
Using Non-Determinism to Improve the Robustness of Robot Programs
Generated by Genetic Programming

Thanut Sukkarnjanonth1and Prabhas Chongstitvatana2

Department of Computer Engineering
Chulalongkorn University

Bangkok, Thailand
Email: g41tsr@cp.eng.chula.ac.th1, prabhas@chula.ac.th2

Abstract: Robustness is essential for programs generated by Genetic
Programming (GP). This paper presents a method to improve the robustness.
The method employs non-determinism in two ways: one is to evolve robot
programs in noisy environments and another is to use probabilistic branch in
the function set. The experiment is carried out on robot navigation problems.
The result of the experiment shows that the robustness of robot programs has
been improved. The analysis shows that the robustness is caused by the
acquired “experience” and the amount of reuse of this experience while
performing the task.
Key words: Robustness, Robot programs, Non-determinism, Evolutionary
Computation, Genetic Programming

1. Introduction
Artificial Intelligence (AI) has been widely used to
automatically generate programs. Genetic
Programming (GP) [1] is one of methods that
becomes popular in automatic generating programs.

Our experiment use GP to generate programs for
controlling a robot. GP is performed in a simulation
because of the speed limit of real robots. The robot
programs work successfully in the environment that
they are evolved on, but when they are transferred
to the real environment some programs may not
work properly. This failure comes from many
factors. For example, they fail to work when the
environment is changed. The slight changing
between the real environment and the simulated
environment can lead to failure. Therefore,
programs generated by GP are brittle or lack of
robustness.

The goal of this paper is to improve the robustness.
We present an approach that combines two
methods, both of which can be regarded as using
non-determinism. The first method presented in [3],
[5] uses perturbation to create multiple
environments that are used to evolve robot
programs. The second method presented in [4] uses
probabilistic branch in the function set to create
“variety” of robot actions when facing an unknown
environment.

This paper is structured as follows: a short
introduction to GP and review of related works is
given in the Section 2. The robot navigation

problems and GP set-up are described in Section 3.
Section 4 explains how to improve the robustness.
The result of this experiment is presented in Section
5. Section 6 analyses the robustness. Section 7 is
the conclusion of our work and discusses the future
work.

2. Background
First subsection explains the overview of Genetic
Programming. Second subsection discusses other
related works.

2.1. Genetic Programming
Genetic Programming is an extension of the
Genetic Algorithm [2]. GP is a technique for
automatic generation of computer programs to
solve a specified problem without explicit
programming. It does this by performing a search
and using operations that are inspired by natural
evolution. There are three main phases in the GP
technique. First, GP constructs an initial population
(programs). Second, evaluating each programs in
the population for fitness values. Third,
reproducing better programs, using genetic
crossover and mutation to create new programs.
Phase 2 and 3 are iterated until the solution is found
or the terminating criteria are met.

2.2. Related Works
In [3], GP was used to generate robot programs that
control the robot in a navigation problem.
Perturbation has been used to improve the
robustness by inject it into the simulation during the
evolutionary process, resulting robot programs are

more robust as they have evolved to tolerate change
in the environments. The result of the experiment
shows that the robustness depends on the size of
experience that the robot program acquired during
evolutionary process.

In [4], adding a special probabilistic function, 2-
way branch, to improve the robustness. The result
indicates that robustness is improved by
probabilistic function. The analysis shows that
robot programs that express variety of behaviors in
the different environment have more robustness.

There are many other attempts to enhance
robustness of programs. Reynolds [6] produced
programs to control a robot moving in a narrow
corridor by adding noise in robot operations. The
result shows programs are not robust since there are
no programs that control robot moving along
corridor without crash. They concluded that the
problem is very difficult or is caused by the
improper use of GP parameters. Ito, Iba, and
Kimura [7] used special branching functions to
enhance robustness in the box moving problem. In
order to test robustness of generated programs, they
change the initial condition at each generation and
added noise to robot’s sensors. They concluded that
robot behave robustly due to the redundancy of the
programs. McNutt [8] used co-evolution to create
robot programs. The result indicates 98% of robot
programs can navigate the course successfully.

3. The Experiment
This section describes robot navigation problems,
the details of GP run for this problem without any
method to improve robustness, and how to evaluate
robustness.

