

offset to the field is known at compile-time. For example, the “head” function

accesses the first cell and “tail” function accesses the second cell. These function

definitions are found in Nut-compiler.

(def head e () (vec e 0))
(def tail e () (vec e 1))

They are translated into the following sequence. Let r1 be the input expression,

r2 be the return value.

head: ld r2 0(r1)

tail: ld r2 1(r1)

106

Using jump for conditional branching

jmp cond ads

cond = eq, neq, lt, le, gt, ge, always

There are four flags in the processor: Sign, Zero, Carry, Overflow (S,Z,C,O).

Each flag is one bit. They are like global variables. Flags are set by ALU

instructions such as, add, sub, mul, div, and, xor etc. The ld/st

instructions do not change flags. The condition is decided by flags. Flags are set

by the previous ALU instruction. To compare two variables, subtract instruction

is used and flags S, Z will be affected. Let two variables be in r1 and r2, the

instruction “sub r0 r1 r2” will compare these variables and sets the Sign

and Zero flags without altering any register (because r0 is always zero). For

example eq is Z = 1; lt is S = 1; le is S = 1 or Z = 1. Subsequently, the jump

instruction can test the flags that affect the control flow.

Using jump to do if-then-else

(if (> a b) e1 e2)

Let r1 = a, r2 = b,

 ld r1 a

 ld r2 b

 sub r0 r1 r2 ; compare a b

 jmp gt L1 ; if a > b then

 <code of e2>

 jmp always exit

L1:

 <code of e1>

exit:

107

Generate code for a simple while loop

The following expression can be translated to S2 code as follows.

(do
(set s 0)
(set i 1)
(while (<= i 10)
 (do
 (set s (+ s i))
 (set i (+ i 1))))

Let r1 = s, r2 = i

 ld r1 #0 ; s = 0

 ld r2 #1

loop:

 sub r0 r2 #10

 jmp gt exit ; while i <= 10

 add r1 r1 r2 ; s = s + i

 add r2 r2 #1 ; i = i + 1

 jmp always loop

exit:

Function call

The part of program that is reused is made into a subroutine. When a main

program calls a subroutine, the body of that subroutine is executed and then the

flow goes back to the caller at the location after the line that call that subroutine.

This transfer of flow requires saving of the program counter (PC) which at the

time of call pointed to the next instruction. The return from a subroutine call

requires restoring PC. There are two instructions for implementing a subroutine

call: jump and link, and jump register.

108

jal rx ads

“jump and link” saves PC to rx and jump to ads.

jr rx

“jump register” restores PC from rx.

The register “rx” is called a link register. It stores the return address. It is

complicate when the call is recursive because the link register must then be

saved/restored properly. Here is a simple call. For simplicity, the parameters can

be passed through registers.

(def sq (x) () (* x x))

(def main () (a b)
 (set a 2)
 (set b (sq a)))

The above program can be translated into S2 code as follows.

Let r1 = a, r2 = b, r3 = x, r4 = link, r5 be return value.

main:

 ld r1 #2

 add r3 r1 r0 ; binding a, x

 jal r4 sq ; call sq

 add r2 r5 r0 ; b = sq(a)
 <end>

sq:

 mul r5 r3 r3

 jr r4 ; return

Please note that we use “add rx ry r0” to do rx = ry (moving a value

between two registers). r4 is used as a link register to store the return address.

The passing of a parameter is done by assigning x = a, (“add r3 r1 r0”).

The return value is stored in r5.

109

To pass parameters from “caller” to “callee”, we generate the code to transfer

variables using the evaluation stack. Any registers that will be used by a

subroutine must be saved upon entry into that subroutine and must be restored

upon exiting it. This is called callee-save. The subroutine takes responsible in

saving and restoring link register and all registers local to it in order not to

interfere with values of the caller. An alternative is to use caller-save where the

caller must save/restore its own registers. Let sp be a register that is the stack

pointer.

To push a register “x”,

add sp sp #1

st 0(sp) x

To pop a value to a register “x”,

ld x 0(sp)

sub sp sp #1

When multiple values are pushed into a stack, the compiler can use displacement

to give an offset to the stack pointer. The stack pointer can be adjusted at the end

of the sequence. For example, to push three registers.

 st 1(sp) first

 st 2(sp) second

 st 3(sp) third

 add sp sp #3

And similarly for popping multiple values.

 ld third 0(sp)

 ld second -1(sp)

 ld first -2(sp)

 sub sp sp #3

Please note that the offset of sp started from 1 when push and 0 when pop due to

asymmetric of two operations in terms of the initial position of sp, and the order

of operands are reversed.

Now let us do the previous example of the function call again with the code for

manipulating the activation record fully expanded.

110

(def sq (x) () (* x x))

(def main () (a b)
 (set a 2)
 (set b (sq a)))

This program can be translated into S2 code as follows.

Let r1 = a, r2 = b, r30 = link, r31 be the return value.

main:

ld r1 #2

add sp sp #1 ; pass a on eval stack
st 0(sp) r1

jal r30 sq

add r2 r31 r0 ; b = sq(a)
<end>

sq: ; let r1 = x
<save reg>

<pass param>

mul r31 r1 r1

<ret>

jr r30

Where <save reg> is the code to save the registers used in this subroutine.

First, the link register is pushed, then other registers.

 st 1(sp) r30

 st 2(sp) r1

 add sp sp #2

<pass param> is the code to pass parameters to the local registers. The

passed parameters are on the evaluation stack before <save reg>. The size of

<save reg> is used as an offset to access the passed parameters.

 ld r1 -2(sp)

111

At the end of subroutine <ret>, the saved registers are restored and the passed

parameters are popped from the evaluation stack.

 ld r1 0(sp)

 ld r30 -1(sp)

 sub sp sp #3

The subroutine “sq” is shown in full below.

sq: ; let r1 = x

st 1(sp) r30 ; <save reg>
st 2(sp) r1

add sp sp #2

ld r1 -2(sp) ; <pass param>
mul r31 r1 r1

ld r1 0(sp) ; <ret>
ld r30 -1(sp)

sub sp sp #3

jr r30

4.5 Lab session

Compile some Nut programs to get the object files then generate S-code from

these object files.

Compile the Nut-compiler:

c:>nutc < nut.txt

And use nut-compiler to compile the example, let it be “t3.txt”, the output

goes to “t3.obj”:

c:>nvm < t3.txt > t3.obj

Edit t3.obj to get rid of the listing at the beginning. Now compile the S-code

generator, “gen.txt”:

112

c:>nutc < gen.txt

Use it to generate the final S-code object:

c:>nvm < t3.obj > t3s.obj

We can use the S-code virtual machine, svm.exe to run it and to generate a

readable S-code. To generate a readable S-code from an S-code object:

c:>svm -l < t3s.obj

Run it.

c:>svm < t3s.obj

4.6 Summary

The code generation from N-code to S-code is straightforward. Both instruction

sets are similar. They are based on stack, zero-address instructions. We have

described the plan how to map from one code to another. The format of the

target object code has been studied. The mechanism to generate the object code is

elaborated. The general framework to generate the object code is similar to

executing the N-code using the evaluator of the last chapter, “eval”. The code

generator traverses the N-code and outputs the associated S-code. The control-

flow instruction of N-code is realised using the jump instruction of S-code.

Therefore the tree-structure of N-code has been transformed to a linear sequence

of S-code instructions.

To illustrate the method of generating object code for a conventional processor, a

register-based processor, S2, is demonstrated. One important aspect of

generating code for a register-based instruction set is that of register allocation.

The result of an operation must be placed explicitly into a register, unlike stack-

based instruction where the result is placed on the evaluation stack. We have not

touched the subject of code optimisation where the output code can be improved

in terms of speed of execution or the size of the code. This is not the main

concern for our study. Many textbooks on compiler are the excellent source

[AHO86] [LOU97]. However, in terms of performance of a system as a whole,

we will study it in Chapter 9.

113

References

[AHO86] Aho, A., Sethi, R., Ullman, J., Compiler: Principles, Techniques, and

Tools, Addison Wesley, 1986.

[AMD64] Amdahl, G., Blaauw, G., and Brooks, F., “Architecture of the IBM

System/360”, IBM Journal of Research and Development, April 1964.

[BEL76] Bell, C., and Strecker, W., “Computer structures: What we have learned

from the PDP-11”, Proc. of 3rd annual symposium on computer architecture,

(1976): 1-14.

[CHO97] Chongstitvatana, P., “Post processing optimization of byte-code
instructions by extension of its virtual machine”, Conf. of Electrical
Engineering, Bangkok, 1997.

[CHO01] Chongstitvatana, P. “Computer Architecture: A synthesis approach”,

2001.

[INT01] Intel Corp. Intel Pentium 4 processor optimization reference manual,

Document 248966-04. Aurora, CO, 2001.

[KOT03] Kotrajaras, V., and Chongstitvatana, P., “Nibbling Java Byte Code for

Resource-Critical Devices”, Proc. of National Computer Science and

Engineering Conference, Thailand, 2003.

[LEV89] Levy, H. and Eckhouse, R., Computer programming and

architecture: the VAX, 2nd ed., Digital press, 1989.

[LIN97] Lindholm, T. and Yellin, F. The Java™ Virtual Machine Specification,

Addison Wesley, 1997.

[LOU97] Louden, K., Compiler Construction: Principles and Practice, PWS

Pub., 1997.

[PEL97] Peleg, A., Wilkie, S, and Weiser, U., “Intel MMX for Multimedia

PCs”, Communications of the ACM, January 1997.

114

Exercises

4.1 Modify the code generator to generate the two-jump while. Measure the

number of instruction used while running a program. Compare it with

the one-jump while.

4.2 Implement the code generator that use the instruction inc and dec by

recognising the following N-code:

(put.a (ADD get.a lit.1))
(put.a (SUB get.a lit.1))

4.3 The associative table is a linear array. The searching is sequential.

Reimplement the associative table to be more efficient. (Hint: use other

data structure, or use hash table).

4.4 Write a code generator for S2 instruction set using the scheme outlined in

this chapter.

4.5 There are both advantage and disadvantage of using callee-save versus

caller-save. Some compiler does both depending on the context (the C

compiler for VAX under the operating system VMS). Modify the code

generator above to do caller-save where the caller must save/restore its

own registers.

4.6 Suggest some way to implement a simple code optimisation to improve

the speed of execution. (Hint: replace a long sequence of code with a

shorter one).

115

Chapter 5

Microprogramming

A processor is composed of a data path and a control unit. A data path of a

processor consists of execution units, such as an ALU, a shifter, registers, and

their interconnects. A control unit is considered to be the most complex part of a

processor. Its function is to control various units in the data path. The control

unit realises the behaviour of a processor as specified by its micro-operations.

The performance of a control unit is crucial as it determines the clock cycle of the

processor.

A control unit can be implemented in either hardwired or microprogram. A

hardwired control unit is a large FSM (finite state machine) sending control

signals to a data path. A microprogrammed control unit [FLY71] is a complex

programmable unit that outputs control signals to a data path according to its

microprogram. A microprogrammed control unit can be regarded as a simple

computer. In this view, a processor has another simple processor inside it which

is its control unit. Controlling a data path is represented by its microprogram. We

will discuss microprogramming concept in details in this chapter. It will be used

in the next chapter to design the main processor used in our system.

5.1 Hardwired control unit

In the past, a hardwired control unit was very difficult to design hence its

engineering cost was very high. Presently, the emphasis of computer design is the

performance therefore hardwired is the choice. Also the CAD tools for logic

design have improved to the point that a complex design can be mostly

automated. Therefore almost all processors of today use hardwired control units.

Starting with a behavioural description of the control unit, a state diagram of

micro-operations is constructed. Most states are simply driven by clock and only

transition to the next state. Some states branches to different states depend on

conditions such as testing conditional codes or decoding the opcode.

116

From the state diagram, a hardware realization can be constructed almost

automatically by some CAD tools. Explanation of logic design for sequential

circuits and logic minimization can be consulted from many basic textbooks on

the subject such as Katz [KAT96]. The control circuit is implemented using

Programmable Logic Array (PLA). In general, any sequential circuit (which can

implement any state machine) can be constructed from a combinational circuit

with feedback. The feedback signals represent the states. If the feedback path

uses no clock, the circuit is called asynchronous. If the feedback path uses a

latch with clock, the circuit is called synchronous. Synchronous circuits are used

almost exclusively for sequential circuits today as they are easier to design and

can be implemented reliably. Most of the CAD tools handle synchronous

circuits. Asynchronous circuit has been used for the reason of performance as in

many early computer designs, for example, ILLIAC and many computers in the

class called supercomputer. But it is difficult to implement reliably and it is still

much more difficult to do systematic design of a complex machine using

asynchronous circuits. The combinational part of the control circuit can be

regarded as a memory where its content is the map of the inputs to the outputs

(states are considered to be a part of the outputs). This view of combination

circuit as a memory is called Random Access Memory model (RAM) of

computation machines.

5.2 Microprogrammed control unit

Maurice Wilkes invented microprogram in 1953 [WIL53] [WIL85]. He realised

an idea that made a control unit easier to design and is more flexible. His idea is

that a control unit can be implemented as a memory which contains patterns of

the control bits and part of the flow control for sequencing those patterns. A

microprogram control unit is actually like a miniature computer which can be

programmed to sequence the patterns of control bits. Its “program” is called

microprogram to distinguish it from an ordinary computer program. Using

microprogram, a control unit can be implemented for a complex instruction set

which is impossible to do by hardwired.

117

How microprogram work

The simplest way to understand a microprogrammed control unit is to regard it as

a ROM which implements a finite state machine (FSM). A general sequential

circuit consists of a combinational circuit which some outputs are fed back to

inputs. If the feedback part is synchronised with a clock using a register to latch

the signal, then the circuit is said to be synchronous. That is, the output changes

at the edge of the clock, between the clocks, the output does not change. If the

output is fed back directly, it is said to be asynchronous, the output changes

dependent on the delay of the combinational part and it can change (“oscillate”) a

number of times before the signal is settled (or never settled). This is the most

general way to visualise a sequential circuit. Any combinational circuit can be

directly implemented as a truth table, although it is not efficient in terms of size.

A read-only-memory (ROM) stored the truth table. In a sense, this ROM can be

regarded as a “program”.

Figure 5.1 A general sequential circuit

A control unit outputs the control signals to control various parts of the data path

such as selecting a multiplexer, latching a register, or control the operation of an

ALU. The first stage to see how a ROM can be used as a control unit is that the

ROM can output a fixed sequence of control signals simply by cycling the

address of the ROM. The content of this ROM is a microprogram, but it is

comparable to a straight line program, i.e. the one without any transfer of control.

This is how the inventor of microprogram, Maurice Wilkes, discovered it. We

will call each entry in this ROM a microword.

C

Latch

output input

118

A microprogram counter is used to cycling the sequence of control. If a part of

ROM, says a number of the right most bits, is used as the next address, then these

bits can be loaded into the microprogram counter to alter the sequence of control.

We now have a microprogram with “goto”. Some control bits can be used to test

the condition, such as the zero flag. The result of testing can be used to decide

whether to load the microprogram counter or to increment it. This is equivalent

to the statement “if-then”. Changing the behaviour of the control unit can be

done simply by changing this microprogram.

Figure 5.2 A fixed sequence control unit using ROM

Conditionals are the bits that are used to determine the flow of microprogram;

loop, branching, next instruction etc. Its input comes from the data path (usually

from the conditional code register). The next address determines the next

microword to be executed.

A microprogram is executed as follows.

1. A microword at the location specified by the microprogram counter is read

out; control bits are latched at an output buffer which is connected to the data

path.

2. If the conditional field is specified and the test for conditional is true, the

next address of microprogram will come from the next address field

otherwise the microprogram counter will be incremented (execute the next

microword).

ROM

mpc
ads

control

. . .

119

Figure 5.3 A fully function microprogrammed control unit

What that has been described is called horizontal microprogram. The microword

can have other formats. There are several possibilities (Fig. 5.4):

1. Single format, one address as just described above.

2. Single format, two addresses, contain two next addresses field, one for result

of test true, and the other for result of test false.

3. Multiple formats, such as, one format for the control bits without the next

address field and another format for jump on condition with the address field.

The advantage is that the microword can be shorter than the single format.

The disadvantage is that to “jump” will take one extra cycle.

control bits next address

a) one-address format

control bits true next false next

b) two-address format

0 control bits

1 next address

c) multiple format

Figure 5.4 Several formats of microword

ROM

mpc
ads

control

. . .

next

jmp

c
o
n
d
it
io

n
a
l

n
e
x
t

t1

flag

 jmp

120

Horizontal microprogram allows each control bit to be independent from other

therefore enables maximum simultaneous events and also offers great flexibility.

It is also waste a lot bit. For each field of a microword, there may be a group of

bits that are not activated at the same time therefore they can be encoded to use a

fewer bit. A decoder is required to decode these bits and to connect them to the

data path. This approach is called vertical microprogram. There are many

possibilities to compact the micro memory to be as small as possible, sometime

trading off speed for space, for example, a two-level microprogram. The first

level is vertical i.e. maximally encoded; the microword of the level one is pointed

to the horizontal word of the second level. This is rather like the first level is

composed entirely from subroutine call and the second level is the subroutine.

The control unit just described has the output of control unit directly mapped to

control signals. It is possible to have more than one output format that map the

output of the control unit to the actual control signals, for example using the first

bit to choose the format, 1 to mean the control bit, 0 to mean the test and jump to

other microprogram address. This is called two-format microprogram. It is the

effort to reduce the size of microprogram because control and test can be

mutually exclusive. Other variation is nano-program where the group of

microprogram word is regarded as a reusable subroutine then the “program”

becomes the code to call these subroutines. You can read about the historical

record of microprogram era of architecture in [SIE82].

5.3 Realisation of microprogrammed systems

This section discusses the equivalence of hardware and software in realising a

sequential system. This concept will be illustrated by a simple example of

designing a 4-bit comparator in both hardwired and microprogrammed systems

(this example is due to [MAN92]).

An assembly of logic elements, whether combinational (AND, OR, NOT, NAND

gates, demultiplexors, multiplexor etc) or sequential (flip-flops, registers etc.) is

called a hardwired logic. By incorporating memories and the content of memory

in the test or assignment elements, the system is called a microprogrammed logic

system; the content is the “microprogram”. A microprogrammed system can be

used to realise a synchronous sequential system, that is, it can be used to

implement a control unit.

121

Example A 4-bit comparator input : A0, A1, B0, B1, and Z is { EQ, LT, GT }

can be described with the logic expression of Z as follows.

Z = (A1' B1' A0 B0' + A1 B1' + A1 B1 A0 B0') . GT + (A1' B1' A0'
B0' + A1 'B1' A0 B0 + A1 B1 A0' B0' + A1 B1 A0 B0) . EQ +
(A1' B1' A0' B0' + A1' B1 + A1 B1 A0' B0) . LT

Where A' is NOT A

The expression can be tabulated in the table below.

number A1 B1 A0 B0 Z

0 0 0 0 0 EQ
1 0 0 0 1 LT
2 0 0 1 0 GT
3 0 0 1 1 EQ
4..7 0 1 X X LT
8..11 1 0 X X GT
12 1 1 0 0 EQ
13 1 1 0 1 LT
14 1 1 1 0 GT
15 1 1 1 1 EQ

This expression can be represented as a diagram of test and assignment primitives

that is traversed sequentially by using synchronous sequential system which each

clock reads an element of the diagram and executes the primitive.

Fig. 5.5 shows the diagram of the comparator,

Z = compare(A,B)

122

Figure 5.5 The diagram of compare(A,B)

Each primitive (test, assignment) can be described as follows.

Figure 5.6 The test element

test

if V is true then goto ads1 else goto ads0

V

1 0

ads1 ads0

A1

B1 B1

A0

B0 B0

GT EQ LT

0

0

1

1 0 1

0 1

0 0 1 1

123

Figure 5.7 The assignment element

assignment

output OUT and goto next

The above diagram can be translated into a microprogram as follows.

0 if A1 then goto 1 else goto 2

1 if B1 then goto 3 else goto 6

2 if B1 then goto 8 else goto 3

4 if A0 then goto 4 else goto 5

5 if B0 then goto 7 else goto 6

6 R = GT goto 0

7 R = EQ goto 0

8 R = LT goto 0

Next, the microprogram is encoded to map the primitives to a concrete

representation. The 4 cases of test inputs {A1 B1 A0 B0} are encoded into 2

bits. The output { EQ LT GT} is encoded into 3 bits using unary code.

input i1 i0

A1 0 0
B1 0 1
A0 1 0
B0 1 1

output z2 z1 z0

GT 1 0 0
EQ 0 1 0
LT 0 0 1

next

OUT

124

The microword has two types: test, assignment. The address field has 4 bits to

cover the whole microprogram address (0 . . 8)

Figure 5.8 The microword format for compare

The microprogram then can be written as follows.

ads T i1 i0 ads1, next ads0, z

0000 1 0 0 0001 0010

0001 1 0 1 0011 0110

0010 1 0 1 1000 0011

0011 1 1 0 0100 0101

0100 1 1 1 0111 0110

0101 1 1 1 1000 0111

0110 0 - - 0000 -100

0111 0 - - 0000 -010

1000 0 - - 0000 -001

1 i ads1 ads0

if i then ads1 else ads0

0 next OUT

output OUT goto next

a) test

b) assignment

125

Figure 5.9 The microprogrammed unit to realise the function compare

The microprogrammed unit to realise the function compare is shown in Fig. 5.9.

How many cycles it takes to evaluate compare(A, B)? Observing the diagram

(Fig. 5.5), on the longest path, there are 5 steps to traverse the diagram hence it

takes 5 cycles to evaluate this function using the microprogrammed unit above.

5.4 Equivalence of hardware and software

The definition of microprogramming is due to Wilkes, who in 1953 suggested a

method for designing the control unit of a processor, based on the use of

sequence of microwords − a microprogram − held in a read only memory (ROM).

In this context, microprogramming is generally understood as the technique of

producing interpreters for high-level language.

At that time random access memory (RAM) that was available was much slower

than the processor, leads to CISC (Complex Instruction Set Computer) to achieve

high speed the microprogram of CISC are organised horizontally; the need to

control a complex processing unit requires each microword to consist of a large

number of bits, often over 100.

M
U

X

M
U

X

A1
B1
A0
B0

1
…

ROM

 T i

OUT T

a
d
s

4

4

3
3

4 4

Z

126

Firmware, specification of a microprogram, is not an interpretation algorithm but

a logic system. The concept of vertically organised microprogram follows that

each microword is of fewer bits than in horizontally organised microprogram.

The resulting simplicity enables a true optimization of the software to be

achieved. Firmware is the transformation and equivalence between hardware

(logic systems) and software (microprogram). This hardware-software

equivalence is a particular case of the equivalence between space and time.

5.5 Microprogram for a simple data path

Next we discuss an example of writing a microprogram to control a simple data

path. This data path is not a fully functioned processor. However, most of the

essential components are present. The example of the control will be the action of

fetching an instruction from the memory and executing it.

Data path specification

Data path has a 32-bit ALU. The data width is also 32-bit. It has 32 registers.

The register bank has one write port, two read ports. ALU has one function, add.

The program counter (PC) is 32-bit. It has an increment operation to increment

PC. The memory interface unit has two registers: MAR (memory address

register), MBR (memory buffer register). The instruction register (IR) stores the

most recent instruction.

The memory contains a code segment storing a program (in machine code). Each

instruction is a fixed length 32-bit wide and has the following format, op 5-bit,

r1 5-bit, r2 5-bit, r3 5-bit, don’t care 12-bit.

The field “op” specifies operation of the instruction. It has only one operation

“add” with the code 00001.

 ADD 00001

op r1 r2 x r3

5 5 5 5 12

127

Figure 5.10 A simple data path

r1, r2, r3 specifies a register number, 32 registers requires 5 bits

Example

add r1 r2 r3

means R[r2]+R[r3] -> R[r1]

 00001 00001 00010 00011 x...x

Rread

Memory

5

13

Mwrite Mread

Control Unit

MBR MAR IR PC

T
R31

…

R1

R0

Registers
A

L
U

8 12

Rwrite

Bus

data

ads
inc

add

10
2

3 4 2 6 1 14

7

9

11
2

128

The behaviour of the data path can be described in a register transfer level (RTL).

The register transfer level specifies how data is flowed between components in

the data path. Let’s call this description, microsteps.

notation

<label>

source->destination

microsteps

<fetch>

 PC -> MAR

 Mread -> MBR

 MBR -> IR

 PC + 1

 decode (goto add)

<add>

 R[r2] + R[r3] -> T

 T -> R[r1]

 goto fetch

Each step takes one cycle. Some step can be overlapped if they are independent,

for example, PC + 1 can be activated concurrently of any step in <fetch>.

Now we want to explore in more details how to realise this behaviour (the

microstep). Each connection has an ON/OFF gate (valve) associate with it. The

data flow can occur when the gate is ON. To transfer data from a source through

bus to a destination, two gates are opened, one is the gate from source to bus,

another one is the gate from bus to destination, for example, to do

PC -> MAR

Two gates are: PC>BUS and BUS>MAR. The first gate transfers data from PC to

BUS. The second gate transfers data from BUS to MAR. Here is the list of all

gates in the example.

129

notation
gate number, gate name

1 PC>BUS

2 BUS>MAR

3 MBR>BUS

4 BUS>MBR

5 Mread

6 BUS>IR

7 PC+1

8 Rread

9 ALU:add

10 ALU>T

11 T>BUS

12 Rwrite

13 Mwrite

14 BUS>PC

Each microstep can be written as the state of these gates. We use the convention

that when a gate’s name is written it is activated (or ON) otherwise it is idles (or

OFF).

<fetch>

 PC>BUS, BUS>MAR

 Mread

 MBR>BUS, BUS>IR

 PC+1

<add>

 Rread, ALU:add, ALU>T

 T>BUS, Rwrite

These events can be written using gate numbers as follows.

<fetch>

 1,2

 5

 3,6

 7

130

<add>

 8,9,10

 11,12

A finite state machine is used to realise the control unit. A FSM for this control

unit is shown below. The “decode” is a combinational circuit to do a multiway

branch to an appropriate execution state according to the opcode-field on an

instruction in IR (in this case only one instruction “add”).

notation: state {activation; next state}

A {1,2; B}

B {5; C}

C {3,6; D}

D {7; decode}

E {8,9,10; F}

F {11,12; A}

This FSM can be implemented using various technologies. The design and

implementation of a FSM is greatly simplified by the use of CAD tools.

E

F

A B C D decode

add

8, 9, 10

. . .

1, 2 5 3, 6 7

11, 12

131

5.6 How complicate is a control unit?

The bound of complexity of control is

States  Control inputs  Control outputs.

A control unit is implemented as a sequential synchronous machine. It can be

described as

O = f(I)

O output is a function of I input, f is a Boolean function which is purely

combinational. To have state feedback, a part of output is stored in a memory to

be fed back to input. This memory is synchronised with a clock so that changes

at its output (the state) happen at the edge of clock. Between edges of a clock, its

output does not change.

Oc = f(Ic,Is)

Is(t+1) = Os(t)

Where Oc is the output, Os is the state output, Ic is the input, Is is the state input,

t is time.

The size of a combination circuit with I input and O output is O 2 I . This is the

size required to store the output as a function of inputs.

The control unit in the example has 15 outputs, 5 inputs from opcode-field of IR

and 6 states (fetch+add). Os must be 3 bits to contain 6 states.

Oc is 15

Ic is 5

Is is 3

So its size is (15+3)2 (5+3), approximately 5000 bits (4608). The table that

contains f and the state feedback can be viewed as a kind of program.

O = f(I)

132

address O = f(I) state

I 00110101.... 001

... 10001010.... 010

... ...

The height of this table is 2 I, 256 in our example. The width of each row in this

table is 15+3 bits. The content of this table is regarded as a program. We can

write it down as the event of activation of gates

fetch {1,2; B}

B {5; C}

C {3,6; D}

D {7; decode}

add {8,9,10; F}

F {11,12; fetch}

This is microprogram, voila!

5.7 Advantage and disadvantage of microprogram

Advantage

Making change to a hardwired control unit implies global change, that is, the

circuit will be almost totally changed. Hence, it is costly and time consuming

although the present CAD tools do reduce most of the burden in this area. In

contrary, for a microprogrammed control unit, making change to it is just

changing the microprogram, the bit pattern in the micromemory. There are tools

to generate these bits from a human-readable microprogram, hence making

change to a microprogram is similar to edit-compile a program. The circuit for

control unit does not change. This enables adding new instructions, modifies

addressing mode, or updating the version of control behaviour easy to do.

Disadvantage

Microprogram relies on a fast micromemory. It requires a high speed memory.

In fact, the architect of an early microprogrammed machine, IBM S360 family,

depended on this crucial technology, which was still in the development at that

time. The breakthrough in memory technology came, and S360 became the most

133

successful family of computers. A hardwired control unit is much faster.

Microprogramming is inherently very low level, making it hard to be absolutely

correct. Microprogramming is by nature concurrent, many events occur at the

same time, so it is difficult to develop and debug (for a good reading that told a

story related to this process, read Tracy Kidder's “The soul of a new machine”

[KID00]).

5.8 Summary

Microprogram describes the step-by-step execution of the control unit. For our

study, this has advantage of being able to change the behaviour of the control unit

without changing the circuits. The operational meaning of each instruction can

be described using microprogram. By considering steps of control as a program,

it creates a new level of abstraction which simplifies the implementation of a

complex instruction set. Using this abstraction, building a control unit is similar

to writing a program describing the behaviour of an instruction set. We studied

various forms of microprogram and their realisation. A systematic method to

realise a general microprogrammed system is illustrated. An example of writing

a microprogram for a simple data path is demonstrated.

The technology of microprogram has a big impact on building and designing

computers during the era of 1970-1980. Many computer manufacturers adopted

this technology. The modern computer aided design tools and the development

of modern computer architecture have replaced it. However, microprogramming

is an excellent tool to understand computer system behaviour. We will use it to

study the processor in the next chapter.

5.9 Further Reading

Maurice Wilkes is the inventor of microprogram. His idea was too far ahead of

its time as it required a high speed memory which was not possible at that time.

Microprogram approach for control unit has several advantages:

1. One computer model can be microprogrammed to emulate other model.

2. One instruction set can be used throughout different models of hardware.

3. One hardware can realised many instruction sets. Therefore it is possible to

choose the set that is most suitable for an application.

134

Microprogram becomes obsolete mainly because the present design emphasises

the performance and microprogram is slower than hardwired. The change in

instruction set design toward a minimum number of cycle per instruction

simplifies the instruction set to the point that microprogram is not really required.

Also the design of hardwired control unit can be mostly automated as opposed to

microprogram which must be written and debug. Hence, for the current

instruction set architecture, a hardwired control unit offers a lower engineering

cost.

As the history tells us, the design of microprocessors followed the same trend as

the earlier computer design. Because of the resource limit (the number of

transistor in a chip), hardwired control was implemented and the instruction set

architecture was toward a simple design. Ease of change popularised

microprogramming. Microprogram made it possible to achieve more complex

instruction set. With a much larger micro memory a machine as elaborate as the

VAX is possible [LEV89]. In 1984, DEC wanted to offer a cheaper machine

with the same instruction set as VAX. They reduced the instructions interpreted

by microcode by trapping some instructions and performing them in software.

They discovered that 20% of VAX instructions occupied 60% of the microcode,

and yet they are used (executed) only 0.2% of the time. Their simpler subset of

VAX, called MicroVAX-1, implemented 80% of VAX instruction in microcode,

other 20% is trapped to software, has the size of micromemory reduced from

480K (VAX) to 64K, and perform 90% of the performance of VAX-11/780.

This is also evidence toward a new thinking in instruction set design.

References

[FLY71] Flynn, M., and Rosin, R., “Microprogramming: An introduction and a

viewpoint”, IEEE Trans. on Computers, July 1971.

[KAT93] Katz, R., Contemporary Logic Design, Addison-Wesley, 1993.

[KID00] Kidder, T., The soul of a new machine, Back bay books, 2000.

[LEV89] Levy, H. and Eckhouse, R., Computer programming and

architecture: The VAX, 2nd ed., Digital press, 1989.

[MAN92] Mange, D., Microprogrammed systems: an introduction to

firmware theory, Chapman & Hall, 1992.

135

[WIL53] Wilkes, M., and Stringer, J., “Microprogramming and the design of the

control circuits in an electronic digital computer”, Proc. of the Cambridge

philosophical society, April 1953. Reprinted in [SIE82].

[WIL85] Wilkes, M., Memoirs of a computer pioneer, MIT Press, 1985.

