Nearest Neighbor Migration in Parallel Genetic Programming for
Automatic Robot Programming

Shisanu Tongchim
Department of Computer Engineering
Chulalongkorn University
Bangkok 10330, Thailand
g41stc@cp.eng.chula.ac.th

Abstract

This work presents a study of parallelization of ge-
netic programming for automatically creating a robot
control program in a mobile robot navigation problem.
A nearest neighbor migration topology is proposed to
reduce the communication time. This study compares
the performance both in terms of the solution quality
and the gain in execution time. The timing analysis is
investigated to give insight into the behavior of paral-
lel implementations. The results show that the parallel
algorithm with asynchronous migration using 10 pro-
cessors is 32 times faster than the serial algorithm.

Keywords : Parallel Genetic Programming, Mobile
Robot Navigation Problem

1 Introduction

In the past few years, evolutionary techniques have
been successfully applied to automatic design of the
robot control program. These techniques have been
accepted as promising methods to eliminate the diffi-
culties of the human design for programming the com-
plex behaviors of robots. From the difference in evo-
lutionary procedure, these techniques can be classified
into various methods, e.g. genetic algorithm (GA), ge-
netic programming (GP), evolutionary strategies (ES)
and evolutionary programs (EP).

In the previous work [1], GP was used to per-
form automatically generate mobile robot control pro-
grams. Despite the success of using GP in automatic
robot programming, the programs generated by GP
were found to lack robustness. The programs may fail
from a change in the working environment. Hence,
the use of multiple environments in the evolution pro-
cess was proposed in order to improve the robustness
of the robot programs. The obvious drawback of this
method is that it uses a lot of computation time.

The limitation of the processing power from a sin-
gle processor and the availability of low-cost multi-
processor system [3] has led to the investigation of
parallelization of the GP process on a clustered com-
puter. Our previous work [2] proposed the parallel
implementations that reduced the processing time by
using a coarse-grained model. However, the previous
work showed that the reduction of the execution time

Prabhas Chongstitvatana
Department of Computer Engineering
Chulalongkorn University
Bangkok 10330, Thailand
prabhas@chula.ac.th

was limited when using a large number of processors.
The source of this limitation was the problem in the
communication function that we used.

In this present study, we extend the previous work
in an attempt to improve the reduction of the execu-
tion time. By changing the communication topology
to a loosely connected topology, the ring topology, the
communication is limited to occur between the neigh-
boring nodes. This helps to reduce the communica-
tion overhead and improve the parallel performance.
In addition, the behavior of the parallel program is ob-
served in order to make the performance analysis.

The remaining sections are organized as follows:
The next section provides a brief introduction about
GP, the mobile robot navigation problem and paral-
lel GP. Section 3 presents the experimental results and
discussion. Finally, section 4 provides the conclusions
of this work.

2 Background
2.1 Genetic Programming

Genetic programming (GP) works with a group of
candidate solutions which are randomly generated at
the beginning of the algorithm. These candidate so-
lutions are computer programs. By simulating natural
evolution, GP works as an iterative procedure which is
referred to as a generation. Each solution is evaluated
with the objective function to determine the quality of
each solution, called the fitness value. The principle
of the evolution is that the solution with the high fit-
ness value has more chance to be selected and produce
offspring.

After the evaluation is performed, some individ-
uals are selected with the probability depending on
their fitness values. Then, a set of genetic operators,
i.e. crossover and mutation, transforms the selected
individuals into the new population of candidate solu-
tions. The algorithm replaces the old population with
the new population and repeats the whole process with
the new population. This continues until the fitness
value indicates that the goal is achieved or repetition
limit is reached.

2.2 Mobile Robot Navigation Problem

The problem is to control an autonomous mobile
robot from a starting point to a target pointin the sim-
ulated environment. The mobile robot has a round
shape with the ability to move forward, turn left and
turn right. The robot has sensors for detecting the
collision with the obstacle and indicating whether the
robot is nearer to the target compared to its previous
position. The size of the simulated environment is
600 x 400 units. The environment is filled with obsta-
cles which have several geometrical shapes (see figure
1).