3.1. Robot Navigation Problems
The task is to control a mobile robot from a starting
point to a target point in an environment full of
obstacles. The simulation is used. The size of the
simulated environment is 550 x 750 units
surrounded by the wall. There are many obstacles.
The obstacles have four geometrical shapes: right-
angled triangle, rectangle, circle, and hexagon.
Each shape has average size 20 x 20 units. The total
obstacle area is 20 percent of the whole area. The
mobile robot is a circle with a 5 units radius.

3.2. Implementation details of GP
To solve this problem, GP is used to generate robot
controlling program. The implementation details of
GP are described as follows. The terminal set that
use in this problem is

T = {left, right , forward , isnear}

left rotates a robot anticlockwise and right
rotates a robot clockwise. Both terminals change
robot direction by 22.5o degree. forward moves a
robot in forward direction by 1 unit. isnear
outputs 1 if the robot is moving nearer to the target
compared to the previous move and 0 otherwise.

The function set comprises of

F = {if-and, if-or, if-not}

There are three standard functions with the arity 4,
4, and 3 respectively. The semantic of these three
functions are as same as basic control flow
statement in programming language. Figure 1
shows a part of generated program.

The fitness function is given by:

f = (10,000 x D) + T (1)

where D is Euclidean distance from robot position
to target position after the program stops and T is
number of symbols (terminal and function) that is
executed.

For parameter setting, we use 1,500 programs for
the population. The reproduction has been applied
at 10% rate, the crossover rate is 90 %, the average
initial program size is 180 symbols, and the
mutation operator is not used. The maximum
number of generation is 100. The criteria to stop
execution are when the number of executed
symbols exceeds 10,000 symbols or the robot
reaches the target point. Figure 2 shows a simulated
environment and the robot motions.

...(if-not forward left (if-and
forward isnear right forward))...

Figure 1: A part of robot program

3.3. Robustness Testing
To test the robustness of programs, we create the
new environment perturbed from the original
environment by randomly changing obstacle
positions. The displacement is eight units. We
define the robustness as an ability of a program to
control the robot to reach the target in these new
environments. Robustness value can be calculated
from:

Robustness= (2)

10,000 different environments are used to test the
robustness of robots program. The new
environments are classified into 10 categories,
determined by the percent of disturbance from 10%
to 100%, which each category has 1,000
environments. The percent of disturbance is the
number of obstacles that have been moved.

4. Improving Robustness
In this section we describe the use of non-
determinism to improve robustness. The method
employs non-determinism in two ways: one is to
evolve robot programs in noisy environments and
another is to use probabilistic branch in the function
set.

In ordinary evolutionary process, GP is evolved in a
static environment. To construct a dynamic
environment, perturbation is injected into an
environment then use this noisy environment as
multiple environments to evolve solutions. After
analysing the data from [5], this work uses 30
environments with 30% disturbance. The fitness is
computed by averaging fitness value from every
environment.

A probabilistic branch promotes variation in robot
actions. The eio2 function branches to one or
another path based on a flip of an unbiased coin.
When running a program which has this function,
trajectory of the robot varies from run to run.

Consequently, we evaluate and compute average
fitness value over six runs in each environment.

The above two forms of non-determinism can be
combined as they are of different types. The first
one has a “deterministic” program that has been
evolved to tolerate the changing environment. The
second one has a “non-deterministic” program that
can act differently to anticipate the change in an
environment.

Combining the two can be achieved by evolving
robot programs in multiple environments and use
eio2 in the function set. One program evolves in
30 environments with 30% disturbance. In each
environment the evaluation is repeated six times.
Totally one program runs 180 times for fitness
evaluation. Fitness value will be calculated by
averaging these fitness values.

5. Results
In order to confirm the effectiveness of the
combined method. We run the experiment to
compare the robustness of four methods: (1)
Normal, GP with no improving method, (2)
Perturbation, GP using 30 environments with 30%
disturbance (3) EIO, GP using special function
eio2 and, (4) P+EIO, GP using both Perturbation
and eio2.

We run each method 20 times with the different
initial population. The robustness of each method is
computed by using the average of robustness from
every run, categorized by percent of disturbance.
The robustness curve of this experiment is shown in
Figure 3.