[SIE82] Siewiorek, D., Bell, C., and Newell, A. Computer structures: Principles

and examples. McGraw-Hill, 1982.

Exercises

5.1 Using the simple data path in this chapter, write a microprogram to

perform the “swap two registers” operation.

5.2 This is one of my favourite exercises. Suppose we want to write a

program to perform a search in a list. We will build a machine

specifically to do this task. Assuming that the data structure has been

loaded into the memory by some mechanism. Using the simple data path

in this chapter, write a microprogram to perform this task WITHOUT the

“program” in the code segment. That is, the entire program is in the

control unit, or it is in the form of microprogram only.

5.3 To speed up the execution of microprogram, some designer used a delay

branch, that is, the goto field of microprogram will be delayed by one

cycle during the test condition is activated. Design and demonstrate this

mechanism. How it will affect the microprogram?

5.4 There are many variations of microprogram: two-level microprogram,

nano-program. They are a compressed form of describing step-of-

control. Please suggest a design of microprogram system that is aimed to

be minimal in terms of the size of the microprogram.

5.5 Modern processors have pipeline. Pipeline allows concurrent execution

of functional units in the data path. How the step of execution of such

data path is described using microprogram?

5.6 Modern processors have many functional units, that is, they are

superscalar machines. The instruction stream is reordered such that these

functional units can be used as much as possible at the same time. This

136

is a kind of packing many instructions into one long instruction for

concurrent execution. Please describe a microprogrammed version of

such machine. Is it simpler or more complex?

137

Chapter 6

Sx Processor

In this chapter, we discuss the main processor of our system, the Sx processor. It

is a stack-based processor. Its instruction set is S-code (see Chapter 4). The data

path width is 32 bits. The control unit uses 2-phase clock [BUR04a]. For the

purpose of teaching cycle-accurate execution, it uses a microprogrammed control

unit.

6.1 Data path

Sx has seven special purpose registers (no visible user registers): TS, FP, SP, NX,

FF, IR and PC. TS caches the top of stack value.

TS top of stack

FP frame pointer

SP stack pointer

NX temp register

FF temp register

IR instruction register

PC program counter

The program counter, PC, can be updated independent of other registers. This

allows fetching an instruction in one cycle. The data path consists of one ALU

connected to the register bank. The output of ALU, tbus, goes back to the

register bank. The memory is interfaced to the processor through the bus

interface unit (BIU). The BIU interfaces the data input, din, and the data output,

dout, to the memory data bus. din is selected from TS or FP. The input of the

register bank, bus, is multiplexed from tbus, dbus and PC. The address bus,

abus, is multiplexed from PC and tbus. The PC can be updated with PC+1 or

138

PC+arg or tbus. The ALU has two ports: p1, p2 and can perform many

functions. There are two flags: Zero, and Sign.

Table 6.1 The function of ALU, the inputs are a, b. a is at the port p1. t is the
output.

Add: t = b + a Sub: t = b - a Mul: t = b * a Div: t = b / a

Band: t = b & a Bor: t = b | a Bxor: t = b ^ a Not: t = ! a

Shl: t = b << a Shr: t = b >> a Eq: t = b == a Ne: t = b != a

Lt: t = b < a Le: t = b <= a Gt: t = b > a Ge: t = b >= a

Inc: t = a + 1 Dec: t = a - 1 SUB2: t = a - b P1: t = a

P2: t = b Z: t = a == 0

The instruction register, IR, has the operation code at the right-most 8-bit and the

argument at the left-most 24-bit. The argument field is signed extended to 32

bits. When the instruction requires no argument, the argument field is zero.

Using 2-phase clock enables read-modify-write of registers in one cycle.

Reading from registers and memory will be on the positive edge and writing to

registers will be on the negative edge. The basic cycles in the control unit are:

• read-modify-write registers

• register transfer

• memory read

• memory write

Memory access

Before going into details of each control cycle, one important consideration is

how the memory is accessed (read/write) in each control cycle. A memory

access is assumed to take a full cycle. The memory access time is assumed to be

half of the processor cycle.

arg op

24 8

139

Figure 6.1 The Sx data path

A memory access is initiated by setting the address through abus, for a read, a

memory read signal is asserted (mR). The data from the memory is ready at the

middle of the cycle. The data from dbus is latched to a register in the middle of

the cycle, at the negative edge of the clock.

arg

1

M

BIU

SP

FP

TS

IR

PC

FF

NX

j a

b

tbus tbus

tbus

dbus din

PC

arg

abus

alu

TS

FP

+

p1

p2

bus

x

y

d

140

Figure 6.2 A memory read cycle

A memory write cycle is similar. The address and data are asserted at the

beginning of the cycle. The memory write signal is asserted (mW). The data will

be written in the memory in the middle of the cycle, at the negative edge of the

clock.

Figure 6.3 A memory write cycle

processor clock cycle

data is written here

data valid for writing

address valid

cycle

memory write signal

processor clock cycle

data valid here, dbus

memory read signal

address valid, abus

cycle

141

Register access

The basic read-modify-write starts at the positive edge of the clock. The data are

read from the registers into the ALU ports through the multiplexor x and y. The

ALU outputs the result to tbus. At the negative edge, tbus is fed back to the

input of registers, bus, through the multiplexor b and is latched into the

designated register.

read-modify-write a register

pos R -> alu -> tbus

neg tbus -> R

register transfer

pos R1 -> tbus

neg tbus -> R2

6.2 Execution cycle

The processor begins its execution cycle with fetching an instruction from the

memory which is complete in the first half of the cycle. The instruction in stored

in the instruction register (IR). It is decoded through a read-only-memory, called

micro-ROM, that stored the address of the microprogram control. The control

step then transfers to the appropriate microprogram step. At the end of

microprogram step of the instruction, the control is transferred back to fetch the

next instruction. A register transfer language (RTL) is used to describe these

steps of execution. RTL notation mainly describes the transfer between two

registers, dest = source. In our notation, RTL does not specify the actual

concurrent operation beyond what that can be written as dest = source. We

will fully specify the concurrent operations in the control unit using the

microprogram notation.

142

Execution cycle in RTL

The registers in the data path are IR, TS, FP, SP, NX, FF, and PC. In some

operation that there are a number of arguments, the picture of the data in the

evaluation stack will be shown in this notation, {.. top of stack}. Each operation

is labeled as <op>. M[.] is the memory.

A shorthand notation is used to describe two often used stack operations: push

and pop.

[push x]

sp = sp + 1

M[sp] = x

[pop x]

x = M[sp]

sp = sp - 1

The instruction fetch cycle is,

ir = M[pc].

An operation on the ALU is specified by the operation code field. The opcode

bits determine the ALU function. The binary operations are: add, sub, mul,

div, band, bor, bxor, shl, shr, eq, ne, lt, le, gt, ge, inc, dec. In a

binary operation, the second argument is in the top of stack; the first argument is

in the evaluation stack pointed to by SP. Please note the order of argument. The

second argument is popped to FF, and then two arguments are fed to the ALU.

The result is stored back to TS.

<bop>

pop ff

ts = ts op ff

The unary operation affects only the TS.

<uop>

ts = op ts

143

The access operations to local variables are “get” and “put”. “get” must

pushes TS first to make room for the new data that will be taken from the

activation record, M[FP-arg]. “put” stores TS to the activation record then it

pops the evaluation stack to TS (caching the top of stack).

<get>

push ts

ts = M[fp-arg]

<put>

M[fp-arg] = ts

pop ts

“ld” and “st” are similar to get and put but access to the memory instead of the

activation record.

<ld>

push ts

ts = M[arg]

<st> {data}
M[arg] = ts

pop ts

The “ldx” and “stx” are a bit more complicate as they have a number of

arguments. “ldx” takes the base from the stack, using FF to store it. “stx”

takes two arguments from the stack, the first one is idx, and the second one is

base. The effective address is calculated using the ALU.

<ldx> {base idx}

pop ff base
ts = M[ff+ts]

<stx> {base idx data}

pop nx idx

pop ff base
M[ff+nx] = ts

pop ts

144

The literal instruction is simply pushing the argument to TS.

<lit>

push ts

ts = arg

The control transfer operations are: unconditional jump, conditional jump, call

and return. “jmp” is straightforward. “jt” and “jf” inspect the zero flag, which

reflected the value of TS, and transfer the control step accordingly. The

evaluation stack is popped to get rid of the old TS.

<jmp>

pc = pc + arg

<jt>

if ts != 0

 pc = pc + arg

else

 pc = pc + 1

pop ts

<jf>

if ts == 0

 pc = pc + arg

else

 pc = pc + 1

pop ts

The “call” is perhaps the most complex instruction in this instruction set. It

creates a new activation record and transfers the control step to the called

function. The new activation record is created on top of the current evaluation

stack, overlapping the evaluation stack by the amount of the arity of the called

function to pass the parameters. Hence, the new FP is offset from the current SP.

This offset is computed by the code generator and it becomes the argument of the

function header, the “fun” instruction. “call” fetches the function header to

get the offset, then uses the offset to set up a new FP location and saves the

current FP there. The FP and SP are updated to the new location. Next, it pushes

the return address and finally jumps to the function body.

145

<call ads>

push ts flush eval stack

ts = pc + 1 save ret ads to ts

nx = arg save call ads to nx

ir = M[arg] fetch at ads

M[fp+arg] = fp save old fp

fp = sp = fp + arg new fp, sp

push ts save ret ads

pc = nx + 1 jump to body

The “ret” instruction sets PC to the return address, restores the old SP, and

restores to the previous activation record. As it is different between returning and

not returning a value, it is necessary to decide whether there is a return value or

not. The condition SP = FP indicates that the net effect of the evaluation stack is

that the stack is back to its initial state, there is no value to return. The argument

of “ret” is the offset to set SP back.

<ret>

pc = M[fp+1] restore ret ads

if sp == fp no return value

 sp = fp - arg restore sp

 pop ts cache top of stack

 fp = M[fp] restore fp

else return a value
 sp = fp - arg

 fp = M[fp]

If the net effect cannot be assumed (because some anomaly in the stack

manipulation), then an alternative is to do flow analysis at the compile time to

decide whether a function returns a value or not. The “ret” instruction must be

spilt into two instructions, one without a return value and one with it. Let it be

“ret” and “retv”, then the following steps are their execution cycles.

<ret>

pc = M[fp+1]

sp = fp - arg

fp = M[fp]

146

<retv>

pc = M[fp+1]

sp = fp - arg

pop ts

fp = M[fp]

Microprogram

Next, we describe the actual microprogram level. The whole microprogram on Sx

processor is presented in the appendix H. The difference between RTL and

microprogram is that microprogram specifies the concurrent operations on the

data path, including the signals asserted on the multiplexor and ALU. The

microprogram level exposed more details that are necessary to realise on actual

circuits. A control signal in the microprogram can be regarded as an event that

occurs in the data path, such events are latching a data to a register, selecting a

multiplexor, memory read, memory write, etc. The notation used in writing

microprogram is as follows.

src->dest

denotes the event that transfer data from a source to a destination where source

and destination can be a wire or a register. A wire represents a connection or the

input/output of a component.

alu(p1 op p2)->dest

denotes the ALU performing the “op” on its two input ports, p1 and p2, and its

output is connected to dest, where dest can be a wire or a register.

mR(ads)->dest

src->mW(ads)

mR denotes memory read with the address from the source ads, the data is

transferred to dest. mW denotes memory write with the address sets to the source

and the address is ads. src and dest can be a wire or a register. The

concurrent events are specified in the microprogram by writing them on the same

line. Each event is separated from other event by “,”. The order of events is

unimportant because they occur in the same clock cycle. However, some event

occurs on the positive edge of the clock, some event occurs on the negative edge

147

of the clock. Reading from registers and memory will be on positive edge and

writing to registers will be on negative edge.

src->dest, mR(ads)->dest, ...

The “jump” of the microprogram is achieved by loading the “next microaddress”

bit to the microprogram counter. It can be unconditional or conditional. The next

address is written as <label>. There are three “jump” events in Sx data path.

ifT jump if ts is not zero

ifF jump if ts is zero

decode multiway branch according to opcode

PC has special events.

pc+1 is increment PC by 1

pc+arg is increment PC by arg

We have a shorthand notation for SP.

sp-1 is alu(sp-1)->sp

sp+1 is alu(sp+1)->sp

The microprogram for Sx is followed from its RTL description. We begin with

the instruction fetch.

<fetch> [micro 47]
mR(pc)->ir, decode

Where decode is a control signal to look up the microprogram address

according to the opcode field on the instruction register, IR.

Next is the binary operation.

<bop> [micro 49]
mR(sp)->ff

sp-1

alu(ts op ff)->ts, pc+1, <fetch>

148

Please note that the PC is incremented at the end of the instruction cycle and then

the microprogram is jumped back to the instruction fetch at the beginning.

<uop> [micro 53]
alu(ts op ?)->ts, pc+1, <fetch>

<get> [micro 55]
sp+1

ts->mW(sp)

alu(fp-arg)->tbus, mR(tbus)->ts, pc+1, <fetch>

“get” pushes ts and loads M[FP-arg] using ALU to do the effective address

calculation. The address is presented and the memory read signal is asserted.

The data is ready and is latched to TS.

<put> [micro 59]
alu(fp-arg)->tbus, ts->mW(tbus)

mR(sp)->ts

sp-1, pc+1, <fetch>

“put” writes TS to M[fp-arg] then pops to TS. The SP-1 and PC+1 can be

concurrent because SP-1 uses the ALU while PC+1 does not use ALU. PC has its

own adder.

<ld> [micro 64]
sp+1

ts->mW(sp)

mR(arg)->ts, pc+1, <fetch>

<st> [micro 68]
ts->mW(arg)

mR(sp)->ts

sp-1, pc+1, <fetch>

“ld” and “st” are similar to “get” and “put” but “ld” and “st” access the

memory using direct address from the argument of the instruction.

149

<ldx> [micro 70] {ads idx}
mR(sp)->ff

sp-1

alu(ff+ts)->tbus, mR(tbus)->ts, pc+1, <fetch>

“ldx” gets the base address to FF. The index is at TS. The effective address is

calculated using ALU and the value is fetched from the memory.

<stx> [micro 74] {ads idx val}

mR(sp)->nx pop idx to nx

sp-1 pop ads to ff
mR(sp)->ff

alu(nx+ff)->tbus, ts->mW(tbus)

sp-1

mR(sp)->ts cache ts
sp-1, pc+1, <fetch>

“stx” has three arguments. It gets the index to NX, and the base address to FF.

The effective address is calculated using ALU. The value in TS is stored to that

address. Finally, the top of stack is cached to TS.

<lit> [micro 80]
sp+1

ts->mW(sp)

arg->ts, pc+1, <fetch>

<jmp> [micro 84]
pc+arg, <fetch>

<jt> [micro 86]

alu(ts=0), ifT <j3> if true, don’t jump

<j2> jump
pc+arg, mR(sp)->ts

sp-1, <fetch>

<jf> [micro 92]

alu(ts=0), ifT <j2> if true, jump

<j3> don’t jump
pc+1, mR(sp)->ts

sp-1, <fetch>

150

The “jt” and “jf” use the event “ifT” to do conditional branching. The

branching is the “goto” style of programming which is quite natural in a

microprogram. It saves the microprogram space.

<call> [micro 98]
sp+1

ts->mW(sp), pc+1 flush stack
pc->ts

arg->tbus->nx, mR(tbus)->ir fetch fun, nx=ads

alu(sp+arg)->tbus, fp->mW(tbus) save old fp

alu(sp+arg)->fp->sp new fp, sp
alu(nx+1)->pc, <fetch>

The event “arg->tbus->nx” uses ALU to pass arg through. This event saves

the address of the called function to NX. To get the offset, the “fun” instruction

is fetched to IR which then its argument is used. There are two concurrent

register writes in the event “alu(sp+arg)->fp->sp”. The address of the

body of the function, NX+1, is updated to PC.

<ret> [micro 106]
sp->ff

alu(fp=ff), ifF <r2>

ts->pc do ret
alu(fp-arg)->sp

mR(sp)->ts

sp-1

mR(fp)->fp, <fetch> restore fp

<r2> do retv

alu(fp+1)->tbus, mR(tbus)->ff ret ads
ff->pc

alu(fp-arg)->sp

mR(fp)->fp, <fetch>

The “ret” tests the condition FP = SP to decide whether there is a value to

return or not. To do the test, SP is moved to FF to use ALU operation. When

doing “ret”, the return address is in TS but when doing “retv”, the return

address is in M[FP+1]. FF is used to pass the value through PC.

151

<sys> [micro 119]
<array>

<end>

trap, pc+1, <fetch>

The instructions “sys”, “array” and “end” have no implementation on the

real processor. They are used in the simulator. The event “trap” is used by the

simulator to handle these instructions.

After the microprogram is completely written, the number of cycle taken by each

instruction is known. They are shown in the table below.

Table 6.2 The number of cycle for each instruction

bop 4 uop 3 get 4 put 4

ld 4 st 4 ldx 4 stx 8

lit 4 jmp 2 jt 4 jf 4

call 8 ret 8 retv 7

6.3 Performance

A number of benchmark programs are compiled and then run on the Sx processor

simulator. Table 6.3 reports the number of instructions, the number of cycles

and the cycle-per-instruction number for each program.

“bubble” is a bubble sort program sorting an array of 20 integers, initially the

value in the array is in descending order and sort to ascending order. “hanoi” is a

program to solve Hanoi problem with 6 disks. “matmul” is a matrix

multiplication program; the input is two matrices of the size 4 x 4. “perm” is a

program to do all permutation of {0,1,2,3}. “queen” is a program to find all

configurations of 8-queen problem. “quick” is a quicksort program with a similar

input to “bubble”. “sieve” is a program to find prime numbers less than 1000

using “Sieve of Eratosthenes” algorithm. “aes” is a program to do AES

(Advanced Encryption Standard) block cipher (128, 128) bit key. The average

cycle-per-instruction number of Sx processor is 4.3. This is quite good

comparing to the stack-based processor of an earlier design [BUR04c], a 16-bit

processor runs the same “aes” in 284108 cycles.

152

Table 6.3 The performance of Sx processor

program noi cycle cpi

bubble 10068 44214 4.39
hanoi 2312 10092 4.37
matmul 3043 12880 4.23
perm 4868 20932 4.30
queen 618665 2576210 4.16
quick 3172 13539 4.27
sieve 28026 124338 4.44
aes 30579 131560 4.29

6.4 Sx processor simulator

The design of Sx processor with the detailed design of the data path and its

control unit using microprogram is complete enough to be realised on real silicon

using either FPGA (Field Programmable Gate Array) technology or ASIC

(Application Specific Integrated Circuit). However, it is much easier to study it

using a simulator. The Sx processor simulator performs cycle-accurate

simulation of Sx processor executing programs. The simulator executes step-by-

step microprogram of Sx. It is used to validate the microprogram and to collect

the performance statistics.

Data path

The data path consists of registers, multiplexors, combinational circuits such as

ALU and wires. The registers and wires are simulated as variables of type

integer capable of holding 32-bit values. The multiplexors are simulated as

if..then statements to update the output wires. The simulated ALU performs the

expected operations on its input ports and updates the flags. The combinational

circuits can be simulated by statements to update the output wires.

153

Control unit

A straightforward way to simulate the microprogram control unit is to regard the

microprogram as a ROM, a two-dimensional array of bits. Each address is called

a microprogram word. One microprogram word is executed in one cycle. Each

word contains event-control bits where each bit represents an event in the data

path. The event that is active is 1, otherwise it is 0. Each event has its symbolic

name. The simulation is run as event-driven. The main simulation loop looks at

each microprogram word and scans the event bits to find the active one then

performs the action for that event. This include the control transfer of

microprogram address which updates the microprogram counter. The simulation

loop continues until the “end” instruction throws a trap with the event “trap”.

62

 0 00000000000010000000000001000000100010000001

 1 00100001000100000000000100000010100000000010

 2 00100010000000000001000000001000000000000011

 3 10001010000001000000001000100001000000000000

 4 10000010000001000000001000100001000000000000

 . . .

 55 00010010000001000000000100100001000000000000

 56 10000010000000000000000100000100000000111001

 57 01000101000100000100000000100000100000111010

 58 10000010000000000001000000100000000000111011

 59 01000100001100000100000000000000010000111100

 60 00010010000001000000000100100001000000000000

 61 00000000000001000000000000000001000001000000

Figure 6.4 The microprogram ROM

The events are defined as follows.

multiplexor x selects {ts, fs, sp, nx}

multiplexor y selects {ff, arg}

multiplexor b selects {tbus, dbus, pc}

multiplexor d selects {fp, ts}

multiplexor a selects {pc, tbus}

multiplexor j selects {pc+1, pc+arg, tbus}

alu events are {add, sub, inc, dec, z, eq, op, p1, p2}

154

load registers events are {ir, ts, fp, sp, nx, ff, pc}

memory events are {mR, mW}

next micro-address events are {ifT, ifF, decode, trap}

We use the naming convention as follows. The multiplexor has its name as a

prefix followed by its choice, for example, mux x selects ts is written as x.ts.

The ALU is similar, ALU performs inc is written as alu.inc. The load

register is written with a prefix “l” followed by the name of the register, lpc is

load PC.

The registers are IR, PC, TS, FP, SP, NX, FF. Z is the zero flag. The wires are

p1, p2, tbus, abus, dbus, bus, pcin. The functions IRarg(), IRop()

decode the op and arg field of IR. alu() performs ALU operations.

udecode() returns the microaddress corresponded to the current opcode. m2 is

the next microaddress, specified as the next address field in the microprogram

word.

Let mx[mpc][bit] be the microprogram ROM. The main simulation loop is.

while (running)

 m2 = next micro address field

 for i = 0 to microwidth-1

 s = scan for active event in mx[mpc][i]

 do s

 mpc = m2

For each event in a microprogram word. Let s be the event that is active.

switch(s){ [sx 120]
 case x.ts: p1 = TS

 case x.fp: p1 = FP

 case x.sp: p1 = SP

 case x.nx: p1 = NX

 case y.ff: p2 = FF

 case y.arg: p2 = IRarg()

 case alu.add: tbus = alu(icAdd,p1,p2)

 case alu.sub: tbus = alu(FSUB,p1,p2)

 case alu.inc: tbus = alu(icInc,p1,p2)

 case alu.dec: tbus = alu(icDec,p1,p2)

 case alu.z: tbus = alu(FZ,p1,p2)

155

 case alu.eq: tbus = alu(icEq,p1,p2)

 case alu.p1: tbus = alu(FP1,p1,p2)

 case alu.p2: tbus = alu(FP2,p1,p2)

 case alu.op: tbus = alu(IRop(),p1,p2)

 case a.pc: abus = PC

 case a.tbus: abus = tbus

 case d.ts: dbus = TS

 case d.fp: dbus = FP

 case mR: dbus = M[abus]

 case mW: M[abus] = dbus

 case b.tbus: bus = tbus

 case b.dbus: bus = dbus

 case b.pc: bus = PC

 case j.pc1: pcin = PC + 1

 case j.pcarg: pcin = PC + IRarg()

 case j.tbus: pcin = tbus

 case lpc: PC = pcin

 case lir: IR = dbus

 case lts: TS = bus

 case lfp: FP = bus

 case lsp: SP = bus

 case lnx: NX = bus

 case lff: FF = bus

 case ifT: m2 = (Z == 0) ? m2 : mpc+1

 case ifF: m2 = (Z == 1) ? m2 : mpc+1

 case decode: m2 = udecode()

 case trap: trap(IRop(),IRarg())

}

The simulator is sequential, that is, it simulates each event one by one. Therefore

the order of scanning the event list (the bits in a microprogram word) is important

to get the correct result. All the positive-edge events must be updated before the

negative-edge events. Within the same group the input side is updated to the

output side. For example the read-modify-write loop of a register, the read side

must be performed, then goes through the modify operation (with some function)

from input to output, finally the write is performed to that register. With these

rules the order of events are:

mux x, mux y, alu,

mux a, mux d, mR, mW,

mux b, mux j,

156

load registers,

ifT, ifF, decode, trap.

6.5 Lab session

A tool is provided to write a microprogram. The “mgen” tool takes the input file

as a microprogram specification and outputs the microprogram ROM as shown in

Fig 6.4. The microprogram must be written in the following form. The

specification composed of two sections, the first section is the signal definition

and the second section is the microprogram. The signal definition lists all the

events, the order of the event is important as the simple implementation of the

simulator will simulate each event according to this order (this can be relaxed in

the alternative implementation, see the exercise). Here is the example of the

signal definition, the section starts with “.s”. The line started with .. is the

comment line.

.. sx microprogram v 1.0 [micro 1]

..

.s

x.ts

x.fp

x.sp

...

alu.add

alu.sub

...

.. load registers

lir

lts

lfp

lsp

lnx

lff

lpc

mR

mW

.. next micro ads

ifT

ifF

157

decode

trap

After the signal definition the next section is the microprogram section. Each

line consists of,

[:label] event* [/label] ;

A line starts with a label, follows by events and the next micro-address label, and

ends with “;”. The starting label and the micro-address label are optional. The

microprogram section starts with “.m” and ends with “.e”. Here is an example.

.m [micro 45]
:fetch

 a.pc mR lir decode ;

:bop

 x.sp alu.p1 a.tbus mR b.dbus lff ;

 x.sp alu.dec b.tbus lsp ;

 x.ts y.ff alu.op b.tbus lts j.pc1 lpc /fetch ;

...

:jmp

 j.pcarg lpc /fetch ;

:jt

 x.ts alu.z ifT /j3 ;

:j2

 j.pcarg lpc x.sp alu.p1 a.tbus mR b.dbus lts ;

 x.sp alu.dec b.tbus lsp /fetch ;

:jf

 x.ts alu.z ifT /j2 ;

:j3

 j.pc1 lpc x.sp alu.p1 a.tbus mR b.dbus lts ;

 x.sp alu.dec b.tbus lsp /fetch ;

:end

 trap j.pc1 lpc /fetch ;

.e

The “fetch” reads as, mux a selects PC (to be the address of the memory

operation), memory read, load IR, jump to the corresponding micro-address.

The “bop” reads as SP goes through ALU to tbus, mux a selects tbus (to be

the address of the memory operation), memory read, mux b selects dbus (to be

the input of registers), load register FF. Then, SP goes through ALU to do -1 and

158

back to bus to write to SP. Then, mux x selects TS, mux y selects FF, ALU

performs a function according to the opcode, mux b selects tbus (to be the input

of registers), load register TS, at the same time, PC is updated +1, then jump to

“fetch”, the instruction fetch.

How to microprogram Sx

To write microprogram for Sx, the microprogram specification is in the file

“mspec.txt”. “mgen” transforms the specification to a ROM file. Store it in the

name “mpgm.txt”. The source for “mgen” can be found in sx0.zip package.

c:> mgen < mspec.txt > mpgm.txt

Here is what “mpgm.txt” looked like.

62

 0 00000000000010000000000001000000100010000001

 1 00100001000100000000000100000010100000000010

 2 00100010000000000001000000001000000000000011

 3 10001010000001000000001000100001000000000000

 4 10000010000001000000001000100001000000000000

 . . .

 55 00010010000001000000000100100001000000000000

 56 10000010000000000000000100000100000000111001

 57 01000101000100000100000000100000100000111010

 58 10000010000000000001000000100000000000111011

 59 01000100001100000100000000000000010000111100

 60 00010010000001000000000100100001000000000000

 61 00000000000001000000000000000001000001000000

A few right most bits are the next microprogram address. “mgen” also generates

binding of symbolic names to numeric values which are used in the simulator,

“mspec.h”. This is it:

#define s_x_ts 0

#define s_x_fp 1

#define s_x_sp 2

#define s_x_nx 3

#define s_y_ff 4

159

. . .

#define a_fetch 0

#define a_bop 1

#define a_uop 4

#define a_get 5

#define a_put 8

#define a_popts 9

#define a_ld 11

. . .

#define a_end 61

#define MCWIDTH 38

#define MAWIDTH 6

#define MLEN 62

The event names prefixed “s_” are the signal events, prefixed “a_” are the

address of the label of microprogram. The MCWIDTH is the number of the

control bits. The MAWIDTH is the number of bit of the microprogram address

field. The MLEN is the number of microprogram word. “mgen” also generates a

listing file “mlist.txt”. It is used for debugging.

The next step is to convert this micro-ROM into an event-list. “sxgen” combines

“mgen” and conversion to event-list. (If you are using sx1, sx2 simulator, sxgen

is inside the simulator, you don’t have to do it explicitly). “sxgen” reads the files

“mpgm.txt” and “mspec.h” then generates “sxbit.h” which must be compiled

with the simulator.

c:> sxgen < mspec.txt

The “sxbit.h” contains the binding, the op-decoder-rom (udop[]), the pointer to

event-list (mw[]), the event-list itself (mx[]) and finally the next-address-rom

(nxt[]).

#define s_x_ts 0

#define s_x_fp 1

. . .

#define a_sys 51

#define a_array 51

#define a_end 51

#define MCWIDTH 38

#define MAWIDTH 6

#define MLEN 52

160

int udop[] = {

0, 1, 1, 1, 1, 1, 1, 1, 4, 1,

1, 1, 1, 1, 1, 1, 1, 0, 15, 18,

40, 0, 51, 51, 5, 8, 11, 14, 26, 27,

30, 23, 33, 0, 0, 0, 51, 0, 0, 0, 0 };

int mw[] = {

0, 5, 12, 17, 25, 32, 37, 43, 53, 60,

67, 74, 79, 85, 94, 100, 107, 112, 122, 129,

134, 141, 148, 153, 158, 164, 171, 174, 178, 187,

192, 196, 205, 210, 215, 223, 226, 234, 241, 248,

253, 258, 263, 268, 274, 281, 286, 293, 300, 305,

311, 318, 0 };

int mx[] = {

12, 32, 25, 36, -1,

2, 23, 11, 32, 7, 30, -1,

2, 19, 6, 28, -1,

0, 4, 22, 6, 13, 31, 26, -1,

. . .

1, 5, 17, 6, 28, -1,

1, 23, 11, 32, 7, 27, -1,

13, 31, 37, -1,

0 };

int nxt[] = {

1, 2, 3, 0, 0, 6, 7, 0, 9, 10,

0, 12, 13, 0, 9, 16, 17, 0, 19, 20,

21, 22, 9, 24, 25, 0, 0, 31, 29, 0,

28, 32, 0, 34, 35, 36, 37, 38, 39, 0,

41, 47, 43, 44, 45, 46, 0, 48, 49, 50,

0, 0, 0 };

You must recompile the simulator to include your new signal definitions, or new

instruction labels. The processor simulator takes a proper object file as input and

run it. If it is sx0, the processor is run in a batch mode. For sx1 and sx2 they

run in interactive mode. You can ask for help by typing “h”. The following

session is sx0 running quicksort.

161

D:\sx\test>sx qs.obj

load program, last address 203

DP 1000

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4820 instructions, 20231 clocks, CPI 4.20

D:\sx\test>

6.6 Summary

In this chapter we have learnt the detailed design of a stack-based processor that

can execute S-code instructions directly. This processor is the basic component

of our hardware system. The data path is quite simple. The processor is aimed

for clarity. It is simple enough to be studied and to be modified without due

complexity by students. At the same time, it retained the flavour of reality that

the design is complete enough to be realised as a real processor. The control unit

has been detailed down to the cycle-by-cycle execution of an instruction.

Microprogram represents the specification of the execution behaviour. Writing a

microprogram starts with a RTL description which concerns only the registers

transfer. Then, the specification is refined to a microprogram level which also

concerns concurrency of operations. With microprogram fully specified, the

number of cycle taken by each instruction can be calculated. The algorithm to

simulate the processor has been presented. The processor simulator is event-

driven. The microprogram is regarded as events occur in the data path.

In the laboratory session, we learn how to write a concrete microprogram. Tools

are given to convert this concrete specification into a data structure suitable for

simulation. The processor simulator itself has been described in details enough

that students can modify it to include other instructions and/or additional features.

We shall see in the next chapter how to improve the performance of this Sx

processor.

6.7 Further reading

Stack-based processors have been a popular architecture in the past due to its

simplicity and its compatibility with structured programming paradigm around

1970-1980. Burroughs has developed many commercial machines based on this

162

type of architecture (Burroughs B5500) [BUR68]. For more recent discussion of

stack-based processor see Koopman [KOO89] which discussed the strength of

this architecture including a comprehensive survey of many stack-based

processors. The weakness of stack architecture lies in its performance. As RISC

type of processors [PAT82] [PAT85] [HEN84] [STA88] becomes popular during

1980-1990, it dominates all the market with its high performance. Nowadays, all

processors are register-based. We shall discuss the use of registers in the next

chapter.

