
Parallelization of Genetic Programming for Solving
Mobile Robot Navigation Problem on NOWs

Shisanu Tongchim1 and Prabhas Chongstitvatana2

Department of Computer Engineering, Faculty of Engineering,
Chulalongkorn University, Bangkok 10330, Thailand

Tel: (662) 218-6982, Fax: (662) 218-6955
E-mail: g41stc@cp.eng.chula.ac.th1, prabhas@chula.ac.th2

Abstract: Genetic Programming (GP) has been used to solve a large number of com-
plex problems in various application domains. However, it is known that GP may take
the substantial processing time to solve a given problem depending the time required
for the fitness evaluation. In this paper, the parallel implementations of GP for solving
the mobile robot navigation problem on NOWs (Networks of Workstations) were pro-
posed. Our objective was to reduce the execution time by distributing the task of the
serial GP to different processors. Two parallel implementations were examnied. The
first implemented a conventional coarse-grained model while the second used a het-
erogeneous coarse-grained model. The results showed that the second implementation
achieved superlinear speedup with the same quality of the answers.
Key words: Parallel Genetic Programming, Mobile Robot Navigation Problem

1. Introduction
The idea of using the perturbation to improve robust-
ness of the robot programs generated by genetic pro-
gramming (GP) was proposed in the previous study [1].
Despite the success of this technique, the obvious draw-
back is the substantial amount of processing time. How-
ever, the genetic programming process can be easily im-
plemented as a parallel algorithm since the fitness eval-
uation of a population of candidate solutions can be per-
formed independently.

This work presented two parallel implementations of
the previous GP program used in [1] on a dedicated
cluster of workstations. The first implementation was
based on a conventional coarse-grained model for paral-
lelization. The second implementation adopted the con-
cept of a heterogeneous coarse-grained model by dis-
tributing the objective functions, in an attempt to further
improve the speedup of the parallel algorithm.

The remaining sections are organized as follows: The
next section discusses the related work. Section 3 is
a description of the mobile robot navigation problem.
Section 4 describes a problem representation in the se-
rial GP. Section 5 shows the parallel solutions. Section
6 presents the experimental results. Finally, section 7
provides the conclusions of this work.

2. Related work
Cantú-Paz [2] presented the classifications and descrip-
tions of the most representative studies in the field of
parallel genetic algorithm. This survey concentrated
on a coarse-grained model since much research has fo-
cused their attention in this model.

Unlike genetic algorithm, there is little research on par-
allel GP. The earlier work of parallel GP was imple-
mented on a network of transputers by Koza and Andre
[3]. The problem of symbolic regression of the Boolean
even-5-parity function was used to make a compari-
son of the computational effort with several migration
rates. Their result showed that the parallel speedup was
greater than linear.

Dracopoulos and Kent [4] proposed the use of the
Bulk Synchronous Parallel Programming (BSP) model
to parallelize genetic programming. Two approaches of
parallel GP were examined on a cluster of Sun work-
stations. The first was based on a master-slave model
while the second was based on a coarse-grained model.
This work used the Artificial Ant problem to evaluate
the performance of two implementations. The results
showed that the achieved speedup was close to linear.
However, the implementations in this work were based
on general models for parallelization, the further studies
in order to improve the speedup were not investigated.

Oussaidène et al. [5] applied parallel genetic program-
ming to evolve trading model strategies. The paral-
lel scheme was based on a master-slave model. A
non-preemptive dynamic scheduling algorithm was pro-
posed to deal with uneven loads among processors. The
results showed that the acceptable trading models can
be acquired with near linear speedup.

A recent paper by Punch [6] presented the empirical
study about some problem-specific factors which af-
fect the effectiveness of parallel GP. Punch concluded
that the achieved performance of parallel GP by using a



coarse-grained model may vary according to the nature
of problems.