As shown in Figure 3, the lowest curve represents
Normal method. We use this curve as a base line to
compare other methods. EIO is about 10% better
than the base line. Perturbation is about 40% better
than the base line. P+EIO is the best with 60%
improvement over the base line. Hence, the
combined method is very robust. Note that the more

Figure 2: The simulated environment and the
robot motions

100
tenvironmenofnumberTotal

runsuccessfulofNumbers
?

Figure 3: The robustness curve

0
10
20
30
40
50
60
70
80
90

100

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Disturbance (%)

Ro
bu

stn
ess

 (%
)

P+EIO P EIO Normal

P+EIO

P

EIO

Base line

disturbance, the less is robustness and the more gap
between each method.

6. Analysis of Robustness
In this section, we define ‘trace’ of programs and
use it to explain ‘experience’ which is the cause of
robustness.

6.1. Trace
The programs that created from GP are trees. A
trace is the executed path on a tree from root to
leaf. A program may have many traces, depending
on what path is executed. Figure 4 illustrates a
structure of a robot program.

The robot program in Figure 4 has possible 3
traces: {if-not forward left}, {if-not
forward eio2 right}, {if-not
forward eio2 isnear}. When running a
program in an environment we will acquire a
particular set of traces.

6.2. Experience
The experience is the reuse of the trace acquired
during evolution (in the final generation) while
navigating in the testing environment, depicted as S
in Figure 5 shown below.

Set Y denotes to all possible traces, which a
program has. Set L denotes the set of trace acquired
during evolution. Set A denotes the trace in testing
environments. The intersection, S is the experience.
The experience is calculated from the following
formula.

(3)

Figure 6 depicts the experience of each method
grouped by percent of disturbance. From Figure 6,
the method P+Eio has highest experience followed
by Perturbation, Eio and Normal respectively. This
result corresponds to the robustness curve.
Therefore we found the relation of the experience
and the robustness. The correlation coefficient
between experience and robustness is 0.99537.

7. Conclusion and Future Work
This paper presented the use of non-determinism to
improve robustness. The technique is the
combination of using perturbation and probabilistic
branch. The result shows the merit of this
combination over using each technique alone. The
analysis shows that the robustness can be attributed
to the use of experience acquired during the
evolution. Our future research will be concentrated
on testing this concept on a real robot.

8. References
[1] Koza, J. R. Genetic Programming: On the

programming of computers by means of
natural selection, MIT Press, 1992.

[2] Holland, J. H. Adaptation in Natural and
Artificial Systems, University of Michigan
Press, 1975.

[3] Chongstitvatana, P. Using Perturbation to
Improve Robustness of Solutions Generated by
Genetic Programming for Robot Learning,
Journal of Circuits, Systems, and Computers,
Vol. 9: pp. 133-143, 1999.

[4] Prateeptongkum, M. and Chongstitvatana, P.
Improving the robustness of a genetic
programming learning method by function set
tuning, In Proc. of Third Annual National
Symposium on Computational Science and
Engineering (ANSCSE99), pp. 301-305, 1999.

[5] Nopsuwanchai, R. and Chongstitvatana, P.
Analysis of robustness of robot programs
generated by genetic programming, In Proc. of

eio2

if-not

forward

isnearright

left

Figure 4: A robot program

AL S

Figure 5: The Experience

Y

Figure 6: Comparing experiences of the
four experiments

%100
A

AL
Experience ?

?
?

0
20

40
60

80
100

10 20 30 40 50 60 70 80 90 100

Disturbance (%)
Ex

pe
rie

nce
 (%

)

P+EIO P EIO Normal

First Asian Symposium on Industrial
Automation and Robotics, 1999.

[6] Reynolds, C. W. Evolution of obstacle
avoidance behavior using noise to promote
robust solution, Advance in Genetic
Programming, pp.221-241, MIT Press, 1994.

[7] Ito, T. Iba, H. and Kimura, M. Robustness of
robot programs generated by genetic
programming, In Proc. Conf. Genetic
Programming 96, MIT Press, 1996.

[8] McNutt, G. Using Co-Evolution to Produce
Robust Robot Control, In Proc. Conf. Decision
and Control 36th, 1997.