References

[BUR68] Burroughs B5500 Electronic Information Processing System:

Operation manual. Burroughs Corp. Detroit, 1968.

[BUR04a] Burutarchanai, A., and Chongstitvatana, P., “Design of a two-phased

clocked control unit for performance enhancement of a stack processor”,

National Computer Science and Engineering Conference, Thailand, 21-22

Sept. 2004, pp.114-119.

[BUR04b] Burutarchanai, A., Kotrajaras, V. and Chongstitvatana, P., “A fast

instruction fetch unit for an embedded stack processor”, Proc. of Int. Conf. on

Information and Communication Technologies, Thailand, 18-19 November

2004.

[BUR04c] Burutarchanai, A., Nanthanavoot, P., Aporntewan, C., and

Chongstitvatana, P., “A stack-based processor for resource efficient

embedded systems”, Proc. of IEEE TENCON, Thailand, 21-24 November

2004.

[HEN84] Hennessy, J., “VLSI Processor Architecture”, IEEE Trans. on

Computers, December 1984.

[KOO89] Koopman, J., Stack Computers: the new wave, Ellis Horwood, 1989.

[PAT82] Patterson, D., and Sequin, C., “A VLSI RISC”, Computer, Septermber,

1982.

[PAT85] Patterson, D., “Reduced Instruction Set Computers”, Communications

of the ACM, January, 1985.

[STA88] Stallings, W., “Reduced instruction set computer architecture”, Proc. of

the IEEE, vol. 76, no. 1, January 1988, pp. 38-55.

163

Exercises

6.1 Compile and run Sx-kit

6.2 Write three benchmark programs in nut: hanoi, matmul, (bubble, quick

already existed in Sx-kit) run it under sx-simulator to test the correctness.

6.3 Modify the simulator to count the frequency of each instruction. Run the

above benchmarks to find out the dynamic instruction count.

6.4 Write additional microprogram for the instruction “inc” and “dec”.

6.5 The combination of test-and-jump occurs frequently in the program.

Write new instructions, such as, jump-if-less-than, jump-if-

equal etc. Modify the code generator to output the new instructions.

Measure their effectiveness.

6.6 Suggest some way to improve the speed of Sx processor.

6.7 A simple implementation of the processor simulator is to scan the

microprogram ROM and execute the active event directly. The next

micro-address is also converted into an integer. This makes the

processor simulator 5 to 10 times slower than the implementation

illustrated in the chapter. Do it and compare the speed.

164

165

Chapter 7

Performance Enhancement

In this chapter, we will concentrate on performance of the processor.

Performance improvement starts with an analysis of the execution profile to

understand where the data path spends most of its time. The effort is then

directed to redesign the data path, usually by increasing the concurrent operations

in the data path. There are interactions amongst choices of design. Choosing one

will affect another. The gain in terms of performance must be weighted against

the increased complexity in terms of the circuit size or the resource. For the

purpose of our study we will not change the instruction set. The performance

improvement will come from the change of micro-architecture only.

7.1 Profile analysis

get

lit

ld add put ldx jt lt jf

0

5

10

15

20

25

30

35

Figure 7.1 The most frequently used instructions

166

The profile is collected from running the benchmark programs in Chapter 6

(Table 6.3). In an analysis of the profile of execution of instructions, most

frequently used instructions are:

get, lit, ld, add, put, ldx, jt, lt, jf.

These instructions altogether are more than 80% of all instructions executed in

the suite of benchmark programs1. To improve the performance, the effort should

be spent on improving these instructions.

Let the shorthand notation of push/pop be

push x is

 sp+1->sp

 x->mW(sp)

pop x is

 mR(sp)->x

 sp-1->sp

The microprograms for the instructions: get, lit, ld, add, put, ldx, jt, lt,

jf are:

<get>

 push ts

 alu(fp-arg)->tbus, mR(tbus)->ts

<lit>

 push ts

 arg->ts

<ld>

 push ts

 mR(arg)->ts

<bop>

 pop ff
 alu(ts op ff)->ts

1 Notable is the “inc v” instruction which is not generated from this compiler

(gen.txt). It is used often but has not been included in this experiment.

167

<put>

 alu(fp-arg)->tbus, ts->mW(tbus)

 pop ts

<ldx> ; {ads idx}
 pop ff

 alu(ts+ff)->tbus, mR(tbus)->ts

<jt>

 alu(ts=0), ifT <j3> ; if true, don't jump
<j2>

 pc+arg

 pop ts

<jf>

 alu(ts=0), ifT <j2> ; if true, jump
<j3>

 pc+1

 pop ts

We can observe that all instructions perform push and pop. This is because two

reasons. The first reason is that it is the nature of the stack-based instruction set to

access data from the evaluation stack. The second reason is that the top of stack is

cached in TS, therefore there is a lot of traffic between TS and the stack segment.

In Sx processor, push and pop do one memory access and use ALU to do

increment/decrement SP.

7.2 Key ideas

There are two key ideas:

1. The operations push/pop can be done in one cycle if SP can be

incremented/decremented independent of ALU and they can achieve pre-

increment and post-decrement at the proper negative-edge of the clock.

2. To improve “get”, the most frequently used instruction, the local

variable must be stored in a register instead of memory as push/pop

also accesses memory. If it is done properly “get” will take just one

cycle. Let v[.] denotes the caching register bank. It is connected to TS

in the data path (see Fig. 7.3).

168

<get>

 $1 push ts, $2 v[arg]->ts

Where $1 is positive-edge and $2 is negative-edge, v[.] is the cache register.

The old value TS is pushed into memory at $1, before the new value from

v[arg] is written to TS at $2.

Push/pop

To push a register to memory in one clock, the “sp+1” must appear at the

address bus from the beginning of $1, TS is presented to data bus at the same

time, at the beginning of $2 memory write signal is ended (it is assumed that the

value is written into memory here), the value of “sp+1” is also written to SP at

this time.

push ts is

 sp+1->sp

 ts->mW(sp)

$1 sp+1->abus, ts->dbus, $2 mW(abus), sp+1->sp

Popping a register can be done in one cycle. The value “sp” is presented to the

address bus at $1. The memory is read. At $2, the data is latched to a register, at

the same time, “sp-1” is written to SP (post-decrement).

pop x is

 mR(sp)->x

 sp-1->sp

$1 sp->abus, mR(abus)->dbus, $2 dbus->x, sp-1->sp

With this new push/pop, other instructions will also improve. “lit” takes

only one cycle for execution.

<lit>

 $1 push ts, $2 arg->ts

169

“ld” cannot be done in one cycle as it reads the memory twice, the first one for

push TS, the second one for the value. Therefore “ld” takes 2 cycles for

execution.

<ld>

 push ts

 mR(arg)->ts

All the binary operations now take 2 cycles.

<bop>

 pop ff

 alu(ts op ff)->ts

“put” can be done in one cycle. TS is read at $1 and transfer to v[arg]. A

value in the evaluation stack is popped into TS at $2.

<put>

 ts->v[arg], pop ts

Similarly to bop, “ldx” takes 2 cycles. “jt” and “jf” take 3 cycles.

Implementing the SP unit

The SP unit performs pre-increment at $1, post-decrement at $2, and loads a

value from bus at $2. There is a feed forward path from the adder “sp+1” to

achieve the pre-increment. All multiplexors are asserted at $1, latching the

register SP is at $2.

Figure 7.2 The SP unit

sp

+/−

bus

 1

sp + 1

170

Stack frame

A number of registers are used to cache a part of stack frame. This is called the

stack frame caching [CHO06]. The stack frame remains unchanged from the

original design. The local variables, lv1..lvn, are cached into v[1]..v[n]

the cache registers. When the context is changed by call/ret, these registers

are affected. Before a new activation record is created the old cached registers

must be written back to the current activation record. And vice versa, upon

returned from a call, after the activation record is deleted and the old one

restored, the cache registers must be refreshed (re-cached) from the activation

record. This behaviour is the same as saving/restoring registers upon call/ret on a

register-based processor. However, in Sx, these saving/restoring are performed

at the microprogram level instead of at the instruction level.

call

* save v to the current stack frame

 push ts (flush stack)

 create a new frame

 save fp' and return address

* cache v from the new frame

 update sp

ret

 restore return address, sp

 restore the old frame

* cache v of this current frame (restore old v)

 if it is “ret” pop ts

The lines with * are the additional work that must be done to do stack frame

caching. The microprograms for call/ret for saving/caching v[.] are as

follows.

<save v>

 alu(fp-n)->fp

 vn->mW(fp), alu(fp+1)->fp

 ...

 v1->mW(fp), alu(fp+1)->fp

171

<cache v>

 alu(fp-n)->fp

 mR(fp)->vn, alu(fp+1)->fp

 ...

 mR(fp)->v1, alu(fp+1)->fp

If the size of caching register is n then the extra cycle in call/ret instruction

is O(3(n+1)).

7.3 New data path

The enhanced Sx, or Sx2, has many additional functional units, notably the SP

unit and the v[.], cache registers. The number of v[.] is 4. However, the

major change is in the control unit. There are many more control signals to

control the additional functional units and there are more steps of control.

The events are defined as follows.

multiplexor x selects {ts, fs, nx}

multiplexor y selects {ff, u, arg}

multiplexor b selects {tbus, dbus, sp}

multiplexor d selects {fp, ts, v, u}

multiplexor a selects {pc, tbus, fp, spu}

multiplexor j selects {pc+1, pc+arg, tbus}

multiplexor si selects {sp+1, sp-1, sp+arg, tbus}

multiplexor so selects {spx, sp}

multiplexor z selects {dbus, ts}

multiplexor w selects {v1, v2, v3, v4, varg}

multiplexor t selects {vout, pc, bus}

multiplexor u selects {dbus, iru}

172

alu events are {add, sub, inc, dec, z, eq, op, p1, p2,

add2}

load registers events are {ir, ts, fp, sp, nx, ff, pc, v1,

v2, v3, v4, varg, u}

memory events are {mR, mW}

next micro-address events are {ifT, ifF, decode, ifu0,

ifp0, ifargm, skipu, trap}

The new events on the next micro-address {ifu0, ifp0, ifargm,

skipu} and the register U require further explanation. They are necessary for

the control of saving/caching the stack frame. The simple analysis of the

previous section has the worst case additional running time for using stack frame

caching in O(3(n+1)) cycles. However, it is not the case that a function will use

all v registers. Let maxv be the number of v registers, fs be the size of activation

record. If the size of activation record is less than maxv then only

v[1]..v[fs] must be saved/cached. Let u be max(fs, maxv); it is stored in the

register U. The U register is used to skip a number of microprogram words to

achieve this effect. The control signal is “skipu”. “skipu” sets the next

microprogram address to mpc+(maxv-u). This offset is already stored in the next

microprogram address field. The microprogram below shows the part to save v

registers at the function call.

<save v>

 alu(fp-u)->fp, skipu

 v[4]->mW(fp), fp+1->fp

 v[3]->mW(fp), fp+1->fp

 v[2]->mW(fp), fp+1->fp

 v[1]->mW(fp), fp+1->fp, <fetch>

173

Figure 7.3 The Sx2 data path

arg

1

tbus

x

FP

TS

V

FF

NX

b

tbus

SP

arg

alu

p1

p2

bus

y

M

IR

j

a

dbus

abus

SP BIU
din

U

TS

d

PC

U

dbus

iru

PC
tbus

tbus

+

FP

FP

V

so si

sin

spx

z
w

vout

t

u

+/-

174

Caching v registers can be achieved similarly. In fact, when calling a function,

not even U registers need to be cached, only the passing parameters (p) need to

be cached from the evaluation stack (it is a save when p < u). However, it

becomes too complex to do in a simple microprogram such as this due to the

ordering the variables. Therefore, a tradeoff has been made not to exploit this

fact. One special case has been implemented, when p = 0 to bypass the passing

parameter caching (using the event “ifp0”). These two parameters, p and u, are

encoded in the argument of “fun” instruction with the following format.

 fun.p.u.k

8 8 8 8

p u k op

Where k is the frame size, p is the arity, u is max(fs, maxv). This is done by the

code generator or at the loader of the processor simulator. The U register is valid

throughout the current context; it is used when “call” and “ret”.

7.4 Microprogram of Sx2

Here is the microprogram of the Sx2 processor in whole with the explanation.

<fetch> [micro 205]
 mR(pc)->ir, decode

The effect of concurrency of SP unit with other operations can be observed in

almost every instruction.

<bop> [micro 207]
 mR(sp)->ff, sp+1->sp

 alu(ts op ff)->ts, pc+1, <fetch>

<uop> [micro 210]
 alu(ts op ?)->ts, pc+1, <fetch>

When arg > maxv, the “get” accesses normal memory. Even in this case the

step of execution is shortening due to the SP unit. When arg <= maxv, the access

175

in on v registers and the execution takes only one cycle. The “decode” event

performs a check on the argument of “get” and branches to the proper “get x”

microprogram address where x is 1..maxv. The pre-increment using “sp+1”

feed-forward path can be seen.

<get> [micro 212]
 ts->mW(sp+1), sp+1->sp ; push ts

 alu(fp-arg)->tbus, mR(tbus)->ts, pc+1, <fetch>

<get1>

 ts->mW(sp+1), v[1]->ts, sp+1->sp, pc+1, <fetch>

<get2>

 ts->mW(sp+1), v[2]->ts, sp+1->sp, pc+1, <fetch>

<get3>

 ts->mW(sp+1), v[3]->ts, sp+1->sp, pc+1, <fetch>

<get4>

 ts->mW(sp+1), v[4]->ts, sp+1->sp, pc+1, <fetch>

“put” is similarly decoded. The post-decrement of SP unit allows the

instruction to be executed in one cycle.

<put> [micro 223]
 alu(fp-arg)->tbus, ts->mW(tbus)

 mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<put1>

 ts->v[1], mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<put2>

 ts->v[2], mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<put3>

 ts->v[3], mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<put4>

 ts->v[4], mR(sp)->ts, sp-1->sp, pc+1, <fetch>

176

<ld> [micro 235]
 ts->mW(sp+1), sp+1->sp

 mR(arg)->ts, pc+1, <fetch>

<st> [micro 238]
 ts->mW(arg)

 mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<ldx> [micro 240] ; {ads idx}

 mR(sp)->ff, sp-1->sp ; pop ads
 alu(ff+ts)->tbus, mR(tbus)->ts, pc+1, <fetch>

“stx” benefits from the SP unit the most as it pops the stack many times. In the

original Sx, “stx” takes 7 cycles, now it takes 4 cycles.

<stx> [micro 243] ; {ads idx val}

 mR(sp)->nx, sp-1->sp ; pop idx

 mR(sp)->ff, sp-1->sp ; pop ads
 alu(nx+ff)->tbus, ts->mW(tbus)

 mR(sp)->ts, sp-1->sp, pc+1, <fetch>

<lit> [micro 247]
 ts->mW(sp+1), sp+1->sp, arg->ts, pc+1, <fetch>

<jmp> [micro 249]
 pc+arg, <fetch>

<jt> [micro 251]

 alu(ts=0), ifT j3 ; if true, don't jump
<j2>

 pc+arg, mR(sp)->ts, sp-1->sp, <fetch>

<jf> [micro 256]

 alu(ts=0), ifT j2 ; if true, jump
<j3>

 pc+1, mR(sp)->ts, sp-1->sp, <fetch>

Sx2 breaks call/fun into two instructions to reduce the maximum length of

any single instruction. The “call” instruction saves the return address to TS

and saves v registers. The “fun” creates the new activation record and caches

the passing parameters from the evaluation stack to v registers.

177

<call> [micro 261] ; store ret ads on ts

 ts->mW(sp+1), sp+1->sp, pc+1 ; flush ts

 pc->ts, arg->pc, if u=0 <fetch> ; save ret ads
<save v>

 alu(fp-u)->fp, skipu

 v[4]->mW(fp), fp+1->fp

 v[3]->mW(fp), fp+1->fp

 v[2]->mW(fp), fp+1->fp

 v[1]->mW(fp), fp+1->fp, <fetch>

<fun> [micro 270] ; fun.p.u.k

 fp->mW(sp+k), sp+k->sp ; save old fp, new sp

 sp->fp ; new fp

 u->mW(sp+1), iru->u, sp+1->sp ; push u
 pc+1, if p=0 <fetch>

<cache v>

 alu(fp-u)->fp, skipu

 mR(fp)->v[4], fp+1->fp

 mR(fp)->v[3], fp+1->fp

 mR(fp)->v[2], fp+1->fp

 mR(fp)->v[1], fp+1->fp, <fetch>

<ret> [micro 281]
 sp-1->ff

 alu(fp=ff), ifF <r2> ; test for retv

 ts->pc ; ret ads on TS

 mR(sp)->u ; pop u
 alu(fp-arg)->sp

 mR(sp)->ts, sp-1->sp, if u=0 <r3> ; if u=0 skip cachev
 mR(fp)->fp, <cachev>

<r2>

 alu(fp+2)->tbus, mR(tbus)->ff ; ret ads on frame
 ff->pc

 alu(fp+1)->tbus, mR(tbus)->u ; pop u

 alu(fp-arg)->sp, if u=0 <r3> ; skip cachev
 mR(fp)->fp, <cachev>

<r3>

 mR(fp)->fp, <fetch> ; restore fp

178

In writing the microprogram for the instructions “inc” and “dec”, a different

style is used. Instead of decoding to “inc1” .. “inc4”, a test is made to check

the range of the argument. If arg > maxv then it is a normal operation, else the

access is on v registers. The event “ifargm” does the test. The TS is saved to

NX as the operation uses TS. When the operation is completed, TS is restored

from NX.

<inc> [micro 300]

 ts->nx, v[arg]->ts, ifargm <inc2> ; save ts to nx

 alu(ts+1)->ts ; op on v reg
 ts->v[arg], nx->ts, pc+1, <fetch>

<inc2>

 alu(fp-arg)->tbus, mR(tbus)->ts ; a normal op
 alu(ts+1)->ts

 alu(fp-arg)->tbus, ts->mW(tbus)

 nx->ts, pc+1, <fetch>

<dec> [micro 310]
 ts->nx, v[arg]->ts ifargm <dec2>

 alu(ts-1)->ts

 ts->v[arg], nx->ts, pc+1, <fetch>

<dec2>

 alu(fp-arg)->tbus, mR(tbus)->ts

 alu(ts-1)->ts

 alu(fp-arg)->tbus, ts->mW(tbus)

 nx->ts, pc+1, <fetch>

<sys> [micro 320]
<array>

<end>

 trap, pc+1, <fetch>

7.5 Performance

Table 7.1 shows the number of cycle used by each instruction. The number in

parentheses is the number of cycle of the original Sx for comparison. Please

observe that almost all instructions are faster. The “call/fun”, “ret” are

slow in the worst case, for example, call+fun is 16 cycles (Sx is only 8 cycles).

179

“inc” and “dec” in a normal case are the same as Sx (due to the test for the

range of argument) but they are twice as fast if the argument is in the cache

register.

Table 7.1 The number of cycle used by each instruction of Sx2. (n) shows the
number of Sx.

bop 3 (4) uop 2 (3) get 3 (4) get1..4 2 (4)

put 3 (4) put1..4 2 (4) ld 3 (4) st 3 (4)

ldx 3 (4) stx 5 (8) lit 2 (4) jmp 2 (2)

jt 3 (4) jf 3 (4) call max 7 (8) fun max 9 (0)

ret max 12 (8) retv max 12 (7) retv max 12 (7) inc1..4 3 (6)

dec 6 (6) dec1..4 3 (6)

A number of benchmark programs are compiled and then run on the Sx2

processor simulator. The table below reports the number of instruction, the

number of cycle and the cycle-per-instruction number for each program.

Table 7.2 The performance of Sx2 processor

 Sx Sx2

program noi cycle cpi noi cycle cpi

bubble 10068 44214 4.39 10262 32090 3.13
hanoi 2312 10092 4.37 2377 7544 3.17
matmul 3043 12880 4.23 3097 9348 3.02
perm 4868 20932 4.30 4935 14663 2.97
queen 618665 2576210 4.16 620724 1717782 2.77
quick 3172 13539 4.27 3224 9551 2.96
sieve 28026 124338 4.44 28029 75204 2.68
aes 30579 131560 4.29 30724 90498 2.95

The average CPI of Sx2 is 2.9. From the table, comparing the number of clock

between the original Sx and Sx2, the average ratio is 0.70. That is, Sx2 is 30%

faster than the original Sx.

180

Other interesting observation is the size of microprogram. Sx2 is obviously more

complex. The size of its microprogram is larger. We calculate the size of

microprogram as the number of bit in the ROM. Here is the comparison.

Sx width 38 length 62 38x62 = 2356 bits

Sx2 width 71 length 74 71x74 = 5254 bits

Therefore, the complexity in the control unit of Sx2 is double of Sx.

7.6 Summary

To improve the performance of Sx processor, we employ the technique of stack

frame caching. The stack frame caching relies on fast registers to cache a part of

the stack frame so that the access to these variables takes only one cycle. The

separation of SP from the ALU path to have its own increment/decrement, the SP

unit, helps to shorten the cycle of the push/pop values from the evaluation stack.

There are many approaches to enhance the performance of a processor. In

general, the memory sub-system has the major impact on performance. However,

in our presentation, the speed of memory, its access time, is assumed to be one

cycle, therefore it does not affect our design. This is not a realistic assumption

for a general purpose processor but in the context of implementing the design on

FPGA with its internal memory block, this is correct.

7.7 Further reading

The conventional approaches to performance enhancement are to use pipeline

and multiple functional units. These techniques have been used successfully in

every commercial processor available today. Most computer architecture

textbook described these methods. The most widely used text written by the

computer architects who invent the concept of reduced instruction set computer

(RISC), is the text by Hennessy and Patterson [HEN03]. The pipeline technique

is perhaps the earliest technique for performance enhancement. It has been used

for many complex functional units such as floating-point calculation [KOG81].

Multiple functional units were the landmark of super computer in its era. In fact,

the first one to employ multiple function units successfully is CDC6600, the most

exciting computer architecture of its day [THO70].

181

References

[CHO06] Chongstitvatana, P., “Stack frame caching”, Proc. of National

Computer Science and Engineering Conference, Thailand, 2006. (being

written)

[HEN03] Hennessy, J., and Patterson, D., Computer Architecture: a quantitative

approach, 3rd ed. Morgan Kaufmann, 2003.

[KOG81] Kogge, P., The architecture of pipelined computers, McGraw-Hill,

1981.

[THO70] Thornton, J., Design of a computer: the Control Data 6600, Scott,

Foresman and Company, 1970.

Exercises

7.1 Run Sx2, try to write a microprogram for some new instruction and test

it.

7.2 Compare the performance with Sx1.

7.3 Discuss the finding; suggest some way to improve the performance by

adding some new instruction (counting the total cycle used to complete a

task).

7.4 Improve the microstep of some instruction. You don’t have to simulate

the execution. You can calculate the number clock from the profile.

7.5 If the number of cache registers is changed, for example, 8, what is the

impact on the performance?

7.6 The memory latency is one of the most important factors in determining

the performance of a processor. Suppose the latency of memory is

increased to 2 cycles for read and write to memory. What is its impact

on performance? Assume the cache register latency is one cycle.

182

183

Chapter 8

Nut Operating System

In this chapter we develop Nut operating system (Nos). This operating system

runs on the Sx processor. Nos is a preemptive multitask operating system. This

operating system has many services: interprocess communication, shared

resources, process synchronisation, and a real time clock. As we have the

processor simulator, the details of the implementation of interrupt and task

switching can be studied down to the level of machine cycle. A supervisor

program (Nos supervisor) is created to interface between Nos and the Sx

processor simulator. Nos is designed to be very limited. It does not have virtual

memory, the file system nor the network. Although it is very limited, it does

offer an insight into the essential part of operating systems.

8.1 Operating system concepts

A process is a basic unit of abstraction to build concurrent execution of multiple

programs. A process is a program in execution. A program is a static part

whereas a process is a dynamic part. One program can be executed by many

processes. A process consists of: code segment, data segment, stack segment.

They can be shared or separated. When they are shared, only a single address

space is needed hence the implementation is simple.

To achieve concurrency using one processor, each process will be allocated a

slice of time for its execution. All processes will be scheduled to be executed by

time multiplexing. For example, two processes A and B, to run concurrently they

will be executed like this:

A B A B A B A B

184

A simple programming abstraction to achieve this is co-routine where A calls B

then B calls A but not starting A at the beginning. A resumes the execution at the

point where A has previously stopped.

Several processes can be active at the same time. The concurrency is achieved

via multi-threading (light weight process). A heavy weight process is a process

with a separate address space. It needs a mechanism to do the address mapping

between virtual address and physical address. A light weight process has single

address space. A thread is a trace of execution. Concurrency with a single thread

process is achieved by co-operative process (via co-routine). A multi-thread

process has several traces at the same time. This can be accomplished by pre-

emptive scheduler with time-slicing. A light weight process is much cheaper to

create than a heavy weight process.

To manage multiple programs, a scheduler keeps a list of all processes. When

starting an execution of a time slice, a process will be selected to be run

according to some policy. A process is run until it is:

1. time-out using up its allotted time

2. blocked the process requests a resource and has to wait for it.

3. terminated the process runs to its completion.

We can model the behaviour of the process as shown in Table 8.1.

Table 8.1 The state of a process

State Event Next state

READY Task switch RUNNING

RUNNING Time-out READY
RUNNING Terminate DEAD
RUNNING Block WAIT

WAIT Wakeup READY

To execute a process on a processor, the computation state (C-state), i.e. all

variables pertain to that process must be save/restore properly upon a task

switching. These are PC, FP, SP, and TS including separate stack segment for

each process. These values are stored in a data structure called the process

descriptor. The task-switch is defined as follows.

185

task-switch

 if only one process do nothing

 save current state, set it to READY

 select next process

 make it runnable, set it to RUNNING

To understand how a process requests a resource we first study how a resource is

shared.

In sharing a resource, it is necessary to ensure mutual exclusion. That is, during a

period of one process using that resource, other process that also want that

resource must wait. Dijkstra invented “semaphore” [DIJ65] to achieve this

“mutex” behaviour. A semaphore is a variable (can be binary, 0/1 or an integer)

associated with a resource. It indicates availability of the resource to the process

that requested it. Two operations are defined on a semaphore: wait, signal

(originally Dijkstra called it P, V). Associated with each semaphore is a waiting

list of the process that waits on this semaphore. They are defined as follows:

Wait sem

 if value of sem <= 0

 block this process, set it to WAIT

 put this process to waiting list of

 this sem

 else

 sem - 1

Signal sem

 if there is process waiting for this sem

 move that process out of waiting list

 wakeup that process

 else

 sem + 1

These two operations must be atomic, that is, they must run to completion

without interruption (can not task switch in between).

For resource sharing, we let only one process to acquire it, all other processes that

request that resource will be waiting in the waiting list. The code where this

mutual exclusion is required is said to be critical section. A semaphore is used to

protect this section. Start with sem = 1.

186

....

; critical section
wait sem

... code to access shared resource
signal sem

The first process that acquires this section will “close the door”. After it finishes

with this section, it “open the door” to let other process in. A semaphore is the

basis that other mechanism can be built such as process synchronisation or

interprocess communication.

Two processes need to be synchronised at some point in the program. Two

semaphores are used to achieve it. Let two processes be A and B. Assume A

arrives to the synchronise point before B. Then A must wait for B and vice versa

if B arrives before A.

 A B

signal sem1 wait sem1

wait sem2 signal sem2

The sequence can be rearranged and the behaviour is still correct:

 A B

signal sem1 signal sem2

wait sem2 wait sem1

The interprocess communication is achieved using synchronous message-

passing. It combines communication and synchronisation in a single high-level

primitive. Other alternative models of message-based process synchronisation

are: asynchronous (no wait) and remote invocation.

There are relationships between asynchronous, synchronous and remote

invocation semantics. Two asynchronous events can constitute a synchronous

relationship if an acknowledgement message is always sent (and waited for).

Two synchronous communications can be used to construct a remote invocation.

It could be argued that the asynchronous model gives the greatest flexibility but

there are a number of drawbacks:

187

1. Potentially infinite buffers are needed to store messages that have not

been read yet.

2. In asynchronous model, more communication are needed, hence

programs are more complex.

Also, a synchronous model can emulate an asynchronous communication simply

by using a buffer process.

A system is said to be hard real-time if it has deadlines that cannot be missed for

if they are, the system fails [LEI80]. A system is soft real-time if the application

tolerant of missed deadlines. A system is interactive if it does not have specified

deadlines but strives for adequate response times.

Two types of process are present in the real-time domain: periodic and aperiodic.

Periodic processes sample data or execute a control loop and have explicit

deadlines that must be met. Aperiodic processes (or sporadic) arise from external

asynchronous events. These processes have specified response time associated

with them. The process must be analysed to give its worst-case execution time,

also may obtained average execution time [BUR01].

To schedule real-time tasks, “schedulability” is an important concept. Given a

collection of processes and all associated deadlines, determine if this set of

processes is schedulable. This means that it is possible for all deadlines to be met

indefinitely into the future. In general, necessary and sufficient conditions for

schedulability are not known. However, there are many different algorithms

presented in the literature which test for schedulability under certain

preconditions and restrictions [SHA88] [LEH89].

8.2 Nut operating system

Nut operating system (Nos) is written in Nut. It runs as a user program. Nos

models concurrency using process. The share-resource accesses are controlled

with semaphores. The processes in Nos communicate with each other through

message passing. The crucial real-time functions are supported. Therefore Nos

can support real-time tasks. Nos supports the following functions:

188

• create a process

• terminate a process

• manage the process queue

• task switching

• wait/signal a semaphore

• send/receive a message

• get a real-time clock

• set a timer

8.3 Process

A process is an independent computation which can run concurrently with other

process. A process is declared as a normal defined function. Initial values can be

passed as parameters at the starting time of a process. A process will end its

execution by self-termination when it executes the last instruction at the end of

program. This is different from the execution of a function which ends its

execution by returning to the caller. A program that calls a process will start that

process execution, that program then will continue to work without waiting. A

process never returns to its caller.

Each process has its own stack segment. In Nos, there is a single address space,

the stack segment of all processes are in the same address space. The advantage

is that there is no translation between virtual address and physical address

therefore it is fast and simple. The disadvantage is that there is no protection

between processes. Each process has its process descriptor (PD) to store the

necessary information. A process descriptor in Nos consists of 12 fields.

1. link previous

2. link next

3. process id

4. process status

5. PC

6. SP

7. FP

8. TS

9. in-box

10. await-box

11. message

12. timer

189

The links previous and next are used to form the list of processes, for example the

process queue. The process identifier is a unique number used to label a process.

The process status holds the state of process (to be explained later). The fields

{PC, SP, FP, TS} hold the computation state of the process. The mail-box (in-

box and await-box) is used to communicate between processes. The in-box is the

list of processes that sent messages to this process. The await-box is the list of

processes that are waiting for messages from this process. The timer holds the

timer value of this process.

8.4 Scheduler

When a process is created it is ready to start the execution. Its PD will be linked

to the ready list (the process queue) which is a doubly linked circular list used by

the scheduler. A scheduler has the duty of selecting a process to run from the

ready list. The scheduling policy of Nos is a Round-Robin policy where an equal

time-slice is allocated for every process and the process is scheduled on first-

come first-serve basis. A scheduler will enable a process in the ready list to run

until its time-slice is over and then switches to the next process in the list. If a

process enters a wait state, it is said to be blocked. A process is usually blocked

because it performs some operation that requires waiting for another process,

such as waiting for the receiver to retrieve a message. When a process is

blocked, its PD will be removed from the ready list. The process in wait state can

be awaken by other process. Its PD will be inserted into the end of the ready list.

To perform the switch from one process to another process (task switching), the

current state of computation {PC, SP, FP, TS} of the active process is saved in its

PD and the state of computation of the process to be run is restored. The first

process to be active is the process to run the main program. A process is run until

it is time-out, or it is blocked or it is terminated. “switchp” is the task switcher

function in Nos. Here is how “switchp” work.

switchp

 if status is time-out or blocked

 runnable next task

 else status is terminated

 delete this task

 runnable next task

190

Where status is the state of the process, runnable marks the process as running.

Here is the actual code in Nut.