3. The mobile robot navigation problem
Our previous work [1], GP was used to generate a robot
control program for the obstacle avoidance task. The
task was to control a mobile robot from a starting point
to a target point in a simulated environment. The mobile
robot had a round shape with the ability to move for-
ward, turn left and turn right. The robot had sensors for
detecting the collision when the mobile robot crashed
into any obstacle and indicating whether the robot was
nearer to the target compared to its previous position.
The size of the simulated environment was 600×400
units. The environment was filled with the obstacles
which had several geometrical shapes (see Fig. 1).

The aim of the work was to generaterobustcontrol pro-
grams. The perturbation of the training environments
was proposed in order to improve the robustness of the
robot program. In the evolution process, each individual
was evaluated under many environments that were dif-
ferent from the original one. The result showed that the
robustness of the robot programs was improved by such
an approach. However, the considerable execution time
was required to evaluate the fitness of the population of
the robot programs.

4. Serial algorithm
The terminal set is composed of three primitive move-
ment controls {move, left , right } and one sensor
information {isnearer }. The function set is com-
posed of three functions {if-and , if-or , if-not }
with 4, 4 and 3 arguments respectively. Themove com-
mand moves the robot forward by 1 unit and returns
1 if the robot hits an obstacle and 0 if it does not hit
any obstacles. Theleft andright command change
the robot direction by 22.5◦ of its previous direction.
The isnearer indicates whether the robot is close to
the target in the previous move. The GP parameters are
shown in Table 1.

In the fitness evaluation, each robot program is executed
in a specific number of environments that are different
from the initial environment. The execution in each en-
vironment continues until either the robot achieves the
target point or reaches an iteration limit when the robot
executes 10,000 terminals. The fitness function is a sum
of the fitness value in each environment which is based
on the distance of the final position and the number of
moves. This fitness measurement scheme indicates that
the smaller the value is, the more efficient the program
will be.

f =
n∑
i=1

(10000× di +mi) (1)

where,

n is the number of environments

Table 1: GP parameters

Total population 6000
Crossover probability 0.9
Mutation probability 0.1
Selected individual 5% of Total population
Maximum generation 200

di is the distance of the final position from the target
position under the environmenti

mi is the number of moves under the environmenti

As mentioned earlier, the fitness evaluation is carried
out under several environments that are changed only
slightly from the original one. We randomly select the
obstacles and move them from their original positions
by 5 units in a random direction. The difference be-
tween each environment and the original environment
is defined as the percentage of disturbance (D).

D =
Nm
No
× 100 (2)

where,

Nm is the number of obstacles that are moved
No is the total number of obstacles

In the evolution process, the percentage of disturbance
is 20% and two experiments of the serial algorithm are
examined with 5 and 8 as the number of training envi-
ronments.

5. Parallel genetic programming
5.1 Concept
In a general coarse-grained model, the population is di-
vided into a few large subpopulations and these subpop-
ulations are maintained by different processors. When
the algorithm starts, all processors create their own ran-
dom subpopulations with different random seeds. Each
processor is responsible for selecting and mating in
its own subpopulation. Every predetermined interval,
some selected individuals are exchanged via a migra-
tion operator. The model is also known asIsland model
and the subpopulation is calleddeme[3].

Besides using the similar parameters on each node, a
coarse-grained model allows the subpopulations to use
different genetic parameters, coding, operators and ob-
jective functions since each subpopulation evolves inde-
pendently from the others. This model is called a het-
erogeneous coarse-grained model.

5.2 Implementation
We investigate two different models of implementation.
In the first model, each node uses the same genetic pa-
rameters and the environments for the fitness evaluation.



Starting
Point

Target

Movement Path

Obstacle

Figure 1: Simulated environment

6

3

4

5

7

8

1

2

Deme

Migration
direction

Figure 2: Ring topology

The connection is a ring topology (See Fig. 2). By syn-
chronizing migration, the communication is separated
into two steps. First, the nodes with odd number send
the population to another even number. Then, the nodes
with even number send the population to another odd
number in the same direction. The number of environ-
ments for the fitness evaluation is 5, and the top 10 indi-
viduals of each subpopulation are exchanged during the
migration phase which occurs every generation.