In the previous work [1], GP was used to generate
the robot control program. The aim of the work was
to generateobustcontrol programs. The use of mul-
tiple training environments was proposed in order to
improve the robustness of the robot programs. In the
evolution process, each individual was evaluated un-
der many environments that were different from the
original one. The findings showed that the robustness
of the robot programs is improved as the number of
environments is increased. Despite the success of im-
proving the robustness by such a method, a substantial
processing time was required to evaluate the fitness of
the population of the robot programs.

2.3 Parallel Genetic Programming

As the idea of GP was developed from the GA
foundation, the model of parallel GP was also adopted
from the development of parallel GA. Several propos-
als on parallel implementations of GA in various de-
signs have been extensively investigated. In the ar-
ticle [4], Canti-Paz presented the classifications and
descriptions of the most representative studies in the
field of parallel genetic algorithm. This survey con-
centrated on a coarse-grained model since much re-
search has focused their attention on this model.

In a general coarse-grained parallelization, the
population is divided into a few large subpopulations
and these subpopulations are maintained by different
processors. When the algorithm starts, all processors
create their own random subpopulations with different
random seeds. After each processing node evaluates
the fitness value, some selected individuals are ex-
changed via a migration operator. Generally speaking,
each processor runs serial GA with the smaller popu-
lation and some selected individuals migrate among
the processors.

The migration can be implemented as synchronous
and asynchronous. In synchronous migration, all
nodes proceed at their own rates and synchronize
when the migration occurs. The problem of syn-
chronous migration is that it can cause uneven work
loads among processors due to the different rate of
evolution. In asynchronous migration, the migration
occurs without relating to the state of all processors.
Asynchronous migration can reduce the wait time re-
quired for all processors.

The earlier work of parallel GP using a coarse-
grained model was implemented on a network of
transputers by Koza and Andre [5]. The problem
of symbolic regression of the Boolean even-5-parity
function was used to make a comparison of the com-
putational effort with several migration rates. Their
result showed that the parallel speedup was greater
than linear.

In our previous work [6], a parallel implementa-
tion of GP for solving the mobile robot navigation
problem was conducted. The model of parallel GP
was a coarse-grained model. All processing nodes
used the same genetic parameters and training envi-
ronments. The benefit of using multiple processors
was measured in terms of parallel speedup. The re-
sults showed that the achieved speedup is close to lin-
ear while maintaining the solution quality.

From the experience in the parallel GP implemen-
tation, we found that the solution quality can be in-
creased by using different environments in each pro-
cessing node. This means that the number of envi-
ronments on each node can be reduced while achiev-
ing the same level of the solution quality. Accord-
ingly, the processing time required by the GP process
will be further reduced. The later work [2] used this
concept to improve the parallel performance. Both
synchronous and asynchronous migrations were con-
ducted. The results showed that asynchronous migra-
tion has a slightly better performance but the perfor-
mance degrades dramatically as the number of proces-
sors increases.

In the work [2], the migration was carried out as
follows: each node broadcast its subpopulation to all
other nodes byMPI_Bcast function, this was re-
peated for every node. The top 5% of individuals from
each subpopulation were exchanged during the migra-
tion. From the analysis of the communication opera-
tions, the broadcast function took substantial time to
finish the communication at a large number of proces-
sors.

In this work, we further examine the parallel imple-
mentation by using another topology. The goal is to
reduce the communication time and improve the par-
allel performance. The change in migration topology
may effect the solution quality. Therefore, the qual-
ity of solutions are also considered as an important
aspect.

3 Experiment
3.1 Experimental Design

In order to reduce the communication time, the mi-
gration is limited to occur between the neighboring
nodes. By using the ring topology, migrants are sent
in one direction. Asynchronous and synchronous mi-
gration are conducted as in the previous work [2].