(def switchp () () [nos 127]

 (do
 (di)
 (if (or (= status TIMEOUT) (= status LOCKED))
 (do
 (setValue activep READY)
 (set activep (getNext activep)) ; switch next

 (runnable activep))
 ; else ; status STOPPED
 (do
 (setValue activep DEAD)
 (set activep (deleteDL activep))
 (if (!= activep 0)
 (runnable activep))))))

Before we go into more details of the operating system functions, we must

understand the basic of running a task first.

8.5 Nos supervisor (Noss)

Nos is executed under Nos supervisor (Noss). Nos supervisor runs on top of the

processor simulator. Noss is a privileged program. A privileged program is a

program that is “out-of-bound” of user programs. A privileged program provides

mechanism for executing a user program, for example, the Sx processor

simulator is a privileged program that executes S-code. In our implementation,

privileged programs are written in C. User programs are written in Nut. The

relationship between Nos supervisor and the processor simulator can be

understood by regarding Noss as issuing an interrupt to the processor.

The processor continuously executes a program (running a process) until an

interrupt occurs then the supervisor takes action. The interrupt can occur only at

the end of executing an instruction. There are three interrupt events: time-out,

stop, block.

time-out − the current process has used up its own time-slice.

stop − the current process runs to completion.

block − the current process is blocked (to be resumed later).

191

The supervisor (Noss) takes action in response to the interrupt events as follows.

Figure 8.1 Noss state diagram

At start, the main program creates processes and the process queue. Noss

schedules only two kinds of processes: user process and switchp. “switchp” is

created and has its own PD but it is privileged and never enters the process

queue. Once the process queue is ready, at the state user, a user process is run.

The user process is run until it is time-out/stopped/blocked. Then Noss calls the

“switchp”, at the state switch. “switchp” runs to completion. It must not be

interrupted as it is manipulating the process queue. Then the state is going back

to run a user process.

At the end of task-switch, Noss always runs the next task. This is accomplished

by restoring the computation state (C-state) of that process. This means the PC,

SP, FP, TS of that process are restored to the processor simulator and then the

processor simulator continues to execute until the interrupt occurs.

The process descriptor contains C-state. Saving and restoring C-state are the act

of transferring C-state between the processor simulator and the process

descriptor. Noss does the restoring of C-state. This restoring will affect the flow

of execution, as the instruction pointer is changed; it does a jump in the program.

As Noss is responsible to run the task-switcher, it must save C-state. Saving C-

state can not be done in user-space as the precise state has been changed when

trying to run the “saving state” function. So, save-C-state is done in the main

start

user

switch

Set up processor queue

Run user process

Run task switcher

 stop
time-out

stop
block

192

loop of Noss (in C). This gives the save-C-state a special privilege (so called

kernel in OS vocabulary). The following pseudo code described Noss.

Noss [noss 43]
 if there is no process in the queue

 stop the whole simulation

 else

 update status to nos

 if state = switch

 save current user process

 restore “switchp”

 state = user

 else state = user

 restore active process

 state = switch

8.6 Simulation of interrupt

The processor simulator always runs a program in a tight loop. The processor

fetches an instruction and executes it. To simulate an interrupt, the processor calls

Noss from time to time (this is called yield). The interrupt interval is controlled

by counting the cycle used since the last call to Noss.

The processor returns the control back to Noss after three conditions:

1. Its time-slice has been used up. This is called “time-out”.

2. The process has been blocked by executing some operation. This is

called “blocked”.

3. The task is completed. The program reached “end”. This is called

“stopped”.

When the processor hands the control back to Noss, Noss calls task-switch. The

task-switch code is in the user-space. The task-switch is the function “switchp”.

“switchp” requires the knowledge of the status of the completion of the previous

task: time-out, blocked, or ended. This information is provided by Noss via the

variable “status”, as Noss controls the processor simulator it knows how the task

has returned the control.

193

Noss is minimal in the sense that it does not do a lot of things by itself. The only

thing it does is to call “switchp”. Noss monitors the state of computation of a

process through two global variables: status and activep.

8.7 Processor simulator

In the processor simulator, the main simulation loop is “eval”. It executes a fixed

number of cycles. This is the main fetch-execute cycle of the processor (in fact

most processor simulator are like this):

eval

 count = 0

 loop

 if count > limit break

 fetch an instruction

 execute the instruction

 count = count + 1

To implement interrupts, a flag (intflag) is used to disable the break. This flag

can be turned on/off by the system calls.

eval2

 count = 0

 loop

 if intflag == 1

 if count > limit break

 fetch an instruction

 execute the instruction

 count = count + 1

The system calls that support Nos are:

20 disable interrupt

21 enable interrupt

22 block a process

The following code describes the main loop of the processor simulator.

194

Eval [noss 71]
 set PC

 while runflag = 1

 run one instruction

 yield

yield

 if intflag = 1

 if no of cycle used > TIMEOUT

 noss(time_out)

Where runflag controls the termination of Noss itself, intflag is the interrupt flag

used to disable/enable interrupt.

8.8 How a process is created

A function “run” is used to create a process and put it to the process queue.

Although “run” looks like a normal function, it can not be compiled into a

normal function call. The argument to “run” is a function which will be turned

into a process so it should not be evaluated. A call to “run” is compiled into the

code that passes an address of the function. The argument to “call.run” in N-

code is just a user-function call with its arguments as usual. However, this

argument will not be evaluated. Instead, the address of the code of this call will

be generated as an argument of “run”. This code will be activated by the

scheduler as a process. See the following example:

(def add (a b) () (+ a b))
(def run (f) () 0)
(def main () ()
 (do
 (run (add 4 5))))

add
(fun.2.2 (+ get.1 get.2))
run
(fun.1.1 (lit.0))
main
(fun.0.0 (do (call.17 (call.14 lit.4 lit.5))))

195

The generate S-code is as follows. See line 12-18.

 1 Call main

 2 End

 3 Fun add

 4 Get 2

 5 Get 1

 6 Add

 7 Ret 3

 8 Fun run

 9 Lit 0

 10 Ret 2

 11 Fun main

 12 Lit 15

 13 Call run

 14 Jmp 19

 15 Lit 4

 16 Lit 5

 17 Call add

 18 End

 19 Ret 1

The line “(run (add 4 5))” becomes

 12 Lit 15 address of code (add 4 5)
 13 Call run

 14 Jmp 19 do not execute now

 15 Lit 4 the code (call.add lit.4 lit.5)
 16 Lit 5

 17 Call add

 18 End

 19 . . .

8.9 How to generate code for run

The S-object must contain the symbol table with the correct references. The S-

object is generated by “gen.txt”. However, “gen.txt” just passes the symbol table

through. The symbol table is read from N-object. The N-object is generated by

“nut.txt”, the compiler. The current version dumps everything in the symbol

table.

196

The symbols that must be exported are of type FUN and GVAR only. The

following tasks must be done.

1. Change “nut.txt” to output only the necessary symbols.

2. Change “gen.txt” to output the S-code reference. However the number of

symbol does not change.

at nut.txt

The dumpsym is responsible to output the symbol table. It also relocates the

references to functions such that the code segment starts at 2. It is necessary as

Nut-compiler is used under “nvm” where both the compiler and the user program

to be compiled occupy the same code segment. Therefore the user program in

the code segment will not start at 2. We would like the object to be relocatable;

therefore the user code should start at 2.

When starting the compiler, (sys 9) is used to find out where to user code

segment is. The global variable “Start” stores this location, and it is used to

relocate the reference to all function call when output the object. The following

code is added in “nut.txt” at dumpsym, to output the correct reference. The data

segment is not relocated as it is already started at 0.

(if (= ty tyFUN)
 (set n (shift (getVal i) Start))
 ; else
 (set n (getVal i)))
 (print n) (space)

at gen.txt

Here is the added code to outsym, to output the symbol table.

 (set ty (atoi tok))

 (tokenise) ; ref, reloc
 (if (= ty tyFUN)
 (do
 (set ref (shift (atoi tok) CS))
 (print (assoc ref)))
 ; else

 (prstr tok))
 (space)

197

When reading the symbol table from N-object, the generator recognises the type

“fun” and outputs the S-address corresponding to the N-address.

To generate the code for the expression (run (fn ...)), the code to call “run” is

generated and the address pointed to (fn ..) is generated as its argument.

 lit x

 call run

 jmp y

x: ...

 call fn

 end

y: ...

The address of x is at the next 3 words. jmp y skips the code (fn...). The call to

(fn ..) is deferred and “run” will use x as the starting address of the process

which calls (fn...). When the process returned, it will be terminated by “end”.

This is in the function gencall.

; convert arg to index to symtab
; e is arglist

(def gencall (arg e) (idx a)
 (do
 (set idx (searchRef arg))
 (if (= idx Runidx) ; is “run”

 (do
 (outa icLit (+ XP 3)) ; point to code of process
 (outa icCall idx) ; call run
 (set a XP)
 (outa icJmp 0)
 (eval (head e))
 (outs icEnd)
 (patch a (- XP a))) ; jump over
 ; else
 (do ; normal call
 (while e
 (do
 (eval (head e))
 (set e (tail e))))
 (outa icCall idx)))))

198

Example session

The following example shows how a process is created and run. A user program

is written as (count) and integrated with Nos in “main”:

; ---- application --------

(def count (n) (i)
 (do
 (set i 0)
 (while (< i n)
 (do
 (set i (+ i 1))
 (print i) (space)))))

(def main () (p)
 (do
 (sys 5)
 (set activep 0)
 (set sseg 1000)
 (set p (run (count 500)))
 (bootnos)))

The line (run (count 500)) creates a process to run (count 500). (bootnos)
starts the process running.

To run NOSS, first compile user functions with NOS in nos.txt:

e:\test>nut < nos.txt

print

(fun.1.1 (sys.1 get.1))

printc

(fun.1.1 (sys.2 get.1))

nl

(fun.0.0 (sys.2 lit.10))

space

(fun.0.0 (sys.2 lit.32))

not

(fun.1.1 (if get.1 lit.0 lit.1))

. . .

199

Then run NOSS with the executable, let it be “a.obj”.

e:\test>noss a.obj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

36 37 38 39 40 41 42 43 44 45 46 47 48 49

*

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

66 67 68 69 70 71 72 73 74 75 76

. . .

*

487 488 489 490 491 492 493 494 495 496 497 498

499 500

*

9345 clocks

e:\test>

The “*” indicates the task-switching (every 1000 cycles).

8.10 Interprocess communication

Nos provides two ways to communicate (passing some values) between

processes:

1 by share variables

2 by message passing

Share variables

A semaphore is used to provide mutual exclusion of access to share variables.

The share variable will be accessed by only one process at a time. (Remember

that processes can be concurrent therefore at any time there can be more than one

process trying to access the same variable). A semaphore is implemented as a

special global variable with two fields: value, wait-list. The access to a

semaphore is done via two functions: signal, wait. They are atomic operations.

The operation runs to completion without interrupt. This is achieved by disable

interrupt at the beginning of the function and enables interrupt before return.

200

; semaphore field: sval(value) slist(wait-list)

(def signal (s) (p) [nos 166]
 (do
 (di)
 (set p (getslist s))
 (if (!= p 0)
 (do
 (setslist s (deleteDL p))
 (wakeup p))
 ; else
 (setsval s (+ (getsval s) 1)))
 (ei)))

(def wait (s) (v p) [nos 178]
 (do
 (di)
 (set v (getsval s))
 (if (<= v 0)
 (do ; block activep to WAIT

 (set p activep)
 (set activep (deleteDL activep))
 (setValue p WAIT) ; to wait-list

 (setslist s (appendDL (getslist s) p))
 (blockp)) ; block
 ; else
 (setsval s (- v 1)))
 (ei)))

Where “blockp” blocks the current process (and calls the supervisor), “wakeup”

puts the process p in the process queue, ready to be scheduled to run.

(def initsem (v) (s1) [nos154]
 (do
 (set s1 (new 2))
 (setsval s1 v)
 (setslist s1 0) ;; wait-list nil

 s1))

201

(def wakeup (p) () [nos 161]
 (do
 (setValue p READY)
 (set activep (appendDL activep p))))

A “monitor” can be constructed to provide an abstract data type to protect shared

variables. The access is done via the parameter “cmd”. The monitor uses the

associated semaphore to perform mutual exclusion access. Only one process can

be inside the monitor at one time.

(def monitor (cmd) ()
 (do
 (wait sem1)
 (if (= cmd 1)
 ... access shared variables

 ; else
 ... access shared variables

 (signal sem1)))

8.11 Message passing

The message passing in Nos is implemented as a blocking protocol where the

sender and receiver wait until the exchange is completed before continuing. This

is done using two mail-boxes: in-box and await-box. Here is the pseudo code for

the “send” and “receive” operations.

send p mess

 if there is a process p wait for it

 put mess to p's buffer

 wakeup p

 else

 block itself

 append itself to p's in-box

receive p

 if there is a process p mail in in-box

 take the message from p's buffer

 wakeup p

 else

 block itself

 append itself to p's await-box

202

The Nut program implementing “send” and “receive” is as follows.

; p is pointer to process

(def send (p mess) (m box) [nos 221]

 (do
 (di)
 (set box (getAwait activep))
 (set m (findmail p box))
 (if (= m 0)
 (do
 (set m activep) ; self

 (setMsg m mess)
 (set activep (deleteDL activep))
 (setMbox p (appendDL (getMbox p) m))
 (setValue m SEND)
 (blockp))
 ; else

 (do ; p is waiting
 (setMsg p mess)
 (set m (deleteDL p))
 (if (= box p)
 (setAwait activep m))
 (wakeup p)))
 (ei)))

(def receive (p) (m box) [nos 243]
 (do
 (di)
 (set box (getMbox activep))
 (set m (findmail p box))
 (if (= m 0)
 (do ; put to await p

 (set m activep) ; self

 (set activep (deleteDL activep))
 (setAwait p (appendDL (getAwait p) m))
 (setValue m RECEIVE)
 (blockp)
 (getMsg m)) ; retrieve from self
 ; else
 (do ; already in mbox

203

 (set m (deleteDL p))
 (if (= box p)
 (setMbox activep m))
 (getMsg p) ; retrieve mbox

 (wakeup p)))
 (ei)))

There are two buffers, one in the sender and other in the receiver. The process

descriptor is attached to the in-box/await-box so that waking up a process

associated with the mail is simple. “findmail” searches for a message from a

process p in the mail-box. “blockp” blocks the current process (and calls the

supervisor). The state “SEND/RECEIVE” indicate that the process is blocked by

the send/receive operation. “wakeup” puts the process p in the process queue,

ready to be scheduled to run.

Example of use of send/receive message

We write two functions, one is the producer that sends the message 2..n, the other

is the consumer. The consumer receives the message until the end of message is

reached (-1).

(def produce (n) (i) [nos 270]
 (do
 (set i 2)
 (while (< i n)
 (do
 (send p2 i)
 (set i (+ i 1))))
 (send p2 (- 0 1))))

; receive 2..n from p1 ended with -1
(def consume () (m flag) [nos 281]
 (do
 (set flag 1)
 (while flag
 (do
 (set m (receive p1))
 (if (< m 0)
 (set flag 0))))
 (nl)))

204

Create and run producer and consumer.

(def main () () [nos 292]
 (do
 (di) ; disable interrupt

 (set activep 0) ; init task-list
 (set sseg 1000) ; init stack segment

 (set pid 1) ; init process id

 (set psw (run (switchp)))
 (set activep 0)
 (set p1 (run (produce 1000)))
 (set p2 (run (consume)))
 (bootnos)))

Suppose a producer streams the messages (integers) 2..n to a consumer. The

producer’s output is marked “!n” and the receiver’s output is marked “ “n”. The

task-switched is marked “*”. The trace is:

!2 * “2 * !3 !4 * “3 “4 * !5 !6 * “5 “6 *

!7 !8 * “7 “8 * !9 * “9 . . .

Let two processes be s, r. This behaviour can be explained by inspecting the

trace of execution of two processes.

notation

sM send in-box

sA send await

rM receive in-box

rA receive await

sB sender block

rB receiver block

The trace is:

1 producer: sM sB *

2 consumer: rM rA rB *

3 producer: sA sM sB *

4 consumer: rM rA rB *
...

205

The first line says that the sender just sent a message to the receiver’s in-box then

itself is blocked. The second line is quite interesting. It says the receiver

retrieves the message from the sender’s buffer and then continues to execute its

program which does “receive p”. This call forces the receiver to send itself to

the sender’s await-box, and then itself is blocked. This mean “r” is waiting for a

message from “s”. Once “s” wakeups “r”, the process “r” will have a message in

its buffer. Line 3, 4 can be similarly explained.

This benchmark has been compiled with all optimisation turned on (macro,

primitives, extended instructions). Sending and receiving 1000 messages take

total 171037 instructions. Therefore the number of instruction for passing (send

and receive) one message is 171037/1000 = 171 instructions/message.

8.12 Timer

To facilitate a real-time system, some operating system functions needed to be

supported. In our system, the real-time clock is the clock of running the

processor. The function

(gettime)

returns the real-time clock. The function

(timer t)

sets a timer to be time-out at t cycles in the future, not earlier than (gettime)+t.
A timer is used to schedule a task according to some real-time deadline.

How a timer is implemented?

A timer stores its time value as a field in PD. A timer list keeps track of the

processes that have been scheduled to time-out in the future by “timer”. The time

value in PD is an absolute time. When a timer is set to t, the time value in PD is

set to (gettime)+t. The process that executes “timer” is blocked. It is removed

from the process queue and it is added to the timer list. The timer list is sorted

according to the time values from earliest time to the latest. This list will be

processed by a timer process which is scheduled by the supervisor, Noss.

206

Timer process

The time value in the list is compared to the master time (the global variable

clock in the processor simulator). If it is less than the master time the owner

process of this timer is awaken. As the timer list is sorted in ascending order of

time value, only the first one is consulted if it is time-out then the next one is

consulted and so on.

Granularity of timer

How precise the timer is depends on how often the timer process is scheduled to

run. The overhead depends on this rate. It is reasonable to have the granularity

at most the same as “quanta”, the time interval of the interrupt. Then, the timer

process can be scheduled to run after the task switcher.

What Noss needs to do?

Noss needs to run “timer” after “switchp”. The time-out timer process will be

queued either at the front of the process queue or the back depends on the

scheduling policy. To simulate the real-time, if the timer list is not empty and the

process queue is empty, then the first process in the timer list should be

scheduled to be run. The master time should be updated to advance to the time

value of that process. This is similar to an ordinary event-driven simulation

based on time.

8.13 Lab session

We run two processes sharing two variables through a monitor. The monitor has

two functions: 1) increment the value, and 2) getting the value. The first process

increments the value and waits for the second process to get the value. This

procedure is repeated until 20 times. To synchronise both processes so that

incrementing/getting value will be “in sync”, another variable, “empty” is used

to signal whether the value has been used. The monitor protects these global

variables. The program for the experiment is shown below.

207

(let ff empty) ; shared variables

(let sem1) ; semaphore

(def mon1 (cmd) ()
 (do
 (wait sem1)
 (if (= cmd 1)
 (if (= empty 0)
 (do
 (set ff (+ ff 1))
 (set empty 1)))
 ; else

 (if (= empty 1)
 (set empty 0)))
 ff
 (signal sem1)))

(def inc () (i n)
 (do
 (set i 0)
 (while (< i 20)
 (do
 (set n (mon1 1))
 (set i (+ i 1))))))

(def pff () (n)
 (do
 (set n (mon1 2))
 (print n)
 (while (< n 20)
 (do
 (set n (mon1 2))
 (print n)))))

(def main () (p1 p2)
 (do
 (di)
 (set activep 0)
 (set sseg 4000)
 (set pid 1)
 (set psw (run (switchp)))

208

 (set activep 0)
 (set ff 0)
 (set empty 0)
 (set sem1 (initsem 1))
 (set p1 (run (inc)))
 (set p2 (run (pff)))
 (bootnos)))

Append the above program to Nos, name it “nos1.txt”. Compile it and generate

an executable code, let is be “ns1.obj”. Then run it under Noss.

c:\prabhas\test> nvm nut.obj < nos1.txt > nos1.obj

c:\prabhas\test> nvm gen2.obj < nos1.obj > ns1.obj

c:\prabhas\test>noss ns1.obj

load program, last address 503

DP 1008

 * * * * 1 * * 2 * * 3 * * 4 * * 5 * * 6 * * 7 * *

8 * * 9 * * 10 * * 11 * * 12 * * 13 * * 14 * * 15 * *

16 * * 17 * * 18 * * 19 * * 20

6592 inst. 33289 cycles (system 12009 user 21280) switchp 42

The “*” shows the task switch to run user processes. The output shows that two

processes synchronised properly. There are 42 task switching, 40 comes from

switching between two processes, each 20 times.1 The system cycle reports the

number of cycle used in the Nos itself. The user cycle reports the number of

cycle used to actually running the user process, (inc) and (pff). You can observe

that the system consumes about half of the cycles.

8.14 Summary

In this chapter we have developed an operating system, Nos. The operating

system is preemptive. It supports multi-thread. Two simple interprocess-

communication methods have been implemented: semaphore and message

passing. Some facilities for real-time processes are outlined.

1 What does two other task switching come from? This question is left to be

investigated by the interested reader

209

It is not a surprise about the fact that Nut language can be extended minimally to

write the whole operating system. The design of the extension is critical. Using

the model of interrupt is a good framework to implement a simulator to run the

operating system. The supervisor program, Nos supervisor (Noss), mediates

between Nos and the processor simulator, Sx. The processor runs its user

program continuously until an interrupt event occurs, then it hands back the

control to the supervisor. The supervisor, Noss, performs the task of

saving/restoring the computation state of the process to/from the process

descriptor. Noss does a minimal job of intervention. Majority of the task

switching and other operating system service functions are done in the user-space

by Nos.

Semaphore, monitor and messaging are progressive development toward a higher

abstraction which is easier to use. The behaviour of these services can be

observed. The implementation is short and simple enough to be experimented

with. The processor simulator gives us the detail at the level of cycle-by-cycle

execution such that the effect of the system as a whole can be studied.

8.15 Further reading

Operating systems have been developed over the past 50 years. The major

breakthroughs in operating system technology from the 1950s to 1990s have been

collected in the book by Hansen [HAN01]. The earliest time-sharing systems

were the Compatible Time-Sharing System (CTSS) developed at MIT [COR62]

and The Multiplexed Information and Computing Services (MULTICS)

[COR65]. Many textbooks cover operating systems, including Stallings

[STA00], Tanenbaum [TAN01], and Silberschartz et al [SIL03].

References

[BUR01] Burns, A. and Wellings, A., Real-time systems and programming

languages, 3rd ed. Addison-Wesley, 2001.

[COR62] Corbato, F., Merwin-Daggett, M., and Daley, R., “An experimental

time-sharing system”, Proc. of the AFIPS Fall Joint Conference, pp.335-344,

1962.

210

[COR65] Corbato, F., and Vyssotosky, V., “Introduction and overview of the

MULTICS system”, Proc. of the AFIPS Fall Joint Computer Conference,

pp.185-196, 1965.

[DIJ65] Dijkstra, E., “Solution of a problem in concurrent programming

control”, Communication of the ACM, 8(9):569, 1965.

[HAN01] Hansen, P. (ed.), Classic Operating Systems, Springer-Verlag, 2001.

[HOA74] Hoare, C.A.R., “Monitors : an operating system structuring concept”,

Comm. ACM, 17(10):549-557, 1974.

[LEH89] Lehoczky, J.P., Sha, L. and Ding, Y., “The rate monotonic scheduling

algorithm – Exact characterization and average case behavior”, Proc. IEEE

Real-time Systems Symp., pp. 166-171, 1989.

[LEI80] Leinbaugh, D.W., “Guaranteed response time in a hard real-time

environment”, IEEE trans. on software engineering, January 1980.

[SHA88] Sha, L., An overview of real-time scheduling algorithms, Software

Engineering Institute, Carnegie Mellon University, 1988.

[SIL03] Silberschatz, A., Galvin, P., Gagne, G., Operating System Concepts, 6th

ed. John Wiley, 2003.

[STA00] Stallings, W., Operating Systems, 4th ed. Prentice Hall, 2000.

[TAN01] Tanenbaum, A., Modern Operating Systems, Prentice Hall, 2001.

Excercises

8.1 Vary the quanta and observe the behaviour of Nos running some

applications.

8.2 Write timer and its associated function, gettime.

8.3 Implement producer/consumer processes with a buffer of size n.

8.4 How to create and destroy a process dynamically?

8.5 How to improve the performance of Nos?

211

8.6 Nos has no input, to allow concurrency, the input can be simulated

through the console application. A console accepts input and feed it as a

stream to the receiving process. Write a console application.

8.7 Discuss the co-operative process. How can it be implemented? Co-

operative process can be implemented at a lower cost than the pre-

emptive OS. Write co-operative process in Nut and discuss its cost.

8.8 Nos has a single address space. To protect resources used by a process, a

virtual memory is necessary. Discuss how to implement a virtual

memory under our framework.

8.9 To implement interrupt properly, we rely on Noss as a privilege process.

Noss is written in C and works in cooperation with the Sx processor

simulator. Is it possible to write Noss in Nut as a user program?

212

213

Chapter 9

Optimisation

In this chapter, we will study many methods to improve the performance of the

system that we have built in the previous chapters. The system consists of some

simple applications running on a concurrent operating system written in a high

level language. The platform (the hardware system, a virtual one) is a stack-

based processor. It is microprogrammable, so its instruction set can be extended.

The high level language itself can also be changed. We have written the

compiler for the language and the code generator to generate code for the target

machine. These programs can be modified.

Studying a computer system as a whole can reveal the relationship between

components. Their interactions can be complex and interesting. The optimisation

aims to improve mainly the performance, to complete a task with fewer numbers

of cycles. As we built all components by ourselves, we can change the system at

every level. We can experiment with any component and observe the change.

We can instrument our system to collect statistics easily.

There is no separate lab session in this chapter as the work is spread out in all

sections. Each optimisation method will be tried and data collected. The

analysis follows each experiment.

9.1 Framework

There are many levels in which to aim an optimisation for. The highest level is

an algorithmic level. We will not explore this topic; instead we refer to many

excellent textbooks in the field [COR01] [PRA01] [KLI05]. What we will

explore is at a more concrete level: the language level, the code generation level

and the microprogramming level.

214

At the language level, the macro expansion will be studied. The extension of the

language itself to include new operators will be tried. At the code generation

level, many techniques will be investigated: supporting new instructions such as

increment, decrement (which are implemented in the previous chapter),

improving some simple sequence of code, and eliminating some code. At the

instruction level, a few new instructions will be designed and implemented. The

microarchitecture level has been demonstrated in the chapter 7, showing an

improving data path of the Sx processor.

What are we going to measure and how?

To observe any improvement we need to set up a controlled environment.

Several methods will be applied to improve a system that performs the same task.

The effects of these different methods can then be observed and compared. The

benchmark programs are a set of programs (or tasks) representing the kind of

workload that we expect in our work. We elected two programs as our workload

representatives: the Nut compiler and the Nut operating system.

The first benchmark is the compiler benchmark. The original Nut compiler,

“nut.txt”, is used to compile itself. This represents a substantial work that is

moderately complex and contains many well-known problems in computer

science. Nut compiler is also a non-trivial program that will exercise a large

repertoire of instructions.

The second benchmark is the message passing benchmark. An application

program performs producer/consumer type of behaviour. It sends and receives

100 simple messages. This benchmark tests the operating system, the task

switcher and represents the fundamental operation in the operating system, the

interprocess communication. The program is “nos2.txt”. It contains Nos and the

messaging services: send, receive. There are 200 task switches.

The data collection consists of the profile of running the benchmark programs.

Two statistics are collected:

1. Frequency of each instruction used

2. Frequency of each line of program used

The statistic 1 let us know what instruction to improve. The statistic 2 let us know

where the programs spend its time.

215

Tools

The set of tools that will be used are:

1 The original Nut compiler, the source is “nut.txt”; the N-object code is

“nut.obj”.

2 The code generator, the source is “gen.txt”; the N-object is “gen.obj”.

3 The evaluator of N-object, the Nut virtual machine, nvm. It is an executable

code running on a real computer.

4 The Sx processor, its simulator is used to execute the S-object which is

considered to be the “grounded” level for measuring the number of cycle

used to run benchmark programs.

Baseline

We establish the baseline data to be compared with the result of the methods

suggested in this chapter.

This is the profile of the compiler benchmark. Let “nuts.obj” be the S-code of

Nut-compiler, “nut.txt”. We run the following task to collect the statistic.

c:>sx nuts.obj < nut.txt

The base Nut-compiler compiles the original Nut-compiler. “sx” will output a

profile file, “prof.txt” showing the frequency of each instruction used and the

frequency of each line of program used. Table 9.1 shows the profile of the

number of instruction used the functions. Only the functions that consume more

than 100 (x1000) instructions are shown. The total number of instruction

executed in this benchmark is 8585 (x1000).

216

Table 9.1 The number of instruction (x1000) used in functions in the compiler
benchmark (anything less than 50 is not shown)

!= 738
and 963
str= 4414
getName 416
install 1456

 7987

Observation

In terms of functions that consume most of cycle, the “str=” is the first one,

followed by “install”, “!=“, “and”, “getName”. They are summed up to 93% of

total instruction executed. The “str=”, string comparison function, alone

consumes 50% of cycle. This function is used almost entirely on the task related

to the symbol table. This fact suggests that we should concentrate on supporting

this function in machine instructions. We should also consider changing the

access methods of the symbol table.

The next step is to collect the data of the message passing benchmark. The

profile of running nos2 is shown in Table 9.2.

They are accounted for 82% of total number of instructions executed. The total

number of instruction executed in this benchmark is 43580.

The functions in the table are mostly the functions accessing data structure in the

form (vec a n), (setv a n), where a is a local variable, n is a constant.

217

Table 9.2 The number of instruction used in functions (anything less than 1000 is
not shown) in the message passing benchmark.

!= 1993
or 1295
ei/di 1194
getNext 1992
setNext 2020
setPrev 2020
appendDL 3413
deleteDL 2700
setValue 3005
switchp 3804
findmail 3465
send 3267
receive 2772
produce 1581
consume 1395

 35916

9.2 Macro expansion

To reduce the overhead of a function call, a function can be defined as a “macro”.

A macro definition is just like a function definition; the difference is that the

body of a macro definition is substituted into the call. Hence, the size of a

program with a macro is larger. The advantage is that it will be executed faster.

The syntax of a macro definition is similar to a function definition, only the

keyword is “defm” instead of “def”. For example,

(defm print (x) () (sys 1 x))

Whenever the macro appears in the program, the macro body is substituted. In

the following definition, “print” will be substituted.

(def report (a) ()
 (print a)
 ...

218

The expression will become

(def report (a) ()
 (sys 1 a)
 ...

Macro is suitable for defining the access function such as the following functions

(from symbol table access functions in “nut.txt”)

(def getName idx () (vec symtab idx))
(def getType idx () (vec symtab (+ idx 1)))
(def setName (idx nm) () (setv symtab idx nm))
(def setType (idx ty) () (setv symtab (+ idx 1) ty))

These functions will be executed much faster because there is no overhead

associated with “call” and “return” such as create/destroy the stack frame. Our

macro definition cannot have local variables because the local variables in the

body of the macro must be appended to the list of local variables of the caller,

that is, extending the environment of the caller. We opt to demonstrate only a

simple macro substitution without changing the caller environment.

The Nut-language is extended to have macros. The new keyword “defm” is

recognised by the extended compiler, “nut4.txt”. The macro definition will be

parsed as a normal function definition, only that its type will be “macro” (instead

of “func”). The expression that called the macro can be recognised by inspecting

its type. For the macro call, the body of macro will be expanded with the proper

binding of actual parameters to the formal parameters defined in the macro

definition.

The main function of the macro expansion is the function “subst”. The function

“subst” takes apart the body of macro definition one by one element, and maps

that item to the corresponding element in the actual parameter list using

“mapATOM”.

219

; do macro expansion

(def domacro (nm e1) (arg body)
 (do
 (set arg (de_arg nm))
 (set body (pick (getVal arg) 2))
 (subst body e1)))

; e1 is the body of macro def, e2 is the actual arg list
(def subst (e1 e2) (e)
 (if (= e1 NIL) NIL
 ; else

 (do
 (set e (head e1))
 (if (isATOM e)
 (cons (mapATOM e e2) (subst (tail e1) e2))
 ; else

 (cons (subst e e2) (subst (tail e1) e2))))))

Where (pick e n) gets the n-th element of the list e. Most of the work is done in

“mapATOM”, where the term “get.a” or “put.a” in the body of macro definition

is substituted with the corresponding actual parameters from the argument list.