In the second model, we try another method to further
improve the speedup by using the concept of a hetero-
geneous coarse-grained model. The environments are
divided among the processing nodes. After a specific
number of generations, every subpopulation is migrated
between processors using a fully connected topology.
This scheme causes the reduction of robustness since
each individual has a shorter period in each training en-
vironment. To mend this problem, we increase the num-
ber of environments in each node. However, an impor-
tant consideration is that the number of environments in

each node should be less than the conventional model,
hence the amount of work is reduced . Several trials are
examined to find an appropriate value for the number
of environments (see Table 2). The migration is carried
out as follows: each node sends its subpopulation to all
other nodes by the broadcast function, this is repeated
for every node. The top 5% of individuals from each
subpopulation are exchanged during the migration.

In both models, the total population is held constantly
for the task and is divided equally among workstations.
The number of selected individuals, crossover opera-
tion, mutation operation, reproduction is the percentage
of the amount of the total population. The parallel effi-
ciency is measured by varying the number of nodes and
the results are averaged over 20 runs for each number of
nodes.

6. Results and discussion
The widely used performance evaluation of the parallel
algorithm is the parallel speedup. To make an adequate
comparison between the serial algorithm and parallel al-
gorithm, Cantú-Paz [7] suggests that the two must give
the same quality of the solution. In this paper, the qual-
ity of the solution is defined in terms ofrobustness. The
following section describes the robustness in more de-
tails.

6.1 Robustness
The robustness (R) is the percentage of the success of a
robot program in the unseen environments.

R =
Ns
Nt
× 100 (3)

where,

Ns is the number of success runs
Nt is the number of total runs



Table 2: Experimental parameters of the second model

Processors Population size Environments Migration interval
(per node) (per node) (generation)

1 6000 8 NA
2 3000 7 100
4 1500 4 50
6 1000 3 34
10 600 2 20

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

1 node
2 nodes
4 nodes
6 nodes
8 nodes

10 nodes

R
ob

us
tn

es
s 

(%
)

Disturbance (%)

Figure 3: The first model robustness

We use the robustness graph which illustrates the ro-
bustness against the percentage of disturbance to com-
pare the ability of the robot control programs from the
serial and parallel algorithm. The robustness is averaged
from the best individual from 20 runs in each algorithm,
measured under 1000 new testing environments and the
percentage of disturbance is varied from 0-100%. The
robustness graph of the first model is shown in Fig. 3
while the robustness graph of the second model is de-
picted in Fig. 4. The robustness graphs of the first model
and the second model are compared against the robust-
ness from the serial algorithm with 5 and 8 training en-
vironments respectively. Both graphs show that the par-
allel solutions and serial solutions have the same robust-
ness.

6.2 Speedup
The parallel speedup (Sp) is defined as the ratio of the
serial execution time (Ts) to the parallel execution time
onn processors (Tn).

Sp =
Ts
Tn

(4)

The speedup of the first model is illustrated in Fig. 5.
The graph shows that near linear speedup can be ac-
quired with a small degradation in the speedup as the
number of processors increases. The achieved speedup
is caused from the benefit of the multiple populations
distributed across separate processors.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

1 node
2 nodes

6 nodes
10 nodes

4 nodes

Disturbance (%)

R
ob

us
tn

es
s 

(%
)

Figure 4: The second model robustness

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10

Speedup
Ideal

Sp
ee

du
p

Number of Processors

Figure 5: Speedup of the first model

The speedup of the second model is shown in Fig. 6.
The graph shows that this model achieves superlinear
speedup. This significant performance is caused by two
factors; the speedup from the populations distributed
across different processors and the speedup obtained by
distributing the training environments. However, there
is a degradation of the speedup for 10 processors. Thus,
the next section investigates the further detailed analysis
of the communication overhead.