The population size on each processor is deter-
mined by dividing the total population size by the
number of processors. Due to the probabilistic na-

Obstacle

|F-Target

Starting
Paint

Movement Path

Figure 1: Simulated Environment of the Mobile Robot Navigation Problem

Table 1: Experimental Parameters

Number of Processors
1 | 2 | 4 | 6 | 10
Population sizé 6000 | 3000 | 1500 | 1000 | 600
Environment$ 8 7 4 3 2
Migration intervaf™ | NA 100 50 34 20

* per node
** generation

ture of GP, all results are averaged from 20 indepen-
dent runs. As stated before, the use of different envi-
ronments in each processor can improve the solution
quality. Therefore, the number of environments can
be reduced to give the same level of the solution qual-
ity (see table 1). The rest of the parameters are similar
to the parameters that were used in [2].

The parallel algorithm is implemented on a dedi-
cated cluster of PC workstations with 350 MHz Pen-
tium Il processors, each with 64 Mb of RAM, and run-
ning Linux as an operating system. These machines
are connected via 10 Mbps ethernet cabling. For the
programming environment, MPI is selected as a mes-
sage passing library.

3.2 Experimental Results
3.2.1 Robustness

The robustness is defined as the quality of the solu-
tions generated by GP. The robustness indicates the
ability of the robot programs in the new environments
that differ from the set of training environments. In the
robustness measurement, the robot program is eval-
uated under the testing environments varying in the
level of difficulty. The difficulty of each testing en-
vironment is defined as the percentage of disturbance

(D).

N,
m 1
o ®

whereN,, is the number of obstacles that are moved,
N, is total number of obstacles

The robustness is calculated by varying the per-
centage of disturbance from 0-100% and using 1000
testing environments. The robustness graph is de-
picted in figure 2. Most of the parallel experiments ob-
tain higher robustness than the serial algorithm, while
the robustness of the robot programs generated by us-
ing synchronous migration at 4 processors and asyn-
chronous migration at 2 processors is close to the ro-
bustness from the serial GA.

D = x 100

3.2.2 Relative Time

In the previous work, the parallel speedup was used
to measure the gain in execution time from the ben-
efit of using multiple processors. The speedup is the
ratio of the serial execution time to the parallel ex-
ecution time. This definition relies on the assump-
tion that both algorithms must do the same amount
of work [7]. However, the use of parallel speedup has
led to some controversies in a coarse-grained model
[8, 9]. Many studies have claimed that the superlin-
ear speedup has been achieved. The source of this
superlinear speedup is that the parallel algorithm per-
forms less work than the serial algorithm. Thus, the
superlinear speedup is not truly achieved.

In this study, we want to avoid this disputation. The
ratio of the serial execution time and parallel execu-
tion time is defined as the relative time. This calcula-
tion is based on the comparison of the solution quality.
The serial algorithm and parallel algorithm must give
the same quality of solutions.

1Speedup is greater than the number of processors used.

The relative time is illustrated in figure 3. The
graph shows a substantial increase of the relative time
as a function of the number of processors used. The
relative time is greater than the number of processors
used. The reason is that the total amount of work in
the parallel algorithm is less than the serial algorithm.
The reduction of work is caused by the divided pop-
ulations and the smaller number of environments in
each node.

As compared with the relative time in the previ-
ous study (figure 4), the change in migration topology
helps to further increase the relative time, especially
for a large number of processors. In addition, the im-
provement of the asynchronous implementation over
the synchronous implementation in the present study
is better than the previous work.

3.3 Performance Analysis

Figure 5 illustrates the time spent in the commu-
nication section and computation section of the im-
plementations. The percentage of communication
slightly increases as the number of processors in-
creases. Asynchronous migration helps to reduce the
communication overhead. It is noted that when com-
paring asynchronous migration to synchronous mi-
gration, the communication overhead nearly vanishes.
However, the 8.7% of communication overhead still
appears in 10 processors.

To gain insight into the behavior of the parallel al-
gorithm, the detailed analysis of the communication
overhead is investigated. Figure 6 shows the absolute
time spent in major functions of the communication.
The barrier time is the time spent on waiting for all
processes to reach the same point of execution. The
sending and receiving time is the time used to send
and receive migrants between neighboring processors.

Asynchronous migration can reduce only the bar-
rier time. In 10 processors, the sending and receiving
time increases dramatically compared with 6 proces-
sors. This is due to the fact that all nodes are con-
nected to an ethernet hub. When increasing the num-
ber of nodes, it also increases packet collision proba-
bility. Thus, the percentage of communication over-
head is not reduced as much as when using a small
number of processors.