The following rules are the rules for substitution:

mapATOM a e2

e3 = (pick e2 n)

if a = get.n out e3

if a = put.n

 if e3 = get.n out put.n local

 if e3 = ld.n out st.n global
if a = ldx.n

 if e3 = get.n out ldx.n local

 if e3 = ld.n out ldy.n global
if a = stx.n

 if e3 = get.n out stx.n local

 if e3 = ld.n out sty.n global
otherwise

 out a do not substitute

220

Where a is the atom in the macro body, e2 is the argument list of the caller. The

function (pick e n) select n-th element of e.

The function “mapATOM” and its related functions are shown below.

; return n-th element of e
(def pick (e n) ()
 (if (= e NIL) NIL
 (if (< n 1) NIL
 (if (= n 1) (head e)
 (pick (tail e) (- n 1))))))

; return op1/op2 depends on e3 is get/ld
(def map2 (e3 op1 op2) (e n)
 (do
 (set n (de_arg e3))
 (if (isOp e3 xGET)(set e (mkATOM op1 n))
 (if (isOp e3 xLD)(set e (mkATOM op2 n))
 (error “no ld/get in caller macro expansion”)))
 e))

; map atom a with n-arg in e2, e2 is the actual arg list
(def mapATOM (a e2) (e e3 c n)
 (do
 (set c (de_op a))
 (set n (de_arg a))
 (set e3 (pick e2 n)) ; n-arg of caller

 (if (= c xGET) (set e e3)
 (if (= c xPUT) (set e (map2 e3 xPUT xST))
 (if (= c xLDX) (set e (map2 e3 xLDX xLDY))
 (if (= c xSTX) (set e (map2 e3 xSTX xSTY))
 (set e a))))) ; no substitution
 e))

Example

(defm inc2 (a b) ()
 (a = a + b))

The expression (inc2 x y) will be expanded as follows. The macro body is:

221

(put.a (add get.a get.b))

The atoms in the macro body are: 1) put.a 2) add 3) get.a 4) get.b. Let the

arguments be two cases: locals, globals, then (inc2 x y) is compiled to:

1. x, y are locals, the call expression is (call.inc2 get.x get.y)

The substitution for each atom is as follows.

atom put.a map to get.x, out put.x

atom add don’t map, out add

atom get.a map to get.x, out get.x

atom get.b map to get.y, out get.y

The output is (put.x (add get.x get.y))

2. x, y are globals, the call expression is (call.inc2 ld.x ld.y)

The substitution for each atom is as follows.

atom put.a map to ld.x, out st.x

atom add don’t map, out add

atom get.a map to ld.x, out ld.x

atom get.b map to ld.y, out ld.y

The output is (st.x (add ld.x ld.y))

Similarly for the atom “ldx” and “stx”. The atom in the actual parameters can

not be global as it is a call by value.

How to do macro

The Nut-compiler (“nut.txt”) is modified to expand macro (“nut4.txt”). The

compiler itself (the target) has changed almost all the access functions to be the

macros (“nutm.txt”). The compiler, nut4.txt, is used to compile the macro-

version of compiler (“nutm.txt”). Then the macro-version compiler is used to

compile the original, “nut.txt” for benchmarking. This is the step of the work.

1 Produce the compiler that can expand macro.

c:>nvm nut.obj < nut4.txt > nut4.obj

222

2 Use this compiler to compile the macro-version of compiler

c:>nvm nut4.obj < nutm.txt > nutm.obj

3 Generate S-code for “nutm.obj”.

c:>nvm gen.obj < nutm.obj > nutms.obj

The final executable code is the compiler with most access functions inlined,

“nutms.obj”. We use this compiler to compile the original Nut-compiler to

collect profiling statistics.

4 Run the compiler benchmark

c:>sx nutms.obj < nut.txt

The second benchmark is similar.

1 First, compile the macro-version of Nos, “nos2m.txt”.

c:>nvm nut4.obj < nos2m.txt > nos2m.obj

2 Produce the executable code.

c:>nvm gen.obj < nos2m.obj > ns2.obj

3 Run Nos (with most access functions inlined) under Noss.

c:>noss ns2.obj

The result from macro expansion (inline) to eliminate calls is shown in Table 9.4.

In the compiler benchmark, using macro is 30% faster (in terms of cycle), and

46% faster in the message passing benchmark.

223

Table 9.3 The frequency of each instruction used

 compiler instr. X1000 message passing instr.
 base macro prim codegen extend base macro prim codegen extend
Add 244 244 244 121 121 107 107 107 9 9
Sub 4 4 4 4 4 1 1 1 1 1
Mul 1 1 1 1 1 0 0 0 0 0
Div 0 0 0 0 0 0 0 0 0 0
Band 13 13 227 227 227 0 0 0 0 0
Bor 0 0 2 2 2 0 0 200 200 200
Bxor 0 0 0 0 0 0 0 0 0 0
Not 0 0 0 0 0 0 0 0 0 0
Eq 379 275 256 228 220 1496 1397 1197 798 400
Ne 0 0 123 120 0 0 0 299 0 0
Lt 112 111 112 112 112 198 198 198 198 198
Le 0 0 0 0 0 0 0 0 0 0
Ge 0 0 0 0 0 0 0 0 0 0
Gt 1 1 1 1 1 0 0 0 0 0
Shl 2 2 2 2 2 0 0 0 0 0
Shr 4 4 4 4 4 0 0 0 0 0
Mod 0 0 0 0 0 0 0 0 0 0
Ldx 364 364 364 364 107 1094 1094 1094 1094 0
Stx 6 6 6 6 1 1727 1727 1727 1727 0
Ret 629 132 289 289 289 5896 1105 5397 5397 5397
Array 1 1 1 1 1 3 3 3 3 3
End 0 0 0 0 0 203 203 203 203 203
Get 2774 1949 2201 2078 863 12613 6608 11714 11616 8795
Put 824 824 824 701 137 1694 1694 1694 1596 1596
Ld 121 121 121 121 121 1812 1713 1812 1812 1812
St 3 3 3 3 3 414 414 414 414 414
Jmp 355 355 229 220 115 1098 1098 800 401 401
Jt 339 339 339 352 231 496 496 496 496 895
Jf 620 620 281 268 124 1597 1597 1098 1098 301
Lit 1126 1021 897 742 398 5947 5848 5549 4753 1932
Call 629 132 289 289 289 5896 1105 5397 5397 5397
Inc 0 0 0 123 3 0 0 0 98 98
Dec 0 0 0 0 0 0 0 0 0 0
Sys 23 23 23 23 23 1288 1288 1288 1288 1288
Jne 0 0 0 0 7 0 0 0 0 398
Ldxv 0 0 0 0 230 0 0 0 0 1094
Stxv 0 0 0 0 5 0 0 0 0 1727
Seqi 0 0 0 0 120 0 0 0 0 0

total 8585 6556 6855 6412 3777 43580 27696 40688 38599 32559

224

Table 9.4 The profile of the benchmarks, comparing the baseline and the macro
expansion. (1) is macro/base

compiler message passing

 instr.
x1000

cycle
x1000

instr cycle (system:user) cycle/
switch

base 8585 38033 43580 220915 (49274:171641) 246
macro 6556 26422 27696 120644 (22724:97920) 114

(1) % 76.4 69.6 63.6 54.6

Observing the frequency of instruction used in Table 9.3, the “call” (plus “ret”)

is reduced by 80% in macro version and 30% of “get” is reduced (in getting the

parameters). Similar reduction is observed in Nos benchmark, 80% reduction in

“call”, and 48% reduction in “get”. So macro expansion is highly effective.

9.3 Introduce new primitives into the language

Nut is designed to be minimal. Many basic and frequently used functions are

written as user-defined functions, such as !=, >=, <=, and, or, not. As the

processor Sx already has machine instructions to support these functions, they

should be considered as built-in operators of the language. The code generator

can be modified to convert the call to these functions into generating the

associated instructions of the Sx processor. This is not the same as macro

expansion because the way Sx instruction behave is not exactly the same as the

same operation written in Nut-language, for example the “and” function, in Nut.

(def and (a b) (if a b 0))

The meaning of this “and” is “if a is true then the result depends on b, else the

result is false”. Its semantic is the “short-cut and” where the argument is

evaluated enough to know the result (not always evaluate all arguments as in

eager evaluation semantic). However, the machine instruction “Band” will

evaluate all arguments. So there is a difference. The macro expansion will

225

preserve the semantic of the function. The machine primitive will be faster but

not always. In some case where evaluating arguments is costly, “short cut”

semantic may be faster because it may evaluate less number of arguments.

Here is how the code generator is modified. The functions !=, >=, <=, and, or,
not are still written as user-defined functions in the source program, their use will

be compiled into function calls. The code generation for “call” checks the index

to these functions and generates Sx machine instructions instead of a normal call.

; e is arglist
(def gencall (arg e) (idx a)
 (do
 (set idx (searchRef arg))
 ...
 (if (= idx yNe) (genop icNe 0 e)
 (if (= idx yLe) (genop icLe 0 e)
 (if (= idx yGe) (genop icGe 0 e)
 (if (= idx yAnd) (genop icBand 0 e)
 (if (= idx yOr) (genop icBor 0 e)
 (if (= idx yNot) (genop icNot 0 e)
 ; else
 (genop icCall idx e)))))))))) ; normal call

; eval arg-list (e), out code op.arg

(def genop (op arg e) ()
 (do
 (while e
 (do
 (eval (head e))
 (set e (tail e))))
 (outa op arg)))

Where yNe, yLe, yGe, yAnd, yOr, yNot are the indexes to the user-defined

functions !=, <=, >=, and, or, not. These indexes are found in the symbol table

which is read by the code generator. The instructions icNe, icLe, icGe, icBand,
icBor, icNot are the native Sx instructions for not-equal, less-than-or-equal,

greater-than-or-equal, bitwise-and, bitwise-or, logical-not operations.

226

For example the following code fragment from “nut.txt” (the last line of function

“str=”)

 ...

 (and (= c1 0) (= c2 0))))

is normally compiled to call to the defined function “and”.

 133 Get 1

 134 Lit 0

 135 Eq

 136 Call and

With this code generator it is compiled into:

 133 Get 1

 134 Lit 0

 135 Eq

 136 Band

Let this code generator be “gen5.txt”. The following steps produce the profile

statistic.

1 Compile the code generator.

c:>nvm nut.obj < gen5.txt > gen5.obj

2 Generate the compiler.

c:>nvm gen5.obj < nut.obj > nutp.obj

3 Run “nutp.obj” to compile “nut.txt”.

c:>sx nutp.obj < nut.txt

Similarly for the operating system, the step of work is as follows.

1 Generate the operating system using the modified code generator, “gen5.obj”.

c:>nvm gen5.obj < nos2.obj > nos2p.obj

227

Table 9.5 The profile of the benchmarks, comparing the baseline and the
primitive. (1) is primitive/base

compiler message passing

 instr.
x1000

cycle
x1000

instr cycle (system:user) cycle/
switch

base 8585 38033 43580 220915 (49274:171641) 246
primitive 6855 28987 40688 206450 (44468:161982) 222

(1) % 79.8 76.2 93.3 93.4

2 Run “nos2p.obj” to collect statistics.

c:>noss nos2p.obj

The result of running benchmarks using the code generator “gen5.txt” is shown

in Table 9.5.

In terms of speedup (cycle), using only primitives is not as effective as macro

expansion as it is only 24% faster (macro is 30%) but they are comparable.

However, in the message passing benchmark, the primitives are not used much,

the speedup is only 7% and 8% in task switching (for macro, 46% and 50%). So

using primitives is not effective in the operating system as much as using macro

expansion.

Inspecting the compiler task profile revealed that the reduction in the number of

“call” is 56%, and “get” is 21%, not as much as in macro expansion (89% and

48% consecutively). In the message passing benchmark, the native instructions

“Bor” and “Ne” generated by the modified code generator, are executed only 499

times, merely 1.2% of the total number of instruction executed.

228

9.4 Improving the quality of code from the code
generator

The next step, the quality of code from the code generator can be improved. This

method can be applied without changing the instruction set or the language.

Some sequence of operations can be replaced by a shorter sequence of operations

without affecting the result, hence making them faster.

We elected to do the following code optimisation, which are not difficult to

implement.

1 Introduce inc/dec local variables as there are native instructions supported in

Sx processor (as done in the exercise 6.4 of Chapter 6).

2 Improve jmp to jmp, jmp to ret, to “short cut” them.

3 Change (!= p 0) to p.

4 Change the conditional (= a 0) in “if” expression, there are two possibilities.

4.1 (if (= a 0) x y) is replaced by (if a y x)
4.2 (if (= a 0) x) is replaced by (if a skip x)

The expression with inc/dec can be detected from the N-code.

(set a (+ a 1))

It is normally compiled into,

get.a lit.1 add put.a

It can be replaced by generating the native code “Inc.a”, “Dec.a”.

The last two rules come from the observation that in the “if” expression, the

conditional becomes:

get.a lit.0 eq jf

The sequence “lit.0 eq if” can be replaced by “jt”. So the conditional becomes,

get.a jt

The rule 4.1 and 4.2 used this fact.

229

The code generator fragment for doing “inc/dec” is as follows. “genput” is the

main function. It is called when the operator “put.a” is encountered at the

beginning of the expression (in N-code) (put.a (add get.a lit.1)). “isIncDec”

checks whether the expression is in the increment/decrement expression. If it is

then generate the native instruction, otherwise generate the normal unary-op code

(in “genuop”).

(def genuop (op arg e) ()
 (do
 (eval e)
 (outa op arg)))

(def isIncDec (op arg e) ()
 (do
 (if (isATOM e) 0
 (if (!= (head e) (mkATOM op 0)) 0
 (if (!= (arg2 e) (mkATOM xGET arg)) 0
 (if (!= (arg3 e) (mkATOM xLIT 1)) 0
 1))))))

(def genput (op arg e) ()
 (if (isIncDec xADD arg e)
 (outa icInc arg)
 (if (isIncDec xSUB arg e)
 (outa icDec arg)
 ; else
 (genuop op arg e))))

The code fragment for transforming (!= p 0) to p is as follows (at the function

“gencall”), similar to the generating the primitives. Where yNe is the index to

the user-defined function (def != ...). If the call is “!=” and the second argument

is “lit.0” then generate the native code, otherwise generate the normal code (as

function call).

230

 (if (= idx yNe)
 (if (isOpArg (arg2 e) xLIT 0) ; (!= p 0) -> p

 (eval (head e))
 ; else
 (genop icNe 0 e))

The code fragment for “short-cut” jump is straight forward and we will not

elaborate any further. The code fragment for performing reduction in “if”

expression is as follows. Where “genif2” is the normal “if” generation, “iseq0”

checks the expression of the form (= a 0).

(def genif e (e1 e2 e3 ads)
 (if (iseq0 (head e)) ; (= a 0)
 (do
 (set e1 (arg2 (head e))) ; e1 is a

 (set e2 (arg2 e))
 (set e3 (arg3 e))
 (if e3 ; (if (= a 0) x y) -> (if a y x)

 (genif2 (cons e1 (cons e3 (cons e2 NIL))))
 ; else
 (do ; (if (= a 0) x) -> if a skip x

 (eval e1) ; a

 (outa icJt 0)
 (set ads (- XP 1))
 (eval e2) ; x

 (patch ads (- XP ads)))))
 ; else
 (genif2 e))) ; normal if

The code generator, “gen5.txt” is modified with these rules. The result is the

code generator which generates primitives: !=, <=, >=, and, or, not and with the

above improvement, inc, dec, short-cut jump, reduce != and improve conditional

(if (= a 0)..). Let this code generator be “gen6.txt”.

The step to run benchmarks of this new code generator is:

1 Compile the code generator.

c:>nvm nut.obj < gen6.txt > gen6.obj

231

Table 9.6 The profile of the benchmarks. Comparing the primitive and the
codegen. (1) is codegen/primitive

Compiler Message passing

 instr.
x1000

cycle
x1000

instr cycle (system:user) cycle/
switch

primitive 6855 28987 40688 206450 (44468:161982) 222
codegen 6412 27483 38599 199088 (44036:155052) 220

(1) % 93.5 94.8 94.8 96.4

2 Use the new code generator to generate the executable object of the compiler.

c:>nvm gen6.obj < nut.obj > nutg.obj

3 Use the new compiler to compile the benchmark.

c:>sx nutg.obj < nut.txt

Similarly for the operating system benchmark, do the following steps.

1 Generate the executable Nos.

c:>nvm gen6.obj < nos2.obj > nos2g.obj

2 Run the new Nos2.

c:>noss nos2g.obj

The result is shown in Table 9.6.

The “gen6.txt” code generation is built on top of the “gen5.txt” (primitive) code

generation so the performance improvement is considered relative to “gen5.txt”

(a kind of further improvement of “gen5.txt”). The improvement in code

generation further reduces the cycle by 5% in compiler benchmark and 4% in

message passing benchmark. It reduces the task switching cycle by only 1%.

Inspecting the profile of the compiler benchmark revealed that the “inc” is used

123 times, the instructions in the sequence that it replaced, consists of “get.a lit.1
add put.a” are reduced by the same amount. The profile of message passing

benchmark is similar, but the “short-cut jump” which is not much in effect in the

232

compiler benchmark, is quite effective here, the number of “jmp” is reduced by

50% (from 800 to 401).

9.5 Instruction set level

The next level is the level of the instruction set. Although the instruction set is

considered as “given” in any real computer system, to understand why an

instruction set is designed that way, one should try to experiment with the effect

of instruction set design [CHO03]. Observing the profile of the baseline

benchmarks, two facts emerge.

1 The compiler benchmark is dominated by the execution of the function

“str=”.

2 Both benchmarks, the instructions to access data structure, mostly “ldx” and

“stx” are used often, 370/8585 = 4.3% in compiler benchmark, 2821/43580 =

6.5% in message passing benchmark.

By introducing new instructions, these functions can be much faster.

Implementing new instructions in the processor can be accomplished by writing

new microprograms for those instructions in the Sx processor. Tools are

available to create and execute new instructions in the Sx processor.

Let us start with the fact 1, the string comparison function. Here is the “str=”

function from the Nut-compiler, “nut.txt”.

; test string equal
(def str= (s1 s2) (flag i c1 c2) [lib 28]
 (do
 (set flag 1)
 (set i 0)
 (while flag
 (do
 (set c1 (vec s1 i))
 (set c2 (vec s2 i))
 (if (!= c1 c2) (set flag 0)
 (if (= c1 0) (set flag 0)
 (if (= c2 0) (set flag 0))))
 (set i (+ i 1))))
 (and (= c1 0) (= c2 0))))

233

We should design the new instruction for the inner loop of this function. The

inner loop does fetching two characters and compares them, at the same time it

must checks the termination of strings. We do not try to do iteration within an

instruction because it causes a long multiple cycles which is not desirable,

especially at the microarchitecture level. It can cause unpredictable delay. But

we try to do as much as possible in an instruction, so we will include the

increment of index (set i (+ i 1)) in the instruction. Let the new instruction for

string comparison be “string equal and increment” (seqi). Here is its pseudo

code. Let p1 and p2 be two pointers to strings, s1 and s2 consecutively.

seqi p1 p2

 c1 = *p1 fetch a character

 if c1 == 0 ret 0 s1 terminate

 c2 = *p2 fetch a character

 if c2 == 0 ret 0 s2 terminate

 if c1 != c2 ret 0 if not equal ret false

 p1++ increment both pointers
 p2++

 ret 1 ret true

“seqi” fetches and compares two characters from two pointers to strings. It

returns true if they are equal, otherwise it returns false, including when either

pointers pointed to a terminal character. If it returns true, it also increment both

pointers. This is very nice abstraction of the inner loop of the “str=” function. It

does not do iteration and it does almost everything else (as much as possible).

With the primitive “seqi” as a built-in operator, the “str=” function can be

written as follows.

(def str= (s1 s2) ()
 (do
 (while (seqi s1 s2) (nop)) ; loop until false
 (and (= (vec s1 0) 0) (= (vec s2 0) 0))))

The instruction “seqi” has two arguments. This will introduce a new instruction

format to the S-code instruction set. The two-address format is as follows.

16 8 8

a2 a1 op

234

Therefore some new signals in the data path must be added to decode this

instruction format. Let they be y.a1 and y.a2 to feed the argument a1 and a2

to the y-mux in the data path.

The next step, we must write the microprogram for the “seqi” instruction. Here

is its microprogram.

<seqi> ; seqi.a1.a2
 sp+1, pc+1

 ts->mW(sp) ; push ts

 alu(fp-a1)->tbus, mR(tbus)->nx ; read p1

 mR(nx)->ts->ff ; read *p1,save

 alu(ts=0) ifT fetch ; ret 0

 alu(fp-a2)->tbus, mR(tbus)->nx ; read p2

 mR(nx)->ts ; read *p2

 alu(ts=0) ifT fetch ; ret 0

 alu(ts=ff)->ts ifF fetch ; ret 0

 alu(nx+1)->ts ; p2++

 alu(fp-a2)->tbus, ts->mW(tbus) ; update p2

 alu(fp-a1)->tbus, mR(tbus)->nx ; read p1

 alu(nx+1)->ts->ff ; p1++

 alu(fp-a1)->tbus, ts->mW(tbus) ; update p1

 alu(nx!=ff)->ts fetch ; 1->ts

The last line of microprogram is a good trick. To create a “true” value, we use

the fact that “nx” is not equal to “ff” (we do not have any “true” value as a

constant in the data path). This fact follows from the assignment in the line

“alu(nx+1)->ts->ff”, therefore the “nx” and “ff” will be definitely not

the same. To do the function “not-equal” in the arithmetic logic unit, a signal

“alu.ne” is added to the signal list in the microprogram specification,

“mspec.txt”. The timing of the “seqi” instruction is as follows. If it returns false,

it takes one of the following cycle 6 or 9 or 10 cycles; if it returns true, it takes 16

cycles.

Now, let us turn our attention to the fact 2, accessing data structure. By

inspecting the listing of the code (S-code), the data structure access is mostly in

this form: (vec a index), (setv a index value), where a is the base address,

index is mostly a constant. This observation suggests immediately the following

instructions (also in two-argument format):

235

ldxv.a.x TS = M[M[fp-a] + x]

stxv.a.x M[M[fp-a] + x] = TS

This is a kind of index addressing mode where the index is a constant. They are

useful to access a structured data type such as a record. This kind of data is used

very often in the benchmark programs.

Here are their microprograms.

<ldxv> [micro 329]
 sp+1

 ts->mW(sp) ; push ts
 alu(fp-a1)->tbus, mR(tbus)->ts

 alu(ts+a2)->tbus, mR(tbus)->ts fetch

<stxv> [micro 335]
 alu(fp-a1)->tbus, mR(tbus)->nx

 alu(nx+a2)->tbus, ts->mW(tbus)

 mR(sp)->ts ; pop ts
 sp-1, pc+1, fetch

Now the sequence of instruction for (vec a 0) and (setv a 3 44) which are

normally compiled into:

get.a lit.0 ldx

and

get.a lit.3 lit.4 stx

will become a shorter sequence.

ldx.a.0

and

lit.44 stxv.a.3

“ldxv” takes slightly more cycle than “ldx” (“ldxv” 5, “ldx” 4 cycles).

Surprisingly “stxv” takes less cycle than “stx” (“stxv” 5, “stx” 7 cycles). This is

236

because the “stxv” has its two arguments ready in the instruction; it does not

have to pop the evaluation stack as much as “stx”.

Finally, the sequence “eq, jf” is founded often; it will be replaced by a new

instruction “jne”. In fact, many of this “eq, jf” have already been optimised

away when transforming (if (= a 0) x y) to eliminate the (= a 0) but the

remaining is still significant.

<jne> [micro 339]
 mR(sp)->ff

 sp-1

 alu(ts=ff), ifT j3

<jump> ; jump

 pc+arg, mR(sp)->ts ; pop ts
 sp-1, fetch

<j3> ; don't jump

 pc+1, mR(sp)->ts ; pop ts
 sp-1, fetch

How to generate microprogram

Now we have four new instructions: seqi, ldxv, stxv, jne (the inc, dec

instructions have already been implemented in the previous chapter). These four

instructions must be installed into the processor simulator. Assume all the

additional signal definition and the appropriated microprogram are added into the

input file, the microprogram specification, “mspect.txt”.

It is two steps to generate a microprogram. First, generate a microprogram bit-

image. A microprogram bit-image is the raw data to be loaded into the

microprogram control ROM. Second, to efficiently run the processor simulator,

this bit-image is converted to an event list. It is 10 times faster when performing

simulation using an event list.

1 Generate the bit-image file, mpgm.txt

c:>mgen > mpgm.txt

mgen implicitly takes the input file “mspec.txt”. mgen outputs another file

“mspec.h” as a header file of the signal definition.

237

2 Then generate the header file to be include in compiling the processor

generator.

c:>sxgen

The sxgen reads input from two files “mpgm.txt” and “mspec.h” then it outputs

one file “sxbit.h” which includes all signal definitions and the event list data

structure to be used by the processor simulator.

The processor simulator, sx, has a small modification to include the new events

and the order of execution of the events; two new functions to decode the IR

fields (see the Sx processor simulator listing in the appendix G).

3 Recompile the Sx processor simulator.

c:>make sx

Similarly for the Noss simulator, include this “sxbit.h” and recompile.

c:>make noss

Code generation for new instructions

A new code generator is written on top of the previous code generator,

“gen6.txt”. It becomes “gen7.txt”. This code generator accepts the primitive

“seqi” and also generates code using “ldxv”, “stxv” and “jne” as applicable. Let

the new “str=” be included into a modified Nut-compiler (we do not touch

anything else in “nut.txt”), named “nut5.txt”. The steps of work to perform

statistic collection for this final benchmark are.

1 Compile this new code generator, “gen7.txt”.

c:>nvm nut.obj < gen7.txt > gen7.obj

2 Compile “nut5.txt” to N-object.

c:>nvm nut.obj < nut5.txt > nut5.obj

3 Use “gen7.obj” code generator to generate code from this modified compiler.

238

c:>nvm gen7.obj < nut5.obj > nut5x.obj

4 Run this new compiler (that includes the extended instructions) with the

updated simulator to compile the compiler benchmark. The “x” suffix in the

final object code signified the extended instruction.

c:>sx nut5x.obj < nut.txt

The message passing benchmark is similar.

1 Use “gen7.obj” to generate code.

c:>nvm gen7.obj < nos2.obj > nos2x.obj

2 Run it under the updated noss.

c:>noss nos2x.obj

The result is shown in Table 9.7.

Table 9.7 The profile of the benchmarks. Comparing the baseline, the codegen,
and the extend. (1) is extend/codegen (2) is extend/base

Compiler Message passing

 instr.
x1000

cycle
x1000

instr cycle (system:user) cycle/
switch

base 8585 38033 43580 220915 (49274:171641) 246
codegen 6412 27483 38599 199088 (44036:155052) 220
extend 3777 17922 32559 171637 (37791:133486) 189

(1) % 58.9 65.2 84.4 86.2
(2) % 44.0 47.1 74.7 77.7

In terms of cycle, the new instruction set (labeled “extend” in the table) further

reduce (relative to codegen) for the compiler benchmark, 35%, for the message

passing benchmark, 14%. This shows that the “seqi” is very effective as it is

designed to speedup the “str=” in the compiler. As a whole, comparing the

239

number of cycle from this new “extend” optimisation with the baseline, the result

shows that for the compiler benchmark, the speedup is more than twice the

baseline, 53%, for the message passing, the speedup is 23%. It is worth noticing

that for the message passing benchmark, the macro expansion is more effective,

the speedup is 46%. The fastest task switching takes only 114 cycles.

The table below shows the summary of the speedup figure of each optimisation

method. The chart from this table is shown in Fig. 9.1.

Table 9.8. The summary of speedup of each optimisation method in terms of
cycle

 compiler message passing

base 0.0 0.0
macro 30.5 45.4
primitive 23.8 6.5
codegen 27.7 (5.2) 9.0 (3.6)
extend 52.9 (34.8) 22.3 (13.8)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

macro primitive codegen extend

Figure 9.1 Chart of speedup (%) of each optimisation method in terms of cycle

240

The speedup is calculated from (1-(A/B)) x 100, where A is a method, B is the

baseline. Speedup means how much faster the system A compared to the system

B. If A is 20% faster than B, A completes the task in 20% less cycle than B. The

figure in parentheses show the incremental speedup, for example, in the compiler

benchmark, the method “codegen” is 5.2% relatively faster than the method

“primitive”, although it is 27.7% faster than the baseline. This shows the

speedup factor from the incremental change of the method (the “codegen”

method implemented many techniques in addition to the method “primitive”).

9.6 Microarchitecture level

The chapter 7 has developed a processor that retains the same instruction set, S-

code, but has 30% faster data path. The improvement at this level comes from

the architectural design and the advancement in fabrication technology. These

two factors are interrelated. The Sx2 processor is faster due to the stack frame

caching, the use of fast registers to provide access to local variables instead of

accessing them from the memory. The parallelism or the concurrent use of units

in data path also provides performance enhancement. The use of separate unit for

updating the stack pointer in Sx2 is an example of this case. Many other standard

methods such as pipelining, using multiple functional units, instruction level

parallelism are extensively discussed in many computer architecture textbooks

[HEN03] [PAT98] [STO93].

9.7 Summary

In this chapter we have shown a wide range of performance improvement

methods. The techniques are applicable at every level, from the top level (at the

application software), down to the hardware level (at the level of data path and

microprogram). At the highest abstraction level, it is a well-known fact that, the

change at an algorithmic level will have the greatest impact on performance. We

observe data that support this hypothesis. In the compiler benchmark profile, it is

clear that the access to symbol table is the performance bottleneck. The symbol

table requires a lot of string comparison. If however, the data structure is

changed to a hash table, then the number of string comparison will be reduced

dramatically. Our symbol table executes most accessed functions in O(n) where

n is the number of the entry because it used sequential search. This will change

to a constant access time, O(1), with a hash table (see Exercise 9.1).

241

The macro expansion is studied and implemented. It has a high impact on

performance without having to change the underlying programs much (such as

the code generation and the instruction set). Another change at the language

level is to introduce more operators. Our experiment shows that this is also

effective although not as much as macro expansion. However it is not effective

in the message passing benchmark because these new operators are not used very

often. This shows that it is not easy to gain performance in general by this

method. It is sensitive to the type of applications.

The next level is the code generation level. The quality of code can be improved.

Most methods at this level are classified as code optimisation in the literature of

compiler. We choose to perform a number of significant code improvements.

The result shows that the performance gain is not large but it is very logical

method. The rule for replacing some sequence with a shorter sequence to

improve performance is numerous (in fact, it is combinatorial even!). One can

almost invent a new rule by inspection the output code. However, how often that

sequence will be used is not always easy to predict.

The instruction set level is interesting. Inventing new instructions is not practical

in a real computer system where hardware is given. However, our study shows

that a huge performance gain is possible. The “string equal and increment”

instruction is an extreme example. It is more than twice as fast as the code

without this instruction in the compiler benchmark. However, it has a limit

application to string comparison. This is why the multimedia extension of an

instruction set is so important for modern processors.

9.8 Further reading

In general, a programming language should not be designed with paramount of

efficiency in mind. The high level language should reflect the efficiency of

human programmers, at the cognitive level. It should reduce the burden of

human programmers. During early development of computer systems many

components were being developed: the hardware, the compiler, the operating

system, the user interface etc. The designers and the developers faced the

difficulty of not having the machine fast enough to run the intended applications.

This must be the nature of computer technology that human can imagine new

kind of application beyond what a computer system can support at the time. So,

in all history of development of computer systems, efficiency is always a

242

paramount factor. The C language [KER78] reflects this fact. Pascal [WIR71]

also reflects this concern. Computer language design is still an open, endless

quest for a tool of thought to invent the next generation machines. The history of

computer development can be read in IEEE Annals of the history of computing.

For code optimisation, many compiler related textbooks are excellent source of

information [AHO86] [FRA95] [LOU97]. Although it seems that code

optimisation is used for code generation, it application can be wider range. For

example, it is also applicable at the meta level programming, to build a virtual

machine (or environment) [CHO98], to prototype a new computer system.

References

[AHO86] Aho, A., Sethi, R. and Ullman, J. Compilers: Principles, techniques,

and tools, Addison-Wesley, 1986.

[CHO98] Chongstitvatana, P. A multi-tasking environment for real-time control.