6.3 Communication overhead
Figure 7 shows the percentage of the time spent in the
communication overhead of the first implementation.
Since the relative time spent in the communication over-



1

4

7

10

13

16

19

22

25

1 2 3 4 5 6 7 8 9 10

Speedup
Ideal

Sp
ee

du
p

Number of Processors

Figure 6: Speedup of the second model

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

2 4 6 8 10

Number of Processors

P
er

ce
nt

Figure 7: Percentage of time spent in the communi-
cation overhead (the first model)

head is relatively small – i.e. less than 8% for 10 proces-
sors, the achieved speedup of the first implementation is
close to the number of processors used.

The percentage of the time spent in the communication
overhead of the second implementation is illustrated in
Fig. 8. The graph indicates a sharp increase in the com-
munication overhead in 10 processors which obliterates
the benefit of additional processors.

Figure 9 shows the absolute time spent in major commu-
nication functions of the second implementation. The
communication overhead is the sum of the communica-
tion time and the barrier time. The communication time
is the sum of the time spent on sending and on receiving
the information among the processors. The barrier time
is caused from uneven work loads among the processors
due to the different time required for the evaluation of
the robot programs. In case of a small number of pro-
cessors, the barrier synchronization is identified to be
the primary source of the overhead. On the contrary, the
broadcast time is the major source of the overhead in
case of a large number of processors.

7. Conclusions and future work
This work investigated the use of parallel processing

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 6 10

Number of Processors

P
er

ce
nt

Figure 8: Percentage of time spent in the communi-
cation overhead (the second model)

0

200

400

600

800

1000

1200

1400

2 4 6 10

Number of Processors

T
im

e 
in

 s
ec

on
ds

MPI_Bcast MPI_Barrier

Figure 9: Absolute time spent in the communication
overhead (the second model)



in order to reduce the execution time of genetic pro-
gramming. The problem chosen to examine the parallel
implementations was the mobile robot navigation prob-
lem. Two parallel approaches were examined. The ex-
periments compared the performance of the serial GP
and parallel GP with varying the number of processing
nodes. The performance analysis of the parallel algo-
rithm was measured in terms of the parallel speedup.
The experimental results showed that the speedup of the
second method was greater than linear and the solutions
from the serial and parallel method had the similar qual-
ity.

Based on the detailed analysis of the communication
overhead, the direction of future work will focused on
reducing the communication overhead. It is expected
that the further study will enable the achieved speedup
to be improved.

References
[1] Chongstitvatana, P., Improving robustness of robot
programs generated by genetic programming for dy-
namic environments,Proc. of IEEE Asia Pacific Con-
ference on Circuits and Systems, pp. 523–526, 1998.

[2] Cantú-Paz, E., A survey of parallel genetic algo-
rithms, Calculateurs Paralleles, Reseaux et Systems
Repartis, vol. 10, no. 2, pp. 141–171, 1998.

[3] Koza, J.R. and Andre, D., Parallel genetic program-
ming on a network of transputers,Proc. of the Work-
shop on Genetic Programming: From Theory to Real-
World Applications. University of Rochester. National
Resource Laboratory for the Study of Brain and Behav-
ior. Technical Report 95-2, pp. 111–120, 1995.

[4] Dracopoulos, D.C. and Kent, S., Bulk synchronous
parallelisation of genetic programming,Proc. of the
Third International Workshop on Applied Parallel Com-
puting in Industrial Problems and Optimization (PARA
’96), Springer Verlag, Berlin, 1996.

[5] Oussaidène, M., Chopard, B., Pictet, O.V. and
Tomassini, M., Parallel genetic programming: An ap-
plication to trading models evolution,Proc. of the First
Annual Genetic Programming Conference, MIT Press,
Cambridge Massachusets, pp. 357–380, 1996.

[6] Punch, B., How effective are multiple populations
in genetic programming,Proc. of the Third Annual
Genetic Programming Conference, San Francisco, CA,
Morgan Kaufmann, pp. 308–313, 1998.

[7] Cantú-Paz, E., Designing efficient and accurate par-
allel genetic algorithms,PhD thesis, University of Illi-
nois at Urbana-Champaign, 1999.