4 Conclusions

This study presents an improvement of parallel
genetic programming for solving the mobile robot
navigation problem. The parallel implementations
are based on a coarse-grained model for paralleliza-
tion. Asynchronous and synchronous parallelization
approaches are examined on a clustered computer.

In order to avoid a controversy in the speedup def-
inition, the relative time is used in the performance
comparison. The change in migration topology results
in an improvement of the relative time while keeping
the level of solution quality. In asynchronous migra-
tion, the relative time using 10 processors increases to

32. This means that the parallel algorithm is 32 times
faster than the serial algorithm by using 10 processors.

References

[1] Chongstitvatana, P., “Improving robustness of
robot programs generated by genetic program-
ming for dynamic environments”, Proceedings
of IEEE Asia Pacific Conference on Circuits
and Systems, pp.523-526, Chaingmai, Thailand,
1998.

[2] Tongchim, S. and Chongstitvatana, P., “Compari-
son between synchronous and asynchronous im-
plementation of parallel genetic programming”,
Proceedings of the Fifth International Symposium
on Artificial Life and Robotics (AROB), pp.251-

254, QOita, Japan, 2000.

[3] Becker, D.J., Sterling, T., Savarese, D., Dor-
band, J.E., Ranawak, U.A. and Packer, C.V,
“BEOWULF: A parallel workstation for scientific

computation”, Proceedings of International Con-

ference on Parallel Processing, 1995.

[4] Canti-Paz, E., “A survey of parallel genetic algo-
rithms”, Calculateurs Paralles, Reseaux et Sys-

tems Repartis, Vol. 10, No. 2, pp.141-171, 1998.
[5]

Koza, J.R. and Andre, D., “Parallel genetic pro-
gramming on a network of transputers”, Proceed-
ings of the Workshop on Genetic Programming:
From Theory to Real-World Applications, Uni-
versity of Rochester, National Resource Labora-
tory for the Study of Brain and Behavior, Techni-

cal Report 95-2, pp.111-120, 1995.

[6] Tongchim, S. and Chongstitvatana, P., “Speedup
improvement on automatic robot programming
by parallel genetic programming”, Proceedings of
IEEE International Symposium on Intelligent Sig-
nal Processing and Communication Systems (IS-
PACS), pp.77-80, Phuket, Thailand, 1999.

[7] Gustafson, J., “Fixed time, Tiered memory,
and Superlinear speedup”, Proceedings of the
Fifth Distributed Memory Computing Conference
(DMCC5), 1990.

Punch, B., “How effective are multiple poplula-
tions in genetic programming”, Proceedings of
the Third Annual Conference in Genetic Program-
ming, pp.308-313, 1998.

[9] Canti-Paz, E., Designing efficient and accurate
parallel genetic algorithms, PhD thesis, Univer-
sity of lllinois at Urbana-Champaign, 1999.

Robustness (%)

Relative Time

Relative Time

100

90

80

70

60

50

30
0

10

20

30 40 50 60 70
Disturbance (%)

Figure 2: Robustness

Synchronous - +--
Asynchronous - -3 --

T
Linear ——

Number of Processors

Figure 3: Relative Time

35

30

25

20 -

15

Synchronous - +--
Asynchronous --3--

T
Linear ——

\
&
=

Number of Processors

Figure 4: Relative Time of the Previous Work

‘ B Communication ® Computation ‘

100% 1
90% T
80% 1
70% 7
60% T
50% 1

Percent

40% T
30% T
20% 7
10% 7
0% =

2(Syn) 2(Asyn) 4(Syn) 4(Asyn) 6(Syn) 6(Asyn) 10(Syn) 10 (Asyn)

Number of Processors

Figure 5: Percentage of Time Spent in Computation and Communication

B Barrier MSend & Receive

1200

1000

800

600 7

Time in seconds

400 7

200 T

2(Syn) 2(Asyn) 4(Syn) 4(Asyn) 6(Syn) 6(Asyn) 10(Syn) 10 (Asyn)

Number of Processors

Figure 6: Absolute Time Spent in Communication

	Session Schedule