Final report, Faculty of Engineering, Chulalongkorn university, research

project number 132-MRD-2537, 1998. Also available on-line at http:

//www.cp.eng.chula.ac.th/faculty/pjw/r1/

[CHO03] Chongstitvatana, P., “The Art of Instruction Set Design”, Electrical

Engineering Conference, Thailand, 2003.

[COR01] Cormen, T., Leiserson, C., Rivest, R., and Stein, C., Introduction to

algorithms, 2nd ed., MIT Press, 2001.

[FRA95] Fraser, C. and Hanson, D. A retargetable C compiler: design and

implementation, Benjamin/Cummings Pub., 1995.

[HEN03] Hennessy, J., and Patterson, D., Computer Architecture: a quantitative

approach, 3rd ed. Morgan Kaufmann, 2003.

[KER78] Kernighan, B., and Ritchie, D., The C programming language, Prentice-

Hall, 1978.

[KLI05] Klienberg, J., and Tardos, E., Algorithm Design, Addison Wesley, 2005.

[LOU97] Louden, K. Compiler construction: Principles and practice, Inter.

Thompson Pub., 1997.

[PAT98] Patterson, D., and Hennessy, J., Computer Organization and Design:

the hardware/software interface, 2nd ed. Morgan Kaufmann, 1998.

243

[PRA01] Prasitjutrakul, S., Analysis and design of algorithms, NECTEC, 2001.

(in Thai).

[SEB04] Sebesta, R. Concepts of programming languages, 6th ed.

Pearson/Addison-Wesley, 2004.

[STO93] Stone, H., High performance Computer architecture, McGraw-Hill,

1993.

[WIR71] Wirth, N., “The programming language Pascal”, Acta Informatica,

1(1):35-63, 1971.

Exercises

9.1 Do some simple optimization. At the level of algorithm, change the

symbol table access to use hash table. Run the compiler benchmark with

this new compiler. Collect the profile and discuss the result.

9.2 Do some language extension. In the Nut-compiler and the code

generator, there are frequent uses of multiway branch. To do multiway

branch, nested-if is used. This is very flexible but it is inefficient to do

sequential testing on the conditions. Also, the syntax for deep nested-if

is quite cumbersome, especially the closing parenthesis. The number of

right parenthesis is equal to the depth of nested-if.

(if (= op xADD) (doadd)
(if (= op xSUB) (dosub)
...
; else
(error "unknown op") ...))

To help improving the syntax in general case, a new control-flow

operator is needed. The expression (cond....) in LISP is a good example.

In Nut, we want to do:

(switch
 (cond1) (action1)
 (cond2) (action2) ...
 true (default action))

244

This syntax will reduce the number of the closing right parenthesis to one.

To improve the efficiency, if the condition is testing the equality of a

variable with many constants, then we can do similar to “switch, case” in

C or Pascal. The implementation can use a jump-table indexed by the

value of that variable.

(case op
 (label xADD (doadd))
 (label xSUB (dosub))
 ...
 (else (default action)))

The N-code for “case” will contain a jump-table of the association list of

(label jump-to) which is implemented as an array of cells. To conform to

the existing N-code only the head can be an atom, therefore the head is a

label instruction (a new instruction), the tail is a pointer to the action

body.

In N-code, assume op is local, len is length of the jump-table, and the last

entry is an instruction to terminate the table. The “case” construct is

compiled to:

(case.op
 ; jump table

 (label.xADD L1)
 (label.xSUB L2)
 ...
 (else.0 Ln))
 ; actions
 <L1> (action 1)
 <L2> (action 2)
 ...
 <Ln> (default action)

If the label is sorted according to the key (constants) then the jump table

can be a binary search table. The length of jump-table must be known.

245

(case2.op lit.len
 ; jump table, label is sorted by its arg

 [xADD L1
 xSUB L2
 ...
 NIL Ln])
 ; actions
 <L1> (action 1)
 <L2> (action 2)
 ...
 <Ln> (default action)

Another way which is faster is to use label to index into the jump table

directly. The size of jump table is equal to the range of index. The label

instruction is not necessary. The range of index must be known.

(case3.op lit.lo lit.hi
 ; jump table, label is sorted by its arg

 [L1 L2 ... Ln])
 ; actions
 <L1> (action 1)
 <L2> (action 2)
 ...
 <Ln> (default action)

For the second kind and third kind of “case”, the jump-table itself does

not conform the format of N-code. To implement it, it is not really a list;

it is an array (which is a data). To have an array in the code segment, an

additional representation must be designed.

Implement a multiway branch. Run the benchmark and measure its

effectiveness.

9.3 Write a code generator for S2, the register-based processor. Compile all

the benchmarks to target this instruction set. Run and collect the

performance statistic. Compare it with Sx processor. Discuss the result.

9.4 One can always argue that some inefficiency comes from the quality of a

compiler. To prove or disprove this belief, we can write a segment of

program in machine language then compare the execution time with the

246

one produced by a compiler. Write the string comparison function in S-

code by hand. Try to optimise it by speed. Compare the running time

with the one produced by Nut-compiler.

9.5 Invent new instructions by combining two instructions into a new one.

Produce a log file of the frequency of pair of instructions and select five

most frequently used pairs. Write their microprogram. Integrate these

new instructions into the Sx processor simulator. Modify the code

generator to output these new instructions. Run the benchmarks and

discuss the result. How much do you expect the improvement will be?

9.6 Performance measurement is sensitive to benchmark programs. Write a

new set of benchmark programs, for example, image processing.

Measure the performance of our system on this new benchmark. What is

the difference and why?

247

Appendices

248

249

Appendix A

Common Functions

 1 ; Library of common functions

 2

 3 (def != (a b) () (if (= a b) 0 1))

 4 (def >= (a b) () (if (< a b) 0 1))

 5 (def and (a b) ()(if a b 0))

 6 (def or (a b) () (if a 1 b))

 7 (def not a () (if a 0 1))

 8 (def nop () () 0)

 9 (def print a () (sys 1 a))

 10 (def printc c () (sys 2 c))

 11 (def space () () (sys 2 32))

 12 (def nl () () (sys 2 10))

 13 (def exit () () (sys 13))

 14

 15 ; --------- string ----------

 16

 17 ; input output of string functions are pointers

 18 ; to dereference it, use (vec s 0)

 19

 20 ; print string

 21 (def prstr s ()

 22 (while (vec s 0)

 23 (do

 24 (printc (vec s 0))

 25 (set s (+ s 1)))))

 26

 27 ; test string equal

 28 (def str= (s1 s2) (flag i c1 c2)

 29 (do

 30 (set flag 1)

 31 (set i 0)

 32 (while flag

 33 (do

 34 (set c1 (vec s1 i))

 35 (set c2 (vec s2 i))

 36 (if (!= c1 c2) (set flag 0)

 37 (if (= c1 0) (set flag 0)

 38 (if (= c2 0) (set flag 0))))

 39 (set i (+ i 1))))

 40 (and (= c1 0) (= c2 0))))

250

 41

 42 ; find string length

 43 (def strlen s ()

 44 (if (vec s 0)

 45 (+ 1 (strlen (+ s 1)))

 46 0))

 47

 48 ; copy string

 49 (def strcpy (s1 s2) a

 50 (do

 51 (set a (vec s2 0))

 52 (while a

 53 (do

 54 (setv s1 0 a)

 55 (set s1 (+ s1 1))

 56 (set s2 (+ s2 1))

 57 (set a (vec s2 0))))

 58 (setv s1 0 0)))

 59

 60 ; check is string a number, no sign

 61 (def isNumber s a

 62 (do

 63 (set a (vec s 0))

 64 (while (and (> a 47) (< a 58)) ; isdigit a

 65 (do

 66 (set s (+ s 1))

 67 (set a (vec s 0))))

 68 (= a 0))) ; true if reach end

 69

 70 (def isString s () (= (vec s 0) 34)) ; start with quote

 71

 72 ; convert string to number, no sign

 73 (def atoi s (a v)

 74 (do

 75 (set v 0)

 76 (set a (vec s 0))

 77 (while a

 78 (do

 79 (set v (- (+ (* v 10) a) 48))

 80 (set s (+ s 1))

 81 (set a (vec s 0))))

 82 v))

 83

 84 (def error s ()

 85 (do

 86 (prstr s)

 87 (sys 12) ; line no

 88 (sys 13))) ; exit

 89

 90 ; ---------- data ---------

 91

251

 92 (def head e () (vec e 0))

 93 (def tail e () (vec e 1))

 94 (def sethead (e v) () (setv e 0 v))

 95 (def settail (e v) () (setv e 1 v))

 96

 97 (def cons (e list) h

 98 (do

 99 (set h (new 2))

 100 (setv h 0 e) ; set head

 101 (setv h 1 list) ; set tail

 102 h))

 103

 104 (def arg1 e () (head e))

 105 (def arg2 e () (head (tail e)))

 106 (def arg3 e () (head (tail (tail e))))

 107

 108 ; End

252

253

Appendix B

Nut Compiler

 1 ; nut compiler in nut

 2 ; nut completion kit

 3

 4 ; include lib.txt

 5

 6 ; -------- header ----------

 7

 8 (enum 127 EOF)

 9 (enum 0 NIL)

 10 (enum 3000 MAXNAMES)

 11 (enum 3000 MAXSTR)

 12 (enum 3000 MEMMAX)

 13 (enum 1

 14 xIF xWHILE xDO xUD1 xNEW xADD xSUB xMUL xDIV

 15 xEQ xLT xGT xCALL xGET xPUT xLIT xLDX xSTX xFUN

 16 xSYS xSET xSETV xVEC xUD2 xLD xST xLDY xSTY xUD3

 17 xUD4 xUD5 xSTR xBAND xSHR xSHL)

 18 (enum 2

 19 tyVAR tyFUN tyOP tyOPX tySYS tyUD tyGVAR tyXX tyENUM)

 20

 21 ; tok -- token string

 22 ; LP RP -- string parenthesis

 23 ; mem -- data segment

 24 ; DP -- pointer to mem[]

 25

 26 (let tok LP RP DP mem)

 27

 28 (def init () ()

 29 (do

 30 (set mem (new MEMMAX)) ; global var area

 31 (set DP 0)

 32 (set LP "(")

 33 (set RP ")")))

 34

 35 ; ------- symbol table --------

 36

 37 ; symbol table is an array

 38 ; each item has five elements: name, type, val, arity, lv

254

 39 ; name pointed to a string which is allocated separately

 40

 41 (enum 5 esize) ; size of each element

 42

 43 ; symtab -- symbol table

 44 ; symstr -- symbol string table

 45 ; symp -- pointer to symstr[]

 46 ; numNames -- number of symbol in symtab

 47 ; numLocal -- number of local var

 48

 49 (let symtab symstr symp numNames numLocal)

 50

 51 ; access functions

 52

 53 (def getName idx () (vec symtab idx))

 54 (def getType idx () (vec symtab (+ idx 1)))

 55 (def getVal idx () (vec symtab (+ idx 2)))

 56 (def getArity idx () (vec symtab (+ idx 3)))

 57 (def getLv idx () (vec symtab (+ idx 4)))

 58 (def setName (idx nm) () (setv symtab idx nm))

 59 (def setType (idx ty) () (setv symtab (+ idx 1) ty))

 60 (def setVal (idx v) () (setv symtab (+ idx 2) v))

 61 (def setArity (idx v) () (setv symtab (+ idx 3) v))

 62 (def setLv (idx v) () (setv symtab (+ idx 4) v))

 63

 64 ; allocate new string from symstr[]

 65 (def newName nm (k v)

 66 (do

 67 (set k (+ (strlen nm) 1))

 68 (set v (+ symstr symp))

 69 (set symp (+ symp k))

 70 (if (> symp MAXSTR)

 71 (error "symbol string full"))

 72 (strcpy v nm)

 73 v))

 74

 75 ; search symtab for nm,

 76 ; if found, return its index, else, insert it

 77 (def install nm (i flag end)

 78 (do

 79 (set i 0)

 80 (set flag 1)

 81 (set end (* esize numNames))

 82 (while (and flag (< i end))

 83 (if (str= (getName i) nm) ; sequential search

 84 (set flag 0)

 85 ; else

 86 (set i (+ i esize))))

 87 (if flag ; not found

 88 (do

 89 (if (> i MAXNAMES)

255

 90 (error "symtab overflow"))

 91 (setName i (newName nm))

 92 (setType i tyUD)

 93 (set numNames (+ numNames 1))))

 94 i))

 95

 96 ; install nm as local variable

 97 (def installLocal nm idx

 98 (do

 99 (set numLocal (+ numLocal 1))

 100 (set idx (install nm))

 101 (setType idx tyVAR)

 102 (setVal idx numLocal)))

 103

 104 (def dumpsym () (i end)

 105 (do

 106 (print (- numNames 18)) (nl)

 107 (set i 90) ; 18 keywords

 108 (set end (* esize numNames))

 109 (while (< i end)

 110 (do

 111 (prstr (getName i)) (space)

 112 (print (getType i)) (space)

 113 (print (getVal i)) (space)

 114 (print (getArity i)) (space)

 115 (print (getLv i)) (nl)

 116 (set i (+ i esize))))))

 117

 118 (def insertsym (nm ty op) (idx)

 119 (do

 120 (set idx (install nm))

 121 (setType idx ty)

 122 (setVal idx op)))

 123

 124 ; initially keywords are inserted into symtab

 125 ; its value is its opcode

 126 (def initsym () ()

 127 (do

 128 (set symtab (new MAXNAMES))

 129 (set symstr (new MAXSTR)) ; symbol string

 130 (set symp 0) ; symstr pointer

 131 (set numNames 0)

 132 (set numLocal 0)

 133 (insertsym "if" tyOP xIF)

 134 (insertsym "while" tyOP xWHILE)

 135 (insertsym "set" tyOPX xSET)

 136 (insertsym "setv" tyOPX xSETV)

 137 (insertsym "do" tyOP xDO)

 138 (insertsym "new" tyOP xNEW)

 139 (insertsym "+" tyOP xADD)

 140 (insertsym "-" tyOP xSUB)

256

 141 (insertsym "*" tyOP xMUL)

 142 (insertsym "/" tyOP xDIV)

 143 (insertsym "=" tyOP xEQ)

 144 (insertsym "<" tyOP xLT)

 145 (insertsym ">" tyOP xGT)

 146 (insertsym "vec" tyOPX xVEC)

 147 (insertsym "sys" tySYS xSYS)

 148 (insertsym "&" tyOP xBAND)

 149 (insertsym ">>" tyOP xSHR)

 150 (insertsym "<<" tyOP xSHL)))

 151

 152 ; ---------- data ---------

 153

 154 ; allocate n int from mem[]

 155 (def newdata n (a)

 156 (do

 157 (if (>= DP MEMMAX)

 158 (error "out of memory"))

 159 (set a DP)

 160 (set DP (+ DP n))

 161 a))

 162

 163 (def isATOM e () (< e 0)) ; MSB bit 1

 164 (def mkATOM (op arg) ()

 165 (+ (<< (+ (& op 127) 128) 24) (& arg 16777215)))

 166

 167 ; --------- parser ----------

 168

 169 (def tokenise () ()

 170 (do

 171 (set tok (sys 3))

 172 ; (printc 34) (pstrs tok) (space)

 173 (nop)))

 174

 175 (def expect s ()

 176 (if (not (str= tok s))

 177 (do

 178 (prstr "expect ")

 179 (error s))))

 180

 181 (def prList e () (sys 10 e))

 182

 183 ; parse name list, in fun header

 184 ; NL can be singleton or list

 185 (def parseNL () ()

 186 (do

 187 (tokenise)

 188 (if (str= tok LP)

 189 (do

 190 (tokenise)

 191 (while (not (str= tok RP))

257

 192 (do

 193 (installLocal tok)

 194 (tokenise))))

 195 ; else

 196 (installLocal tok))))

 197

 198 ; parse local var

 199 (def doVar (op arg) (v)

 200 (do

 201 (if (= op xSET) (set v (mkATOM xPUT arg))

 202 (if (= op xSETV) (set v (mkATOM xSTX arg))

 203 (if (= op xVEC) (set v (mkATOM xLDX arg))

 204 (error "unknown op"))))

 205 v))

 206

 207 ; parse global var

 208 (def doGvar (op arg) () 0)

 209

 210 ; parse each enum sym

 211 (def doEnum n () 0)

 212

 213 ; parse a name

 214 (def parseName () (idx n n2 ty v)

 215 (do

 216 (set idx (install tok))

 217 (set n (getVal idx))

 218 (set ty (getType idx))

 219 (if (= ty tyOP) (set v (mkATOM n 0))

 220 (if (= ty tyVAR) (set v (mkATOM xGET n))

 221 (if (= ty tyGVAR) (set v (mkATOM xLD n))

 222 (if (= ty tyFUN) (set v (mkATOM xCALL idx))

 223 (if (= ty tyOPX)

 224 (do

 225 (tokenise) ; get var name

 226 (set idx (install tok))

 227 (set n2 (getVal idx))

 228 (if (= (getType idx) tyVAR)

 229 (set v (doVar n n2))

 230 ; else it is Gvar

 231 (set v (doGvar n n2))))

 232 (if (= ty tySYS)

 233 (do

 234 (tokenise) ; get sys num

 235 (set v (mkATOM xSYS (atoi tok))))

 236 (if (= ty tyENUM)

 237 (set v (doEnum n)))))))))

 238 v))

 239

 240 (def parseExp () () 0) ; forward declaration

 241

 242 ; parse expression list

258

 243 (def parseEL () v

 244 (do

 245 (tokenise)

 246 (if (str= tok RP)

 247 (set v NIL)

 248 ; else

 249 (set v (cons (parseExp) (parseEL))))

 250 v))

 251

 252 (def doString s () 0)

 253

 254 ; parse expression

 255 (def parseExp () v

 256 (do

 257 (if (str= tok LP) ; it is a list

 258 (do

 259 (tokenise)

 260 (set v (cons (parseName) (parseEL))))

 261 (if (isNumber tok) ; it is a number

 262 (set v (mkATOM xLIT (atoi tok)))

 263 (if (isString tok)

 264 (set v (doString (+ tok 1)))

 265 (set v (parseName)))))

 266 v))

 267

 268 ; parse function definition

 269 (def parseDef () (idx arity e k)

 270 (do

 271 (tokenise)

 272 (set idx (install tok))

 273 (setType idx tyFUN)

 274 (set numLocal 0)

 275 (parseNL)

 276 (set arity numLocal)

 277 (parseNL)

 278 (tokenise)

 279 (set e (parseExp))

 280 (tokenise) ; skip RP

 281 (if (isATOM e)

 282 (set e (cons e NIL))) ; body must be list

 283 (setArity idx arity)

 284 (setLv idx numLocal)

 285 (set k (+ (* arity 256) (& numLocal 255)))

 286 (setVal idx (cons (mkATOM xFUN k) (cons e NIL)))

 287 idx))

 288

 289 (def prName idx () (prstr (getName idx)))

 290

 291 ; parse "let" expression

 292 (def parseLet () (idx x)

 293 (do

259

 294 (tokenise)

 295 (while (not (str= tok RP))

 296 (do

 297 (set idx (install tok))

 298 (if (!= (getType idx) tyUD)

 299 (error "redefine global var"))

 300 (setType idx tyGVAR)

 301 (setVal idx (newdata 1))

 302 (prstr tok) (nl)

 303 (tokenise)))))

 304

 305 ; parse "enum" expression

 306 (def parseEnum () () 0)

 307

 308 ; the main parser

 309 (def parse () (idx)

 310 (do

 311 (tokenise)

 312 (while (!= (vec tok 0) EOF)

 313 (do

 314 (expect LP)

 315 (tokenise)

 316 (if (str= tok "def")

 317 (do

 318 (set idx (parseDef))

 319 (prName idx) (nl)

 320 (prList (getVal idx)) (nl))

 321 (if (str= tok "let")

 322 (parseLet)

 323 (if (str= tok "enum")

 324 (parseEnum)

 325 ; else

 326 (error "unknown keyword"))))

 327 (tokenise)))))

 328

 329 ; ------- rename ---------

 330

 331 ; resolve scans symtab to find fun def and rename it

 332 ; rename local var from 1..n to n..1

 333 ; and instantiates call.idx to the actual reference

 334

 335 (let LV) ; number of local var in a fun def

 336

 337 (def de_op x () (& (>> x 24) 127))

 338 (def de_arg x () (& x 16777215)) ; x & 0x0ffffff

 339

 340 ; get/put/ldx/stx rename 1..n to n..1

 341 ; call instantiate ref

 342 (def reATOM e (op arg)

 343 (do

 344 (set op (de_op (head e)))

260

 345 (set arg (de_arg (head e)))

 346 (if (= op xFUN)

 347 (set LV (& arg 255))

 348 (if (or (= op xGET) (= op xPUT))

 349 (sethead e (mkATOM op (+ (- LV arg) 1)))

 350 (if (or (= op xLDX) (= op xSTX))

 351 (sethead e (mkATOM op (+ (- LV arg) 1)))

 352 (if (= op xCALL)

 353 (sethead e (mkATOM op (getVal arg)))))))))

 354

 355 ; traverse n-code with one lookahead

 356 (def reName e ()

 357 (if (!= e NIL)

 358 (if (isATOM (head e))

 359 (do

 360 (reATOM e)

 361 (reName (tail e)))

 362 ; else

 363 (do

 364 (reName (head e))

 365 (reName (tail e))))))

 366

 367 ; scan symtab for fundef and reName its body

 368 (def resolve () (i end e)

 369 (do

 370 (set i 90)

 371 (set end (* esize numNames))

 372 (while (< i end) ; scan symtab

 373 (do

 374 (if (= (getType i) tyFUN)

 375 (do

 376 (set e (getVal i)) ; body

 377 (reName e)))

 378 (set i (+ i esize))))))

 379

 380 ; relocate arg in atom call.arg by disp

 381 (def reloc (a disp) (v op arg)

 382 (do

 383 (set op (de_op a))

 384 (set arg (de_arg a))

 385 (if (= op xCALL)

 386 (set v (mkATOM op (+ (- arg disp) 2)))

 387 ; else

 388 (set v a))

 389 v))

 390

 391 ; shift a dot-pair by disp, except NIL

 392 (def shift (a disp) ()

 393 (if a

 394 (+ (- a disp) 2)

 395 0))

261

 396

 397 ; relocate start to 2

 398 (def outobj2 (start end) (i a b ty)

 399 (do

 400 (set a (getVal (install "main")))

 401 (print (shift a start)) (space)

 402 (print (- (shift end start) 2)) (nl)

 403 (set i start)

 404 (while (< i end) ; code segment

 405 (do

 406 (set a (head i))

 407 (set b (tail i))

 408 (if (isATOM a)

 409 (do

 410 (set ty 1)

 411 (set a (reloc a start)))

 412 ; else dot-pair

 413 (do

 414 (set ty 0)

 415 (set a (shift a start))))

 416 (print (shift i start)) (space)

 417 (print ty) (space)

 418 (print (de_op a)) (space)

 419 (print (de_arg a)) (space)

 420 (print (shift b start)) (nl)

 421 (set i (+ i 2))))

 422 (print DP) (nl) ; data segment

 423 (set i 0)

 424 (while (< i DP)

 425 (do

 426 (print (vec mem i)) (space)

 427 (set i (+ i 1))

 428 (if (= (& i 7) 0) (nl))))

 429 (nl)

 430 (dumpsym)))

 431

 432 (def main () (start end)

 433 (do

 434 (init)

 435 (initsym)

 436 (set start (sys 9))

 437 (sys 11) ; readinfile

 438 (parse)

 439 (resolve)

 440 (set end (sys 9))

 441 (outobj2 start end)

 442 (nop)))

 443

 444 ; End

262

263

Appendix C

Nut Completion Solution

 1 ; nut-completion solution

 2

 3 ; allocate string space from mem[]

 4 ; copy s to there

 5 (def mkSTR s (s2)

 6 (do

 7 (set s2 (newdata (+ (strlen s) 1)))

 8 (strcpy (+ mem s2) s)

 9 s2))

 10

 11 (def doGvar (op arg) (v)

 12 (do

 13 (if (= op xSET) (set v (mkATOM xST arg))

 14 (if (= op xSETV) (set v (mkATOM xSTY arg))

 15 (if (= op xVEC) (set v (mkATOM xLDY arg))

 16 (error "unknown op"))))

 17 v))

 18

 19 (def doEnum n () (mkATOM xLIT n))

 20

 21 (def doString s () (mkATOM xSTR (mkSTR s)))

 22

 23 (def parseEnum () (idx k)

 24 (do

 25 (tokenise)

 26 (if (not (isNumber tok))

 27 (error "expect number"))

 28 (set k (atoi tok))

 29 (tokenise)

 30 (while (not (str= tok RP))

 31 (do

 32 (set idx (install tok))

 33 (if (!= (getType idx) tyUD)

 34 (error "redefine enum name"))

 35 (setType idx tyENUM)

 36 (setVal idx k)

 37 (set k (+ k 1))

 38 (tokenise)))))

 39

 40 ; End

264

265

Appendix D

N-code Evaluator

 1 ; eval.txt n-code evaluator

 2 ;

 3 ; eval in nut

 4 ; partially implement only 12 operators

 5 ; to run the test program "t2.txt"

 6

 7 ; include lib.txt

 8

 9 ; -------- header ----------

 10

 11 (enum 0 NIL)

 12 (enum 3000 STKMAX) ; run-time stack

 13

 14 (enum 1

 15 xIF xWHILE xDO xUD1 xNEW xADD xSUB xMUL xDIV

 16 xEQ xLT xGT xCALL xGET xPUT xLIT xLDX xSTX xFUN

 17 xSYS xSET xSETV xVEC xUD2 xLD xST xLDY xSTY xUD3

 18 xUD4 xUD5 xSTR xBAND xSHR xSHL)

 19

 20 (let tok DP CS M) ; data pointer, code segment

 21 (let SS SP FP) ; stack, stk pointer, frame pointer

 22

 23 (def init () ()

 24 (do

 25 (set M 0) ; base ads, absolute

 26 (set SS (new STKMAX))

 27 (set FP SS)

 28 (set SP SS)))

 29

 30 ; ----- system --------

 31

 32 (def tokenise () ()

 33 (set tok (sys 3)))

 34

 35 (def prList e () (sys 10 e))

 36

 37 (def de_op x () (& (>> x 24) 127))

 38 (def de_arg x () (& x 16777215)) ; x & 0x0ffffff

 39

 40 (def isATOM e () (< e 0)) ; MSB bit 1

 41 (def mkATOM (op arg) ()

266

 42 (+ (<< (+ (& op 127) 128) 24) (& arg 16777215)))

 43

 44 ; ------- load oject -----------

 45

 46 (let Start) ; ads of "main"

 47

 48 ; read a token from stdin

 49 ; and convert it to a number

 50 (def read () ()

 51 (do

 52 (tokenise)

 53 (atoi tok)))

 54

 55 ; offset a by disp, code segment started at 2

 56 (def shift (a disp) ()

 57 (if a

 58 (- (+ a disp) 2)

 59 0))

 60

 61 ; relocate arg of an op

 62 (def reName (op arg) ()

 63 (do

 64 (if (= op xCALL)

 65 (set arg (shift arg CS))

 66 (if (or (= op xLD) (= op xST))

 67 (set arg (shift arg DP))

 68 (if (or (= op xLDY) (= op STY))

 69 (set arg (shift arg DP))

 70 (if (= op xSTR)

 71 (set arg (shift arg DP))))))

 72 (mkATOM op arg)))

 73

 74 ; load object, code segment, data segment

 75 (def loadobj () (flag end a a2 ads ty op arg next)

 76 (do

 77 (set CS (sys 9)) ; start of code segment

 78 (set Start (read)) ; ads of "main"

 79 (set end (read))

 80 (set DP (+ (+ CS end) 2)) ; start of data segment

 81 (set flag 1)

 82 (while flag

 83 (do

 84 (set ads (read))

 85 (set ty (read))

 86 (set op (read))

 87 (set arg (read))

 88 (set next (read))

 89 (if ty

 90 (set a (reName op arg))

 91 ; else dot-pair

 92 (set a (shift (+ (<< op 24) arg) CS)))

267

 93 (set a2 (new 2))

 94 (sethead a2 a)

 95 (settail a2 (shift next CS))

 96 (if (= ads end) (set flag 0))))

 97

 98 ; load data segment

 99 (set a 0)

 100 (set end (read))

 101 (set a2 (new end)) ; alloc the whole block

 102 (while (< a end)

 103 (do

 104 (setv a2 a (read))

 105 (set a (+ a 1))))))

 106

 107 (def listall () (i a op end)

 108 (do

 109 (set i CS)

 110 (set end (sys 9))

 111 (while (< i end)

 112 (do

 113 (set a (head i))

 114 (set op (de_op a))

 115 (if (= op xFUN)

 116 (do

 117 (print i) (space)

 118 (prList i) (nl)))

 119 (set i (+ i 2))))))

 120

 121 ; --------- eval ----------

 122

 123 ; push a value to run-time stack

 124 (def push e ()

 125 (do

 126 (set SP (+ SP 1))

 127 (if (> SP (+ SS STKMAX))

 128 (error "stack overflow"))

 129 (setv M SP e)))

 130

 131 (def eval e () 0) ; forward declaration

 132

 133 ; system call, implement print, printc

 134 (def syscall (arg e) (v a1)

 135 (do

 136 (set v NIL)

 137 (set a1 (eval (arg1 e)))

 138 (if (= arg 1) (sys 1 a1)

 139 (if (= arg 2) (sys 2 a1)

 140 ; else

 141 (error "undef sys")))

 142 v))

 143

268

 144 ; fun.a.v no recode

 145 (def funcall (arg e) (k v a)

 146 (do

 147 (set v (& arg 255)) ; decode a, v

 148 (set a (>> arg 8))

 149 (set k (+ (- v a) 1))

 150 (setv M (+ SP k) FP) ; save old FP

 151 (set FP (+ SP k)) ; new frame

 152 (set SP FP)

 153 (set v (eval (arg1 e))) ; eval body

 154 (set SP (- (- FP v) 1)) ; delete frame

 155 (set FP (vec M FP)) ; restore FP

 156 v))

 157

 158 ; the main interpreter for n-code

 159 ; partially implement only 12 operators

 160 (def eval e (e1 op arg v idx)

 161 (if (= e NIL)

 162 NIL

 163 ; else

 164 (do

 165 (if (not (isATOM e)) ; if it is a list

 166 (do ; set e1 to arglist

 167 (set e1 (tail e)) ; and e to operator

 168 (set e (head e))))

 169 (set op (de_op e))

 170 (set arg (de_arg e)) ; decode operator

 171 (if (= op xIF)

 172 (if (eval (arg1 e1))

 173 (set v (eval (arg2 e1)))

 174 ; else

 175 (set v (eval (arg3 e1))))

 176 (if (= op xDO)

 177 (while e1

 178 (do

 179 (set v (eval (head e1)))

 180 (set e1 (tail e1))))

 181 (if (= op xADD)

 182 (set v (+ (eval (arg1 e1)) (eval (arg2 e1))))

 183 (if (= op xCALL)

 184 (do

 185 (while e1 ; eval all arg

 186 (do ; and push it to stack

 187 (push (eval (head e1)))

 188 (set e1 (tail e1))))

 189 (set v (eval arg))) ; eval body of fun

 190 (if (= op xLIT)

 191 (set v arg)

 192 (if (= op xSTR)

 193 (set v arg)

 194 (if (= op xGET)

269

 195 (set v (vec M (- FP arg)))

 196 (if (= op xLD)

 197 (set v (vec M arg))

 198 (if (= op xST)

 199 (do

 200 (set v (eval (arg1 e1)))

 201 (setv M arg v))

 202 (if (= op xLDX)

 203 (do

 204 (set idx (eval (arg1 e1)))

 205 (set v (vec M (+ (vec M (- FP arg)) idx))))

 206 (if (= op xFUN)

 207 (set v (funcall arg e1))

 208 (if (= op xSYS)

 209 (set v (syscall arg e1))

 210 ; else

 211 (error "unknown op")))))))))))))

 212 v)))

 213

 214 (def main () ()

 215 (do

 216 (sys 11) ; readinfile

 217 (loadobj)

 218 ; (listall)

 219 (init)

 220 (eval (shift Start CS))))

 221

 222 ; End

 223

 224 ; t2.txt

 225 ; input test file for eval.txt

 226 ;(enum 10 xAA xBB)

 227 ;(let gv tv)

 228 ;

 229 ;(def prints s ()

 230 ; (if (vec s 0)

 231 ; (do

 232 ; (sys 2 (vec s 0))

 233 ; (prints (+ s 1)))))

 234 ;

 235 ;(def add1 x () (+ x 1))

 236 ;

 237 ;(def main () (a)

 238 ; (do

 239 ; (set tv 5)

 240 ; (setv a 1 22)

 241 ; (vec a 2)

 242 ; (setv gv 2 33)

 243 ; (vec gv 3)

 244 ; (prints "string")

 245 ; (sys 1 (add1 xBB))))

270

271

Appendix E

Code Generator

 1 ; gen.txt n-code to s-code generator

 2 ; gen completion kit

 3 ; edit evalx, genwhile

 4

 5 ; include lib.txt

 6

 7 ; -------- header ----------

 8

 9 (enum 127 EOF)

 10 (enum 0 NIL)

 11 (enum 1000 MAXSYS) ; start of DS for s-code

 12 (enum 3000 MEMMAX)

 13

 14 ; n-code

 15 (enum 1

 16 xIF xWHILE xDO xUD1 xNEW xADD xSUB xMUL xDIV

 17 xEQ xLT xGT xCALL xGET xPUT xLIT xLDX xSTX xFUN

 18 xSYS xSET xSETV xVEC xUD2 xLD xST xLDY xSTY xUD3

 19 xUD4 xUD5 xSTR xBAND xSHR xSHL)

 20

 21 ; s-code used with som-v2

 22 (enum 1

 23 icAdd icSub icMul icDiv icBand icBor icBxor icNot icEq

 24 icNe icLt icLe icGe icGt icShl icShr icMod icLdx icStx

 25 icRet icRetv icArray icEnd icGet icPut icLd icSt icJmp icJt

 26 icJf icLit icCall icUd1 icInc icDec icSys icUd2 icFun)

 27

 28 (enum 5678920 magic) ; header of s-code v2 object

 29

 30 (let tok DP Dend CS)

 31 (let XS XP) ; s-code area, pointer

 32 (let atab numLab) ; assoc table

 33

 34 (def init () ()

 35 (do

 36 (set XS (new MEMMAX)) ; s-code

 37 (set XP 3) ; s-code pointer

 38 (set atab (new 1000)) ; assoc table, max 490 labels

 39 (set numLab 0)))

272

 40

 41 ; ----- system --------

 42

 43 (def tokenise () ()

 44 (set tok (sys 3)))

 45

 46 (def prList e () (sys 10 e))

 47

 48 (def de_op x () (& (>> x 24) 127))

 49 (def de_arg x () (& x 16777215)) ; x & 0x0ffffff

 50

 51 (def isATOM e () (< e 0)) ; MSB bit 1

 52 (def mkATOM (op arg) ()

 53 (+ (<< (+ (& op 127) 128) 24) (& arg 16777215)))

 54

 55 ; ------- load object -----------

 56

 57 (let Start)

 58

 59 (def read () ()

 60 (do

 61 (tokenise)

 62 (atoi tok)))

 63

 64 (def shift (a disp) ()

 65 (if a

 66 (- (+ a disp) 2)

 67 0))

 68

 69 (def reName (op arg) (v v2)

 70 (do

 71 (set v2 (+ arg MAXSYS)) ; for DS

 72 (if (= op xCALL) (set v (shift arg CS))

 73 (if (= op xLD) (set v v2)

 74 (if (= op xST) (set v v2)

 75 (if (= op xLDY) (set v v2)

 76 (if (= op xSTY) (set v v2)

 77 (if (= op xSTR) (set v v2)

 78 ; else

 79 (set v arg)))))))

 80 (mkATOM op v)))

 81

 82 (def loadobj () (flag end a a2 ads ty op arg next)

 83 (do

 84 (set CS (sys 9)) ; start of code segment

 85 (set Start (read))

 86 (set end (read))

 87 (set DP (+ CS end))

 88 (set flag 1)

 89 (while flag

 90 (do

273

 91 (set ads (read))

 92 (set ty (read))

 93 (set op (read))

 94 (set arg (read))

 95 (set next (read))

 96 (if ty

 97 (set a (reName op arg))

 98 ; else dot-pair

 99 (set a (shift (+ (<< op 24) arg) CS)))

 100 (set a2 (new 2))

 101 (sethead a2 a)

 102 (settail a2 (shift next CS))

 103 (if (= ads end) (set flag 0))))

 104

 105 ; load data segment

 106 (set a 0)

 107 (set Dend (read))

 108 (while (< a Dend)

 109 (do

 110 (set a2 (new 1))

 111 (setv a2 0 (read))

 112 (set a (+ a 1))))))

 113

 114 ; ---- assoc table for label -----

 115

 116 (enum 2 esize)

 117 (enum 490 MAXLAB) ; max no of label

 118

 119 ; search assoc for n1

 120 ; if found, return n2, else 0

 121 (def assoc n1 (i flag end)

 122 (do

 123 (set i 2) ; start at 2

 124 (set flag 1)

 125 (set end (+ (* esize numLab) 2))

 126 (while (and flag (< i end))

 127 (if (= (vec atab i) n1) ; sequential search

 128 (set flag 0)

 129 ; else

 130 (set i (+ i esize))))

 131 (if flag

 132 0 ; not found

 133 (vec atab (+ i 1))))) ; found, return n2

 134

 135 (def insertLab (n1 n2) (i)

 136 (do

 137 (set i (+ (* numLab esize) 2)) ; start at 2

 138 (setv atab i n1)

 139 (setv atab (+ i 1) n2)

 140 (set numLab (+ numLab 1))

 141 (if (> numLab MAXLAB)

274

 142 (error "label table full"))))

 143

 144 (def dumpassoc () (i end)

 145 (do

 146 (set i 2)

 147 (set end (+ (* numLab esize) 2))

 148 (while (< i end)

 149 (do

 150 (print (vec atab i)) (space)

 151 (print (vec atab (+ i 1))) (nl)

 152 (set i (+ i esize))))))

 153

 154 ; -------- icode -------------

 155

 156 (def outa (op arg) ()

 157 (do

 158 (setv XS XP (+ (<< arg 8) op))

 159 (set XP (+ XP 1))))

 160

 161 (def outs op ()

 162 (do

 163 (setv XS XP op)

 164 (set XP (+ XP 1))))

 165

 166 ; change arg, preserve op

 167 (def patch (ads v) ()

 168 (setv XS ads (+ (<< v 8) (& (vec XS ads) 255))))

 169

 170 ; --------- eval ----------

 171

 172 (def eval e () 0) ; forward declaration

 173

 174 (def genbop (op e1 e2) ()

 175 (do

 176 (eval e1)

 177 (eval e2)

 178 (outs op)))

 179

 180 (def genuop (op arg e) ()

 181 (do

 182 (eval e)

 183 (outa op arg)))

 184

 185 ; e = (cond true false)

 186 (def genif e (ads e3)

 187 (do

 188 (eval (head e)) ; gen cond

 189 (outa icJf 0)

 190 (set ads (- XP 1))

 191 (eval (arg2 e)) ; gen if-true

 192 (set e3 (arg3 e))

275

 193 (if (= e3 NIL)

 194 (patch ads (- XP ads))

 195 ; else

 196 (do ; else

 197 (outa icJmp 0)

 198 (patch ads (- XP ads))

 199 (set ads (- XP 1))

 200 (eval e3) ; gen else

 201 (patch ads (- XP ads))))))

 202

 203 ; stub definition

 204 (def genwhile (e) (ads) 0)

 205

 206 ; stub definition, edit at 0

 207 (def evalx (op arg e) () ; e is arg-list

 208 (if (= op xNEW) 0

 209 (if (= op xSUB) 0

 210 (if (= op xMUL) 0

 211 (if (= op xDIV) 0

 212 (if (= op xBAND) 0

 213 (if (= op xSHR) 0

 214 (if (= op xSHL) 0

 215 (if (= op xEQ) 0

 216 (if (= op xLT) 0

 217 (if (= op xGT) 0

 218 (if (= op xSTX) 0

 219 (if (= op xLDY) 0

 220 (if (= op xSTY) 0

 221 ; else

 222 (error "unknown op")))))))))))))))

 223

 224 (def eval e (ads e1 op arg lv arity)

 225 (if (= e NIL)

 226 NIL

 227 ; else

 228 (do

 229 (set ads e)

 230 (if (not (isATOM e))

 231 (do

 232 (set e1 (tail e))

 233 (set e (head e))))

 234 (set op (de_op e))

 235 (set arg (de_arg e))

 236 ; (prList e)

 237 (if (= op xIF) (genif e1)

 238 (if (= op xWHILE) (genwhile e1)

 239 (if (= op xDO)

 240 (while e1

 241 (do

 242 (eval (head e1))

 243 (set e1 (tail e1))))

276

 244 (if (= op xADD)

 245 (genbop icAdd (head e1) (arg2 e1))

 246 (if (= op xCALL)

 247 (do

 248 (while e1

 249 (do

 250 (eval (head e1))

 251 (set e1 (tail e1))))

 252 (outa icCall (assoc arg)))

 253 (if (= op xLIT) (outa icLit arg)

 254 (if (= op xSTR) (outa icLit arg)

 255 (if (= op xGET) (outa icGet arg)

 256 (if (= op xPUT) (genuop icPut arg (head e1))

 257 (if (= op xLD) (outa icLd arg)

 258 (if (= op xST) (genuop icSt arg (head e1))

 259 (if (= op xLDX)

 260 (do

 261 (outa icGet arg)

 262 (eval (head e1))

 263 (outs icLdx))

 264 (if (= op xFUN)

 265 (do

 266 (insertLab ads XP)

 267 (set lv (& arg 255))

 268 (set arity (>> arg 8))

 269 (outa icFun (+ (- lv arity) 1))

 270 (eval (head e1))

 271 (outa icRet (+ lv 1)))

 272 (if (= op xSYS) (genuop icSys arg (head e1))

 273 ; else

 274 (evalx op arg e1)))))))))))))))

 275)))

 276

 277 (def outsobj () (i end)

 278 (do

 279 (print magic) (nl)

 280 (print 1) (space)

 281 (print (- XP 1)) (nl)

 282 (set i 1)

 283 (while (< i XP)

 284 (do

 285 (print (vec XS i)) (space)

 286 (if (= (& i 7) 0) (nl))

 287 (set i (+ i 1))))

 288 (nl)

 289 (print MAXSYS) (space) ; data segment

 290 (print (+ MAXSYS (- Dend 1))) (nl)

 291 (set i DP)

 292 (set end (+ DP Dend))

 293 (while (< i end)

 294 (do

277

 295 (print (vec i 0)) (space)

 296 (if (= (& i 7) 0) (nl))

 297 (set i (+ i 1))))

 298 (nl)))

 299

 300 (def genall () (i op end)

 301 (do

 302 (set i CS)

 303 (set end DP)

 304 (while (< i end)

 305 (do

 306 (set op (de_op (vec i 0)))

 307 (if (= op xFUN) (eval i))

 308 (set i (+ i 2))))

 309 (set i XP)

 310 (set XP 1)

 311 (outa icCall (assoc (shift Start CS)))

 312 (outs icEnd)

 313 (set XP i)))

 314

 315 (def main () ()

 316 (do

 317 (sys 11) ; readinfile

 318 (loadobj)

 319 (init)

 320 (genall)

 321 (outsobj)))

 322

 323 ; End

278

279

Appendix F

Code Generator Completion Solution

 1 ; solution for codegen completion task

 2

 3 (def genwhile e (ads)

 4 (do

 5 (outa icJmp 0)

 6 (set ads (- XP 1))

 7 (eval (arg2 e)) ; gen body

 8 (patch ads (- XP ads))

 9 (eval (head e)) ; gen cond

 10 (outa icJt (- (+ ads 1) XP))))

 11

 12 (def evalx (op arg e1) ()

 13 (if (= op xNEW)

 14 (do

 15 (eval (head e1))

 16 (outs icArray))

 17 (if (= op xSUB) (genbop icSub (head e1) (arg2 e1))

 18 (if (= op xMUL) (genbop icMul (head e1) (arg2 e1))

 19 (if (= op xDIV) (genbop icDiv (head e1) (arg2 e1))

 20 (if (= op xBAND) (genbop icBand (head e1) (arg2 e1))

 21 (if (= op xSHR) (genbop icShr (head e1) (arg2 e1))

 22 (if (= op xSHL) (genbop icShl (head e1) (arg2 e1))

 23 (if (= op xEQ) (genbop icEq (head e1) (arg2 e1))

 24 (if (= op xLT) (genbop icLt (head e1) (arg2 e1))

 25 (if (= op xGT) (genbop icGt (head e1) (arg2 e1))

 26 (if (= op xSTX) ; base idx val

 27 (do

 28 (outa icGet arg)

 29 (eval (head e1))

 30 (eval (arg2 e1))

 31 (outs icStx))

 32 (if (= op xLDY)

 33 (do

 34 (outa icLd arg)

 35 (eval (head e1))

 36 (outs icLdx))

 37 (if (= op xSTY) ; base idx val

 38 (do

 39 (outa icLd arg)

 40 (eval (head e1))

280

 41 (eval (arg2 e1))

 42 (outs icStx))

 43 (error "unknown op")))))))))))))))

 44

 45 ; End

281

Appendix G

Sx Simulator

.
 1 /* Sx cpu micro architecture simulator

 2

 3 P. Chongstitvatana

 4 Department of Computer Engineering

 5 Chulalongkorn University

 6 */

 7

 8 #include "sx.h"

 9

 10 void run(void){

 11 while(runflag) {

 12 run3();

 13 ninst++;

 14 }

 15 }

 16

 17 void initchip(void){

 18 clock = 0;

 19 ninst = 0;

 20 runflag = 1;

 21 TS = 0;

 22 NX = 0;

 23 FF = 0;

 24 FP = SSBASE;

 25 SP = SSBASE;

 26 PC = 1;

 27 Z = 0;

 28 S = 0;

 29 mpc = 0;

 30 }

 31

 32 int main(int argc, char *argv[]){

 33 if(argc < 2) {

 34 printf("usage : sx objfile\n");

 35 exit(0);

 36 }

 37 loadobj(argv[1]);

 38 initchip();

 39 run();

282

 40 return 0;

 41 }

 42

 43 // ---

 44

 45 // Sx microprogram simulation

 46

 47 #include "sx.h"

 48 #include "sxbit.h" // signal and rom definition

 49

 50 #define PRIVATE static

 51

 52 int TS, FP, SP, NX, FF, IR, PC, Z, S, M[MAXMEM];

 53 int mpc; // micro PC

 54 int dbus,tbus,p1,p2,abus; // internal bus, alu ports

 55 int bus,pcin; // wires

 56 int clock, ninst, runflag;

 57

 58 // int udop[], mw[], mx[], nxt[] are defined in sxbit.h

 59

 60 // IR bits

 61 int IRop(void) { return(IR & 255); } // bit 7..0

 62 int IRarg(void) { return(IR >> 8); } // signx bit 31..8

 63

 64 /* alu operation input : a, b

 65 affect condition code Z,S

 66 order of operand ts = ff op ts

 67 ff is the first operand !

 68 */

 69 int alu(int op, int a, int b){

 70 int t;

 71 switch(op) {

 72 case icAdd: t = b + a; break;

 73 case icSub: t = b - a; break; // ordering!

 74 case icMul: t = b * a; break;

 75 case icDiv: t = b / a; break;

 76 case icBand: t = b & a; break;

 77 case icBor: t = b | a; break;

 78 case icBxor: t = b ^ a; break;

 79 case icNot: t = ! a; break;

 80 case icShl: t = b << a; break;

 81 case icShr: t = b >> a; break;

 82 case icEq: t = b == a; break;

 83 case icNe: t = b != a; break;

 84 case icLt: t = b < a; break;

 85 case icLe: t = b <= a; break;

 86 case icGt: t = b > a; break;

 87 case icGe: t = b >= a; break;

 88 case icInc: t = a + 1; break;

 89 case icDec: t = a - 1; break;

 90 case FSUB: t = a - b; break;

283

 91 case FP1: t = a; break;

 92 case FP2: t = b; break;

 93 case FZ: t = a == 0; break;

 94 }

 95 if(t == 0) Z = 1; else Z = 0;

 96 if(t < 0) S = 1; else S = 0;

 97 return t;

 98 }

 99

 100 // decode instruction to microprogram address

 101 PRIVATE int udecode(void){

 102 int a;

 103 a = udop[IRop()];

 104 if(a == 0)

 105 error("undefined opcode");

 106 return a;

 107 }

 108

 109 // run3 is the new event-list simulator

 110 // run event of each field

 111 // execute one instruction (a number of microstep)

 112 void run3(void){

 113 int m2, k, s;

 114 while(1) {

 115 clock++;

 116 m2 = nxt[mpc];

 117 k = mw[mpc]; // begin of each event-list

 118 s = mx[k];

 119 while(s >= 0){ // for all events in one word

 120 switch(s){ // for each event

 121 case s_x_ts: p1 = TS; break;

 122 case s_x_fp: p1 = FP; break;

 123 case s_x_sp: p1 = SP; break;

 124 case s_x_nx: p1 = NX; break;

 125 case s_y_ff: p2 = FF; break;

 126 case s_y_arg: p2 = IRarg(); break;

 127

 128 case s_alu_add: tbus = alu(icAdd,p1,p2); break;

 129 case s_alu_sub: tbus = alu(FSUB,p1,p2); break;

 130 case s_alu_inc: tbus = alu(icInc,p1,p2); break;

 131 case s_alu_dec: tbus = alu(icDec,p1,p2); break;

 132 case s_alu_z: tbus = alu(FZ,p1,p2); break;

 133 case s_alu_eq: tbus = alu(icEq,p1,p2); break;

 134 case s_alu_p1: tbus = alu(FP1,p1,p2); break;

 135 case s_alu_p2: tbus = alu(FP2,p1,p2); break;

 136 case s_alu_op: tbus = alu(IRop(),p1,p2); break;

 137

 138 case s_a_pc: abus = PC; break;

 139 case s_a_tbus: abus = tbus; break;

 140 case s_d_ts: dbus = TS; break;

 141 case s_d_fp: dbus = FP; break;

284

 142 case s_mR: dbus = M[abus]; break;

 143 case s_mW: M[abus] = dbus; break;

 144

 145 case s_b_tbus: bus = tbus; break;

 146 case s_b_dbus: bus = dbus; break;

 147 case s_b_pc: bus = PC; break;

 148 case s_j_pc1: pcin = PC + 1; break;

 149 case s_j_pcarg: pcin = PC + IRarg(); break;

 150 case s_j_tbus: pcin = tbus; break;

 151

 152 case s_lpc: PC = pcin; break;

 153 case s_lir: IR = dbus; break;

 154 case s_lts: TS = bus; break;

 155 case s_lfp: FP = bus; break;

 156 case s_lsp: SP = bus; break;

 157 case s_lnx: NX = bus; break;

 158 case s_lff: FF = bus; break;

 159

 160 case s_ifT: m2 = (Z == 0) ? m2 : mpc+1; break;

 161 case s_ifF: m2 = (Z == 1) ? m2 : mpc+1; break;

 162 case s_decode: m2 = udecode(); break;

 163 case s_trap: trap(IRop(),IRarg()); break;

 164 }

 165 k++;

 166 s = mx[k];

 167 }

 168 mpc = m2; // next mpc

 169 if(mpc == 0) break;

 170 }

 171 }

 172 /*

 173 // order of events on data path, use in "sxgen"

 174 PRIVATE int sig[] = {

 175 s_x_ts, s_x_fp, s_x_sp, s_x_nx, s_y_ff, s_y_arg,

 176 s_alu_add, s_alu_sub, s_alu_inc, s_alu_dec, s_alu_z,

 177 s_alu_eq, s_alu_p1, s_alu_p2, s_alu_op,

 178 s_a_pc, s_a_tbus, s_d_fp, s_d_ts,

 179 s_mR, s_mW, s_b_dbus, s_b_tbus, s_b_pc,

 180 s_j_pc1, s_j_pcarg, s_j_tbus,

 181 s_lpc, s_lir, s_lts, s_lfp, s_lsp, s_lnx, s_lff,

 182 s_ifT, s_ifF, s_decode, s_trap, -1

 183 };

 184 */

 185 // End

285

Appendix H

Microprogram

 1 .. sx microprogram

 2 ..

 3 .s

 4 .. -------- signal definitions --------

 5 x.ts

 6 x.fp

 7 x.sp

 8 x.nx

 9 y.ff

 10 y.arg

 11 b.tbus

 12 b.dbus

 13 b.pc

 14 d.fp

 15 d.ts

 16 a.tbus

 17 a.pc

 18 j.pc1

 19 j.pcarg

 20 j.tbus

 21 alu.add

 22 alu.sub

 23 alu.inc

 24 alu.dec

 25 alu.z

 26 alu.eq

 27 alu.op

 28 alu.p1

 29 alu.p2

 30 .. load registers

 31 lir

 32 lts

 33 lfp

 34 lsp

 35 lnx

 36 lff

 37 lpc

 38 mR

 39 mW

286

 40 .. next micro ads

 41 ifT

 42 ifF

 43 decode

 44 trap

 45 .m

 46 .. -------- micro program --------

 47 :fetch

 48 a.pc mR lir decode ;

 49 :bop

 50 x.sp alu.p1 a.tbus mR b.dbus lff ;

 51 x.sp alu.dec b.tbus lsp ;

 52 x.ts y.ff alu.op b.tbus lts j.pc1 lpc /fetch ;

 53 :uop

 54 x.ts alu.op b.tbus lts j.pc1 lpc /fetch ;

 55 :get

 56 x.sp alu.inc b.tbus lsp ;

 57 d.ts x.sp alu.p1 a.tbus mW ;

 58 x.fp y.arg alu.sub a.tbus mR b.dbus lts j.pc1 lpc /fetch ;

 59 :put

 60 x.fp y.arg alu.sub a.tbus d.ts mW ;

 61 :popts

 62 x.sp alu.p1 a.tbus mR b.dbus lts ;

 63 x.sp alu.dec b.tbus lsp j.pc1 lpc /fetch ;

 64 :ld

 65 x.sp alu.inc b.tbus lsp ;

 66 d.ts x.sp alu.p1 a.tbus mW ;

 67 y.arg alu.p2 a.tbus mR b.dbus lts j.pc1 lpc /fetch ;

 68 :st

 69 d.ts y.arg alu.p2 a.tbus mW /popts ;

 70 :ldx

 71 x.sp alu.p1 a.tbus mR b.dbus lff ;

 72 x.sp alu.dec b.tbus lsp ;

 73 x.ts y.ff alu.add a.tbus mR b.dbus lts j.pc1 lpc /fetch ;

 74 :stx

 75 x.sp alu.p1 a.tbus mR b.dbus lnx ;

 76 x.sp alu.dec b.tbus lsp ;

 77 x.sp alu.p1 a.tbus mR b.dbus lff ;

 78 x.nx y.ff alu.add a.tbus d.ts mW ;

 79 x.sp alu.dec b.tbus lsp /popts ;

 80 :lit

 81 x.sp alu.inc b.tbus lsp ;

 82 d.ts x.sp alu.p1 a.tbus mW ;

 83 y.arg alu.p2 b.tbus lts j.pc1 lpc /fetch ;

 84 :jmp

 85 j.pcarg lpc /fetch ;

 86 :jt

 87 x.ts alu.z ifT /j3 ;

 88 :j2

 89 .. <jump>

 90 j.pcarg lpc x.sp alu.p1 a.tbus mR b.dbus lts ;

287

 91 x.sp alu.dec b.tbus lsp /fetch ;

 92 :jf

 93 x.ts alu.z ifT /j2 ;

 94 :j3

 95 .. <don't jump>

 96 j.pc1 lpc x.sp alu.p1 a.tbus mR b.dbus lts ;

 97 x.sp alu.dec b.tbus lsp /fetch ;

 98 :call

 99 x.sp alu.inc b.tbus lsp ;

 100 x.sp alu.p1 a.tbus d.ts mW j.pc1 lpc ;

 101 b.pc lts ;

 102 y.arg alu.p2 b.tbus lnx a.tbus mR lir ;

 103 x.sp y.arg alu.add a.tbus d.fp mW ;

 104 x.sp y.arg alu.add b.tbus lfp lsp ;

 105 x.nx alu.inc j.tbus lpc /fetch ;

 106 :ret

 107 x.sp alu.p1 b.tbus lff ;

 108 x.fp y.ff alu.eq ifF /r2 ;

 109 x.ts alu.p1 j.tbus lpc ;

 110 x.fp y.arg alu.sub b.tbus lsp ;

 111 x.sp alu.p1 a.tbus mR b.dbus lts ;

 112 x.sp alu.dec b.tbus lsp ;

 113 x.fp alu.p1 a.tbus mR b.dbus lfp /fetch ;

 114 :r2

 115 x.fp alu.inc a.tbus mR b.dbus lff ;

 116 y.ff alu.p2 j.tbus lpc ;

 117 x.fp y.arg alu.sub b.tbus lsp ;

 118 x.fp alu.p1 a.tbus mR b.dbus lfp /fetch ;

 119 :sys

 120 :array

 121 :end

 122 trap j.pc1 lpc /fetch ;

 123 ..

 124 .e

 125 .. ===================================

 126 .. sx2 microprogram

 127 ..

 128 .s

 129 .. -------- signal definition --------

 130 x.ts

 131 x.fp

 132 x.nx

 133 y.ff

 134 y.arg

 135 y.u

 136 b.tbus

 137 b.dbus

 138 b.sp

 139 d.fp

 140 d.ts

 141 d.v

288

 142 d.u

 143 a.tbus

 144 a.pc

 145 a.sp

 146 a.fp

 147 j.pc1

 148 j.pcarg

 149 j.tbus

 150 so.sp

 151 so.spx

 152 si.inc

 153 si.dec

 154 si.k

 155 si.tbus

 156 w.v1

 157 w.v2

 158 w.v3

 159 w.v4

 160 w.varg

 161 z.dbus

 162 z.ts

 163 t.v

 164 t.pc

 165 t.bus

 166 u.iru

 167 u.dbus

 168 alu.add

 169 alu.sub

 170 alu.inc

 171 alu.dec

 172 alu.add2

 173 alu.z

 174 alu.eq

 175 alu.op

 176 alu.p1

 177 alu.p2

 178 .. load registers

 179 lir

 180 lts

 181 lfp

 182 lsp

 183 lnx

 184 lff

 185 lpc

 186 lv1

 187 lv2

 188 lv3

 189 lv4

 190 lvarg

 191 lu

 192 mR

289

 193 mW

 194 .. next micro ads

 195 ifT

 196 ifF

 197 ifu0

 198 ifp0

 199 ifargm

 200 skipu

 201 decode

 202 trap

 203 .m

 204 .. -------- micro program --------

 205 :fetch

 206 a.pc mR lir decode ;

 207 :bop

 208 so.sp si.dec lsp a.sp mR b.dbus lff ;

 209 x.ts y.ff alu.op b.tbus t.bus lts j.pc1 lpc /fetch ;

 210 :uop

 211 x.ts alu.op b.tbus t.bus lts j.pc1 lpc /fetch ;

 212 :get

 213 so.spx si.inc lsp a.sp d.ts mW ;

 214 x.fp y.arg alu.sub a.tbus mR b.dbus t.bus lts j.pc1 lpc /fetch ;

 215 :get1

 216 so.spx si.inc lsp a.sp d.ts mW w.v1 t.v lts j.pc1 lpc /fetch;

 217 :get2

 218 so.spx si.inc lsp a.sp d.ts mW w.v2 t.v lts j.pc1 lpc /fetch;

 219 :get3

 220 so.spx si.inc lsp a.sp d.ts mW w.v3 t.v lts j.pc1 lpc /fetch;

 221 :get4

 222 so.spx si.inc lsp a.sp d.ts mW w.v4 t.v lts j.pc1 lpc /fetch;

 223 :put

 224 x.fp y.arg alu.sub a.tbus d.ts mW ;

 225 :popts

 226 so.sp si.dec lsp a.sp mR b.dbus t.bus lts j.pc1 lpc /fetch ;

 227 :put1

 228 z.ts lv1 so.sp si.dec lsp a.sp mR b.dbus t.bus lts j.pc1 lpc /fetch ;

 229 :put2

 230 z.ts lv2 so.sp si.dec lsp a.sp mR b.dbus t.bus lts j.pc1 lpc /fetch ;

 231 :put3

 232 z.ts lv3 so.sp si.dec lsp a.sp mR b.dbus t.bus lts j.pc1 lpc /fetch ;

 233 :put4

 234 z.ts lv4 so.sp si.dec lsp a.sp mR b.dbus t.bus lts j.pc1 lpc /fetch ;

 235 :ld

 236 so.spx si.inc lsp a.sp d.ts mW ;

 237 y.arg alu.p2 a.tbus mR b.dbus t.bus lts j.pc1 lpc /fetch ;

 238 :st

 239 d.ts y.arg alu.p2 a.tbus mW /popts ;

 240 :ldx

 241 so.sp si.dec lsp a.sp mR b.dbus lff ;

 242 x.ts y.ff alu.add a.tbus mR b.dbus t.bus lts j.pc1 lpc /fetch ;

 243 :stx

290

 244 so.sp si.dec lsp a.sp mR b.dbus lnx ;

 245 so.sp si.dec lsp a.sp mR b.dbus lff ;

 246 x.nx y.ff alu.add a.tbus d.ts mW /popts ;

 247 :lit

 248 so.spx si.inc lsp a.sp d.ts mW y.arg alu.p2 b.tbus t.bus lts

j.pc1 lpc /fetch ;

 249 :jmp

 250 j.pcarg lpc /fetch ;

 251 :jt

 252 x.ts alu.z ifT /j3 ;

 253 :j2

 254 .. <jump>

 255 j.pcarg lpc so.sp si.dec lsp a.sp mR b.dbus t.bus lts /fetch;

 256 :jf

 257 x.ts alu.z ifT /j2 ;

 258 :j3

 259 .. <don't jump>

 260 j.pc1 lpc so.sp si.dec lsp a.sp mR b.dbus t.bus lts /fetch ;

 261 :call

 262 so.spx si.inc lsp a.sp d.ts mW j.pc1 lpc ;

 263 t.pc lts y.arg alu.p2 j.tbus lpc ifu0 /fetch ;

 264 .. <save v>

 265 x.fp y.u alu.sub b.tbus lfp skipu ;

 266 w.v4 a.fp d.v mW x.fp alu.inc b.tbus lfp ;

 267 w.v3 a.fp d.v mW x.fp alu.inc b.tbus lfp ;

 268 w.v2 a.fp d.v mW x.fp alu.inc b.tbus lfp ;

 269 w.v1 a.fp d.v mW x.fp alu.inc b.tbus lfp /fetch ;

 270 :fun

 271 si.k lsp so.spx a.sp d.fp mW ;

 272 b.sp lfp ;

 273 si.inc so.spx lsp a.sp d.u mW u.iru lu ;

 274 j.pc1 lpc ifp0 /fetch ;

 275 :cachev

 276 x.fp y.u alu.sub b.tbus lfp skipu ;

 277 a.fp mR z.dbus lv4 x.fp alu.inc b.tbus lfp ;

 278 a.fp mR z.dbus lv3 x.fp alu.inc b.tbus lfp ;

 279 a.fp mR z.dbus lv2 x.fp alu.inc b.tbus lfp ;

 280 a.fp mR z.dbus lv1 x.fp alu.inc b.tbus lfp /fetch ;

 281 :ret

 282 si.dec so.spx b.sp lff ;

 283 x.fp y.ff alu.eq ifF /r2 ;

 284 .. <doret>

 285 x.ts alu.p1 j.tbus lpc ;

 286 so.sp a.sp mR u.dbus lu ;

 287 x.fp y.arg alu.sub si.tbus lsp ;

 288 so.sp si.dec lsp a.sp mR b.dbus t.bus lts ifu0 /r3 ;

 289 a.fp mR b.dbus lfp /cachev ;

 290 :r2

 291 .. <doretv>

 292 x.fp alu.add2 a.tbus mR b.dbus lff ;

 293 y.ff alu.p2 j.tbus lpc ;

291

 294 x.fp alu.inc a.tbus mR u.dbus lu ;

 295 x.fp y.arg alu.sub si.tbus lsp ifu0 /r3 ;

 296 a.fp mR b.dbus lfp /cachev ;

 297 :r3

 298 .. <ret end>

 299 a.fp mR b.dbus lfp /fetch ;

 300 :inc

 301 x.ts alu.p1 b.tbus lnx w.varg t.v lts ifargm /inc2 ;

 302 x.ts alu.inc b.tbus t.bus lts ;

 303 z.ts lvarg x.nx alu.p1 b.tbus t.bus lts j.pc1 lpc /fetch ;

 304 :inc2

 305 .. <update SS>

 306 x.fp y.arg alu.sub a.tbus mR b.dbus t.bus lts ;

 307 x.ts alu.inc b.tbus t.bus lts ;

 308 x.fp y.arg alu.sub a.tbus d.ts mW ;

 309 x.nx alu.p1 b.tbus t.bus lts j.pc1 lpc /fetch ;

 310 :dec

 311 x.ts alu.p1 b.tbus lnx w.varg t.v lts ifargm /dec2 ;

 312 x.ts alu.dec b.tbus t.bus lts ;

 313 z.ts lvarg x.nx alu.p1 b.tbus t.bus lts j.pc1 lpc /fetch ;

 314 :dec2

 315 .. <update SS>

 316 x.fp y.arg alu.sub a.tbus mR b.dbus t.bus lts ;

 317 x.ts alu.dec b.tbus t.bus lts ;

 318 x.fp y.arg alu.sub a.tbus d.ts mW ;

 319 x.nx alu.p1 b.tbus t.bus lts j.pc1 lpc /fetch ;

 320 :sys

 321 :array

 322 :end

 323 trap j.pc1 lpc /fetch ;

 324 ..

 325 .e

 326

 327 .. -------- extended instructions --------

 328

 329 :ldxv

 330 x.sp alu.inc b.tbus lsp ;

 331 d.ts x.sp alu.p1 a.tbus mW ;

 332 x.fp y.a1 alu.sub a.tbus mR b.dbus lts ;

 333 x.ts y.a2 alu.add a.tbus mR b.dbus lts j.pc1 lpc /fetch ;

 334

 335 :stxv

 336 x.fp y.a1 alu.sub a.tbus mR b.dbus lnx ;

 337 x.nx y.a2 alu.add a.tbus d.ts mW /popts ;

 338

 339 :jne

 340 x.sp alu.p1 a.tbus mR b.dbus lff ;

 341 x.sp alu.dec b.tbus lsp ;

 342 x.ts y.ff alu.eq ifT /j3 ;

 343 j.pcarg lpc x.sp alu.p1 a.tbus mR b.dbus lts ;

 344 x.sp alu.dec b.tbus lsp /fetch ;

292

 345

 346 :seqi

 347 x.sp alu.inc b.tbus lsp j.pc1 lpc ;

 348 d.ts x.sp alu.p1 a.tbus mW ;

 349 x.fp y.a1 alu.sub a.tbus mR b.dbus lnx ;

 350 x.nx alu.p1 a.tbus mR b.dbus lts lff ;

 351 x.ts alu.z ifT /fetch ;

 352 x.fp y.a2 alu.sub a.tbus mR b.dbus lnx ;

 353 x.nx alu.p1 a.tbus mR b.dbus lts ;

 354 x.ts alu.z ifT /fetch ;

 355 x.ts y.ff alu.eq b.tbus lts ifF /fetch ;

 356 x.nx alu.inc b.tbus lts ;

 357 x.fp y.a2 alu.sub a.tbus d.ts mW ;

 358 x.fp y.a1 alu.sub a.tbus mR b.dbus lnx ;

 359 x.nx alu.inc b.tbus lts lff ;

 360 x.fp y.a1 alu.sub a.tbus d.ts mW ;

 361 x.nx y.ff alu.ne b.tbus lts /fetch ;

 362

 363 .. End

293

Appendix I

NOS Supervisor

 1 /* noss.c nos supervisor

 2

 3 */

 4

 5 #include "sx.h"

 6

 7 #define PSW 1 // noss state

 8 #define USER 2

 9

 10 extern int clock; // sxm.c

 11

 12 int a_activep, a_status, a_psw; // binding to user space

 13 int intflag; // interrup flag

 14 int dt; // interrupt timer

 15 int noss_state;

 16 int userp; // pdes of current user process

 17 int sclock = 0; // count time spent in switchp

 18 int n_switch = 0;

 19

 20 // save c-state to process descriptor

 21 PRIVATE void saveCstate(int a){

 22 M[a + 4] = FP;

 23 M[a + 5] = SP;

 24 M[a + 6] = PC;

 25 M[a + 7] = TS;

 26 }

 27

 28 // restore c-state from a process desc.

 29 PRIVATE void restoreCstate(int a){

 30 FP = M[a + 4];

 31 SP = M[a + 5];

 32 PC = M[a + 6]; // cause a jump

 33 TS = M[a + 7];

 34 }

 35

 36 PRIVATE void stat(void){

 37 sclock += (clock-dt);

 38 printf(" * ");

 39 n_switch++;

294

 40 }

 41

 42 // event = time_out, stopped, blocked

 43 void noss(int event){

 44 if(M[a_activep] == 0){ // no process

 45 runflag = 0; // stop simulation

 46 return;

 47 }

 48 M[a_status] = event; // update to nos

 49 switch(noss_state){

 50 case PSW: // run task switcher

 51 saveCstate(userp);

 52 restoreCstate(M[a_psw]);

 53 noss_state = USER;

 54 break;

 55 case USER: // run user process

 56 userp = M[a_activep];

 57 restoreCstate(userp);

 58 intflag = 1; // enable interrupt

 59 noss_state = PSW;

 60 stat(); // collect statistics

 61 }

 62 dt = clock; // reset timer

 63 }

 64

 65 void yield(void){

 66 if(intflag && (clock-dt) > TIMEOUT)

 67 noss(time_out);

 68 }

 69

 70 // processor execution

 71 void eval(int ref){

 72 PC = ref;

 73 while(runflag) {

 74 run3(); // execute one instruction

 75 yield();

 76 }

 77 }

 78

 79 void trap(int op, int arg){ // special functions

 80 switch(op) {

 81 case icEnd : noss(stopped); break;

 82 case icArray: TS = xalloc(TS); break;

 83 case icSys:

 84 switch(arg){

 85 case 1: // print ts

 86 printf("%d",TS);

 87 popts();

 88 break;

 89 case 2 : // printc ts

 90 printf("%c",TS);

295

 91 popts();

 92 break;

 93 case 13: runflag = 0; break;

 94 case 20: intflag = 1; break;

 95 case 21: intflag = 0; break;

 96 case 22: noss(blocked); break;

 97 default:

 98 error("unknown syscall");

 99 }

 100 break;

 101 default:

 102 error("unknown trap");

 103 }

 104 }

 105

 106 PRIVATE void boot(void){

 107 a_activep = searchsym("activep");

 108 a_status = searchsym("status");

 109 a_psw = searchsym("psw");

 110 dt = 0;

 111 intflag = 0;

 112 noss_state = USER;

 113 eval(1); // boot nos

 114 }

 115

 116 int main(int argc, char *argv[]){

 117 if(argc < 2) {

 118 printf("usage : noss objfile\n");

 119 exit(0);

 120 }

 121 loadobj(argv[1]);

 122 initchip();

 123 boot();

 124 return 0;

 125 }

 126 // End

296

297

Appendix J

Nut Operating System (NOS)

 1 ;; nos nut operating system

 2 ;;

 3

 4 (def print (x) () (sys 1 x))

 5 (def printc (c) () (sys 2 c))

 6 (def nl () () (sys 2 10))

 7 (def space () () (sys 2 32))

 8 (def not (b) () (if b 0 1))

 9 (def != (a b) () (if (= a b) 0 1))

 10 (def <= (a b) () (if (> a b) 0 1))

 11 (def >= (a b) () (if (< a b) 0 1))

 12 (def or (a b) () (if a 1 b))

 13

 14 ;; ---------------------

 15 ;; global var

 16

 17 ;; activep the active process

 18 ;; status 10 time-out, 11 stopped, 12 blocked

 19 ;; pid number of process created

 20

 21 (let activep status pid psw)

 22 (let sseg) ;; free stack segment

 23

 24 (enum 10 TIMEOUT STOPPED BLOCKED)

 25

 26 ;; ----------------------

 27

 28 ;; process descriptor

 29 ;; field:

 30 ;; 0 next, 1 prev, double link

 31 ;; 2 id, 3 value,

 32 ;; 4 fp, 5 sp, 6 ip, 7 ts, context

 33 ;; 8 inbox, 9 awaitbox, 10 msg mail box

 34 ;;

 35 ;; process state (value) :

 36 ;; 1 READY, 2 RUNNING, 3 WAIT, 4 DEAD, 5 SEND, 6 RECEIVE

 37

 38 (enum 1 READY RUNNING WAIT DEAD SEND RECEIVE)

 39

298

 40 (def ei () () (sys 20)) ;; enable int

 41 (def di () () (sys 21)) ;; disable int

 42 (def blockp () () (sys 22)) ;; block current process

 43

 44 ;; doubly linked list

 45 (def getNext (a) () (vec a 0))

 46 (def getPrev (a) () (vec a 1))

 47 (def setNext (a v) () (setv a 0 v))

 48 (def setPrev (a v) () (setv a 1 v))

 49

 50 ;; append a2 to the end of a1

 51 (def appendDL (a1 a2) (b)

 52 (if (= a1 0)

 53 (do

 54 (setNext a2 a2) ;; only one item

 55 (setPrev a2 a2)

 56 a2)

 57 ;; else

 58 (do

 59 (set b (getPrev a1))

 60 (setNext a2 a1)

 61 (setPrev a1 a2)

 62 (setNext b a2)

 63 (setPrev a2 b)

 64 a1)))

 65

 66 (def deleteDL (b) (a c)

 67 (if (= b (getNext b))

 68 0 ;; delete singleton

 69 ;; else

 70 (do

 71 (set a (getPrev b))

 72 (set c (getNext b))

 73 (setNext a c)

 74 (setPrev c a)

 75 c)))

 76

 77 ;; process descriptor access functions

 78 (def getId (p) () (vec p 2))

 79 (def getValue (p) () (vec p 3))

 80 (def setId (p id) () (setv p 2 id))

 81 (def setValue (p v) () (setv p 3 v))

 82

 83 (def newp () (p)

 84 (do

 85 (set p (new 11)) ;; new pdes

 86 (setNext p 0)

 87 (setPrev p 0)

 88 (setValue p READY)

 89 (setv p 4 sseg) ;; set fp'

 90 (setv p 5 (+ sseg 1)) ;; set sp'

299

 91 (setv p 6 0) ;; set ip'

 92 (set sseg (+ sseg 1000))

 93 (setv p 7 0)

 94 (setv p 8 0)

 95 p))

 96

 97 ;; -------- process management -------

 98

 99 ;; show process list a

 100 (def showp (a) (p)

 101 (do

 102 (set p a)

 103 (while (!= p 0)

 104 (do

 105 (print (vec p 2)) (space)

 106 (print (vec p 4)) (space)

 107 (print (vec p 7)) (space)

 108 (print (vec p 8)) (space)

 109 (set p (getNext p))

 110 (if (= p a) (set p 0))))

 111 (nl)))

 112

 113 ;; return p

 114 (def run (ads) (p)

 115 (do

 116 (set p (newp)) ;; new pdes

 117 (setId p pid)

 118 (set pid (+ pid 1))

 119 (setv p 6 ads) ;; set ip' to call.fun

 120 (set activep (appendDL activep p))

 121 p))

 122

 123 (def runnable (p) () (setValue p RUNNING))

 124

 125 ;; nos sim is responsible to save C-state

 126 ;; before running switchp

 127 (def switchp () ()

 128 (do

 129 (di)

 130 (if (or (= status TIMEOUT) (= status BLOCKED))

 131 (do

 132 (setValue activep READY)

 133 (set activep (getNext activep)) ;; switch next

 134 (runnable activep))

 135 ; else ;; status STOPPED

 136 (do

 137 (setValue activep DEAD)

 138 (set activep (deleteDL activep))

 139 (if (!= activep 0)

 140 (runnable activep))))))

 141

300

 142 (def bootnos () ()

 143 (runnable activep))

 144

 145 ;; ---- semaphore ------------

 146 ;; field: sval(value) slist(wait-list)

 147 ;; semaphore access functions

 148

 149 (def getsval (s) () (vec s 0))

 150 (def getslist (s) () (vec s 1))

 151 (def setsval (s v) () (setv s 0 v))

 152 (def setslist (s v) () (setv s 1 v))

 153

 154 (def initsem (v) (s1)

 155 (do

 156 (set s1 (new 2))

 157 (setsval s1 v)

 158 (setslist s1 0) ;; wait-list nil

 159 s1))

 160

 161 (def wakeup (p) ()

 162 (do

 163 (setValue p READY)

 164 (set activep (appendDL activep p))))

 165

 166 (def signal (s) (p)

 167 (do

 168 (di)

 169 (set p (getslist s))

 170 (if (!= p 0)

 171 (do

 172 (setslist s (deleteDL p))

 173 (wakeup p))

 174 ;; else

 175 (setsval s (+ (getsval s) 1)))

 176 (ei)))

 177

 178 (def wait (s) (v p)

 179 (do

 180 (di)

 181 (set v (getsval s))

 182 (if (<= v 0)

 183 (do ;; block activep to WAIT

 184 (set p activep)

 185 (set activep (deleteDL activep))

 186 (setValue p WAIT) ;; to wait-list

 187 (setslist s (appendDL (getslist s) p))

 188 (blockp)) ;; block

 189 ;; else

 190 (setsval s (- v 1)))

 191 (ei)))

 192

301

 193 ;; --------- mailbox ----------

 194

 195 (def getMbox (p) () (vec p 8))

 196 (def getAwait (p) () (vec p 9))

 197 (def getMsg (p) () (vec p 10))

 198 (def setMbox (p m) () (setv p 8 m))

 199 (def setAwait (p m) () (setv p 9 m))

 200 (def setMsg (p m) () (setv p 10 m))

 201

 202 ;; search mail p in the box

 203 ;; return mail if found else 0

 204 (def findmail (p box) (x y)

 205 (do

 206 (set y 0) ;; ret value

 207 (set x box)

 208 (while (!= x 0)

 209 (if (= x p)

 210 (do

 211 (set y x)

 212 (set x 0)) ;; exit

 213 ;; else

 214 (do

 215 (set x (getNext x))

 216 (if (= x box)

 217 (set x 0))))) ;; not found

 218 y))

 219

 220 ;; p is pointer to process

 221 (def send (p mess) (m box)

 222 (do

 223 (di)

 224 (set box (getAwait activep))

 225 (set m (findmail p box))

 226 (if (= m 0)

 227 (do

 228 (set m activep) ;; self

 229 (setMsg m mess)

 230 (set activep (deleteDL activep))

 231 (setMbox p (appendDL (getMbox p) m))

 232 (setValue m SEND)

 233 (blockp))

 234 ;; else

 235 (do ;; p is waiting

 236 (setMsg p mess)

 237 (set m (deleteDL p))

 238 (if (= box p)

 239 (setAwait activep m))

 240 (wakeup p)))

 241 (ei)))

 242

 243 (def receive (p) (m box)

302

 244 (do

 245 (di)

 246 (set box (getMbox activep))

 247 (set m (findmail p box))

 248 (if (= m 0)

 249 (do ;; put to await p

 250 (set m activep) ;; self

 251 (set activep (deleteDL activep))

 252 (setAwait p (appendDL (getAwait p) m))

 253 (setValue m RECEIVE)

 254 (blockp)

 255 (getMsg m)) ;; retrieve from self

 256 ;; else

 257 (do ;; already in mbox

 258 (set m (deleteDL p))

 259 (if (= box p)

 260 (setMbox activep m))

 261 (getMsg p) ;; retrieve mbox

 262 (wakeup p)))

 263 (ei)))

 264

 265 ;; ---- application --------

 266

 267 (let p1 p2)

 268

 269 ;; send 2..n to p2 ended with -1

 270 (def produce (n) (i)

 271 (do

 272 (set i 2)

 273 (while (< i n)

 274 (do

 275 (printc 33) (print i) (space)

 276 (send p2 i)

 277 (set i (+ i 1))))

 278 (send p2 (- 0 1))))

 279

 280 ;; receive 2..n from p1 ended with -1

 281 (def consume () (m flag)

 282 (do

 283 (set flag 1)

 284 (while flag

 285 (do

 286 (set m (receive p1))

 287 (printc 34) (print m) (space)

 288 (if (< m 0)

 289 (set flag 0))))

 290 (nl)))

 291

 292 (def main () ()

 293 (do

 294 (di)

303

 295 (set activep 0)

 296 (set sseg 4000)

 297 (set pid 1)

 298 (set psw (run (switchp)))

 299 (set activep 0)

 300 (set p1 (run (produce 100)))

 301 (set p2 (run (consume)))

 302 (bootnos)))

 303

 304 ; End

304

305

References

[AMD64] Amdahl, G., Blaauw, G., and Brooks, F., “Architecture of the IBM

System/360”, IBM Journal of Research and Development, April 1964.

[AMD67] Amdahl, G., “Validity of the single processor approach to achieving

large scale computing capabilities”, AFIPS Conf. Proc., April 1967, pp. 483-

485.

[AHO86] Aho, A., Sethi, R., and Ullman, J., Compilers: Principles, techniques,

and tools. Addison-Wesley, 1986.

[BAC78] Backus, J. “Can programming be liberated from the von Neumann

style? A functional style and its algebra of programs”, Communications of

the ACM, August 1978, 20(8):613-641.

[BEL71] Bell, C., and Newell, A. Computer structure: Readings and examples.

McGraw-Hill, 1971.

[BER78] Berry, R., “Experience with the Pascal-P compiler”, Software –

Practice and Experience, 8:617-627, 1978.

[BER96] Bergin, T., Gibson, R., Gibson, R. Jr., History of programming

languages, vol.2, ACM Press, Addison Wesley, 1996.

[BEL76] Bell, C., and Strecker, W., “Computer structures: What we have learned

from the PDP-11”, Proc. of 3rd annual symposium on computer architecture,

(1976): 1-14.

[BUR46] Burks, A. W., Goldstein, H. H. and von Neumann, “Preliminary

discussion of the logical design of an electronic computing instrument”, US

Army Ordnance Department Report 1946.

[BUR88] Burks, A., and Burks, A., The First Electronic Computer: The

Atanasoff Story, the University of Michigan Press, Ann Arbor, Michigan,

1988.

[BUR81] Burks, A., and Burks, A., The ENIAC: First General Purpose

Electronic Computer, The University of Michigan Press, Ann Arbor,

Michigan, 1981.

[BUR68] Burroughs B5500 Electronic Information Processing System:

Operation manual. Burroughs Corp. Detroit, 1968.

306

[BUR01] Burns, A. and Wellings, A., Real-time systems and programming

languages, 3rd ed. Addison-Wesley, 2001.

[BUR04a] Burutarchanai, A., and Chongstitvatana, P., “Design of a two-phased

clocked control unit for performance enhancement of a stack processor”,

National Computer Science and Engineering Conference, Thailand, 21-22

Sept. 2004, pp.114-119.

[BUR04b] Burutarchanai, A., Kotrajaras, V. and Chongstitvatana, P., “A fast

instruction fetch unit for an embedded stack processor”, Proc. of Int. Conf.

on Information and Communication Technologies, Thailand, 18-19

November 2004.

[BUR04c] Burutarchanai, A., Nanthanavoot, P., Aporntewan, C., and

Chongstitvatana, P., “A stack-based processor for resource efficient

embedded systems”, Proc. of IEEE TENCON, Thailand, 21-24 November

2004.

[CHO97] Chongstitvatana, P. “Post processing optimization of byte-code
instructions by extension of its virtual machine”, Conf. of Electrical
Engineering, Bangkok, 1997.

[CHO98] Chongstitvatana, P. A multi-tasking environment for real-time control.

Final report, Faculty of Engineering, Chulalongkorn university, research

project number 132-MRD-2537, 1998. Also available on-line at http:

//www.cp.eng.chula.ac.th/faculty/pjw/r1/

[CHO01] Chongstitvatana, P. “Computer Architecture: A synthesis approach,”

2001.

[CHO03] Chongstitvatana, P., “The Art of Instruction Set Design”, Electrical

Engineering Conference, Thailand, 2003.

[CHO05] Chongstitvatana, P., “Self-Generating Systems: How a 10,000,0002-

line Compiler Assembles Itself,” Proc. of National Computer Science and

Engineering Conference, Bangkok, 2005.

[CHO06] Chongstitvatana, P., “Stack frame caching”, Proc. of National

Computer Science and Engineering Conference, Thailand, 2006. (being

written)

[COR62] Corbato, F., Merwin-Daggett, M., and Daley, R., “An experimental

time-sharing system”, Proc. of the AFIPS Fall Joint Conference, pp.335-344,

1962.

307

[COR65] Corbato, F., and Vyssotosky, V., “Introduction and overview of the

MULTICS system”, Proc. of the AFIPS Fall Joint Computer Conference,

pp.185-196, 1965.

[COR01] Cormen, T., Leiserson, C., Rivest, R., and Stein, C., Introduction to

algorithms, 2nd ed., MIT Press, 2001.

[DIJ65] Dijkstra, E., “Solution of a problem in concurrent programming

control”, Communication of the ACM, 8(9):569, 1965.

[FAG96] Faggin, F., Hoff, M., Mazor, S., and Shima, M., “The history of 4004”,

IEEE Micro, December, 1996, pp.10-20.

[FLY71] Flynn, M., and Rosin, R., “Microprogramming: An introduction and a

viewpoint”, IEEE Trans. on Computers, July 1971.

[FRA95] Fraser, C. and Hanson, D. A retargetable C compiler: design and

implementation, Benjamin/Cummings Pub., 1995.

[GOL47] Goldstein, H., von Neumann, J., and Burks, A., “Report on the

mathematical and logical aspects of an electronic computing instrument”,

Institute of advanced study, 1947.

[HAN01] Hansen, P. (ed.), Classic Operating Systems, Springer-Verlag, 2001.

[HEN84] Hennessy, J., “VLSI Processor Architecture”, IEEE Trans. on

Computers, December 1984.

[HEN03] Hennessy, J., and Patterson, D., Computer Architecture: a quantitative

approach, 3rd ed. Morgan Kaufmann, 2003.

[HOA74] Hoare, C.A.R., Monitors : an operating system structuring concept,

Comm. ACM, 17(10):549-557, 1974.

[HOR83] Horowitz, E., Programming languages: a grand tour, Computer Science
Press, 1983.

[INT01] Intel Corp. Intel Pentium 4 processor optimization reference manual,

Document 248966-04. Aurora, CO, 2001.

[IOW99] Iowa State University, Department of computer science, http://

www.cs.iastate.edu/ jva/ jva-archive.shtml

[JOY00] Joy, B., (Ed), Steele, G., Gosling, J., Bracha, G. Java(TM) Language
Specification (2nd Ed), Addison Wesley, 2000.

[KAM90] Kamin, S. Programming Languages: An interpreter-based approach,

Addison-Wesley, 1990.

[KAT93] Katz, R., Contemporary Logic Design, Addison-Wesley Pub Co., 1993.

308

[KER78] Kernighan, B., and Ritchie, D., The C programming language, Prentice-

Hall, 1978.

[KID00] Kidder, T., The soul of a new machine, Back bay books, 2000.

[KLI05] Klienberg, J., and Tardos, E., Algorithm Design, Addison Wesley, 2005.

[KOG81] Kogge, P., The architecture of pipelined computers, McGraw-Hill,

1981.

[KOT03] Kotrajaras, V., and Chongstitvatana, P. “Nibbling Java Byte Code for

Resource-Critical Devices, Proc. of National Computer Science and

Engineering Conference,” 2003.

[KOO89] Koopman, J., Stack Computers: the new wave, Ellis Horwood, 1989.

[KOO90] Koopman, P., An Architecture for Combinator Graph Reduction,

Academic Press, 1990.

[LAV80] Lavington, S., Early British Computers, Manchester University Press,

1980.

[LEE95] Lee, J., Computer Pioneers, IEEE CS Press, Los Alamitos, California,

1995.

[LEH89] Lehoczky, J.P., Sha, L. and Ding, Y., “The rate monotonic scheduling

algorithm – Exact characterization and average case behavior”, Proc. IEEE

Real-time Systems Symp., pp. 166-171, 1989.

[LEI80] Leinbaugh, D.W., “Guaranteed response time in a hard real-time

environment”, . IEEE trans. on software engineering, January 1980.

[LEV89] Levy, H. and Eckhouse, R., Computer programming and

architecture: the VAX, 2nd ed., Digital press, 1989.

[LIN97] Lindholm, T. and Yellin, F. The Java™ Virtual Machine Specification,

Addison Wesley, 1997.

[LOU97] Louden, K., Compiler Construction: Principles and Practice, PWS

Pub., 1997.

[MAN92] Mange, D., Microprogrammed systems: an introduction to

firmware theory, Chapman & Hall, 1992.

[MAN98] Manchester university, computer science department, MARK1, http://

www.computer50.org/ mark1/ firstprog.html

[MAN] The university of Manchester celebrates the birth of the modern

computer, http://www.computer50.org/mark1/

309

[MCA65] McCarthy, J. et al. LISP 1.5 Programmer’s Manual, MIT press, 1965.

[MOO70] Moore, C., and Leach, G. FORTH : A language for interactive

computing, 1970.

[MOL88] Mollenhoff, C., Atanasoff: Forgotten Father of the Computer, ISU

Press, 1988.

[PAD81] Padegs, A., “System/360 and beyond”, IBM Journal of research and

development, September 1981.

[PAT82] Patterson, D., and Sequin, C., “A VLSI RISC”, Computer, Septermber,

1982.

[PAT85] Patterson, D., “Reduced Instruction Set Computers”, Communications

of the ACM, January, 1985.

[PAT98] Patterson, D., and Hennessy, J., Computer Organization and Design:

the hardware/software interface, 2nd ed. Morgan Kaufmann, 1998.

[PEL97] Peleg, A., Wilkie, S, and Weiser, U. “Intel MMX for Multimedia PCs,”

Communications of the ACM, January 1997.

[PRA01] Prasitjutrakul, S., Analysis and design of algorithms, NECTEC, 2001.

(in Thai).

[SCH97] Schaller, R., “Moore’s Law: Past, Present and Future.” IEEE Spectrum,

June, 1997.

[SEB04] Sebesta, R. Concepts of programming languages, 6th ed.

Pearson/Addison-Wesley, 2004.

[SHA88] Sha, L., An overview of real-time scheduling algorithms, Software

Engineering Institute, Carnegie Mellon University, 1988.

[SIE82] Siewiorek, D., Bell, C., and Newell, A. Computer structures: Principles

and examples. McGraw-Hill, 1982.

[SIL03] Silberschatz, A., Galvin, P., Gagne, G., Operating System Concepts, 6th

ed. John Wiley, 2003.

[STA88] Stallings, W., “Reduced instruction set computer architecture”, Proc. of

the IEEE, vol. 76, no. 1, January 1988, pp. 38-55.

[STA00] Stallings, W., Operating Systems, 4th ed. Prentice Hall, 2000.

[STE88] Steenkiste, P., Hennessy, J., “Lisp on a reduced-instruction-set

computer: characterization and optimization”, Computer, vol.21, no. 7, July

1988, pp.34-45.

310

[STN80] Stern, N. “Who invented the first electronic digital computer?” Annals

of the History of Computing, 2:4 (October), 375-376.

[STO93] Stone, H., High performance Computer architecture, McGraw-Hill,

1993.

[STR88] Sterling, L., “Constructing Meta-interpreters for Logic Programs”, in

Advanced School on Foundation of Logic Programming, Italy, 1988 .

[TAN01] Tanenbaum, A., Modern Operating Systems, Prentice Hall, 2001.

[THO70] Thornton, J., Design of a computer: the Control Data 6600, Scott,

Foresman and Company, 1970.

[TUR37] Turing, A., “On Computable Numbers, with an application to the

Entscheidungsproblem”, Proc. Lond. Math. Soc. (2) 42 pp 230-265 (1936-

7); correction ibid. 43, pp 544-546 (1937).

[VEN98] Venners, B. Inside the Java Virtual Machine, McGraw Hill, 1998.

[WAR83] Warren, D., “An abstract Prolog instruction set, Technical report 309,

SRI, 1983.

[WEX78] Wexelblat, R., History of programming languages, ACM Press, 1978.

[WIL53] Wilkes, M., and Stringer, J., “Microprogramming and the design of the

control circuits in an electronic digital computer”, Proc. of the Cambridge

philosophical society, April 1953. Reprinted in [SIE82].

[WIL85] Wilkes, M., Memoirs of a computer pioneer, MIT Press, 1985.

[WIR71] Wirth, N., “The programming language Pascal”, Acta Informatica,

1(1):35-63, 1971.

[WIR81] Wirth, N. “Pascal-S: a subset and its implementation”, in Pascal – The

language and its implementation, Barron, D. (ed.), pp. 199-260, Wiley, 1981.

311

Publications related to this project

[BUR04a] Burutarchanai, A., and Chongstitvatana, P., “Design of a two-phased

clocked control unit for performance enhancement of a stack processor”,

National Computer Science and Engineering Conference, Thailand, 21-22

Sept. 2004, pp.114-119.

[BUR04b] Burutarchanai, A., Kotrajaras, V. and Chongstitvatana, P., “A fast

instruction fetch unit for an embedded stack processor”, Proc. of Int. Conf.

on Information and Communication Technologies (ICT 2004), 18-19

November, 2004. Thailand.

[BUR04c] Burutarchanai, A., Nanthanavoot, P., Aporntewan, C.,

and Chongstitvatana, P., “A stack-based processor for resource efficient

embedded systems”, Proc. of IEEE TENCON 2004, 21-24 November 2004,

Thailand.

[CHO98] Chongstitvatana, P., “A multitasking environment for real-time
control”, The Engineering Research Fund, Faculty of Engineering,
Chulalongkorn University, research project number 132-MRD-2537, 1998.
http://www.cp.eng.chula.ac.th/faculty/pjw/r1/

[CHO97] Chongstitvatana, P., “Post processing optimization of byte-code
instructions by extension of its virtual machine”, Conf. of Electrical
Engineering, Bangkok, 1997.

[CHO02] Chongstitvatana, P., and Kotrajaras, V., “Instruction compression by
nibble coding: war on the old front”, IEEE Thailand section: Silver Jubilee
Symposium, 15 Nov 2002.

[CHO03] Chongstitvatana, P., “The Art of Instruction Set Design”, Electrical

Engineering Conference, Thailand, 2003.

[CHO05a] Chongstitvatana, P., “A compact code 16-bit processor for embedded

applications”, Joint conf. of computer science and software engineering, Nov

2005, Thailand.

[CHO05b] Chongstitvatana, P., “Self-Generating Systems: How a 10,000,0002-

line Compiler Assembles Itself,” Proc. of National Computer Science and

Engineering Conference, Bangkok, 2005.

[CHO06] Chongstitvatana, P., “Stack frame caching”, Proc. of National

Computer Science and Engineering Conference, Thailand, 2006.

312

[KOT03] Kotrajaras, V., and Chongstitvatana, P., “Nibbling Java Byte Code for

Resource-Critical Devices, Proc. of National Computer Science and

Engineering Conference,” 2003.

[NAN04] Nanthanavoot P. and Chongstitvatana, P., “Code-Size Reduction for

Embedded Systems using Bytecode Translation Unit”, Conf. of

Electrical/Electronics, Computer, Telecommunications, and Information

Technology (ECTI), Thailand, 13-14 May 2004.

[NAN05] Nanthanavoot, P., Burutarchanai, A., and Chongstitvatana, P.,

“Instruction packing for a 32-bit resource efficient processor,” National

Science and Technology Development Agency (NSTDA) Annual

Conference, Thailand, 27-30 March 2005 (in Thai).

[PIR03] Piromsopa, P., Bavonparadon, P., and Chongstitvatana, P., “Hardware
multiplexing: towards a resource efficient reconfigurable processor”, 3rd
Inter. Symposium on Communications and Information Technologies,
Thailand, 2003.

[WON99] Wongsiriprasert, C., and Chongstitvatana, P., “Performance
comparison between two virtual machine interpreters: stack-based vs.
register-based”, Proc. of 3rd Annual National Symposium on Computational
Science and Engineering, Bangkok, 1999, pp. 401-406.

[SRI06] Sattayawiboon, C., Sripornprasert, J., Tansutthiwess, S., Tonteerawong,

P., and Chongstitvatana, P., “A stack processor with integrated display circuit

for a low cost CD-ROM reading device”, ECTI International Conference,

May 10-13, Thailand, 2006.

[TCH98] Taechashong, P. and Chongstitvatana, P., “A VLSI design of a

load/store unit for a RISC microprocessor”, Proc. of The Second Annual

National Symposium on Computational Science and Engineering, Bangkok,

March 25-27, 1998, pp. 244-248.

