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Parallel genetic algorithm with parameter adaptation
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This paper presents an adaptive algorithm that can adjust parameters of genetic algorithm according to the
observed performance. The parameter adaptation occurs in parallel to the running of genetic algorithm. The
proposed method is compared with the algorithms that use random parameter sets and a standard parameter
set. The experimental results show that the proposed method offers two advantages over the other competing
methods: the reliability in finding the optimal solution and the time required for finding the optimal solution.
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1. INTRODUCTION

Genetic Algorithm (GA) [1,2] is a general
search algorithm that can be applied to a wide
range of problem domains. The process of GA is
controlled by several parameters, e.g. population
size, mutation rate. These parameters largely de-
termine the success and efficiency of GA in solv-
ing a specific problem. Unfortunately, these pa-
rameters interact with each other in a compli-
cated way. Many practitioners find a promising
parameter set for a particular problem by trying
various combinations of the control parameters.
This approach of parameter selection obviously
requires a lot of computation which sometimes is
larger than the time used for solving a particular
problem by GA itself. A prominent example of
exhaustively testing several combinations of pa-
rameters was shown in the study done by Schaf-
fer et al. [3]. That study carefully examined the
performance of GA using various combinations of
the control parameters. The experiments that in-
volved several test functions and parameter com-
binations took approximately 1.5 CPU years.
In this paper, an adaptive mechanism for dy-

namically adjusting the parameters of GA is pro-
posed. This mechanism performs parameter ad-
justments during the run of GA. The proposed
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method adjusts both the operator selection and
the parameter values. Four parameters are ad-
justed by the algorithm: crossover operator, mu-
tation operator, crossover rate, and mutation
rate. Two performance measurements are used
to compare the proposed method with the algo-
rithms using a standard parameter set and ran-
dom parameter sets. The first measurement il-
lustrates the reliability of the algorithm using
the number of runs yielding the optimal solution,
whereas the second measurement shows the re-
source used by the algorithm to find the solu-
tion to the given problem. The results show that
the proposed method outperforms the other algo-
rithms for both performance measurements under
a set of test problems.

2. BACKGROUND

Over the past decade, many variations of
GA have been investigated. Many representa-
tions and operators have been proposed in order
to tackle with some problems which cannot be
solved properly with the standard bit string rep-
resentation and operators. However, the advent
of these various implementations also increases
the difficulty of parameter selection. Harik and
Lobo [4] pointed out that the user decision for
the parameter setting can be divided into two
categories. The first category was the operator
selection and the coding. The second category
was the values of these parameters. The article
by Eiben et al. [5] provided a comprehensive re-



2

view and a classification of the various techniques
of parameter control in evolutionary algorithms.
The dissertation by Lobo [6] also gave a review of
the research in this area.

Early systematic research of the GA perfor-
mance using various combinations of parameters
was undertaken by De Jong [7]. The perfor-
mance of GA was measured on five test functions
which were later used as a standard test suite by
many researchers. The findings from his empir-
ical study showed that the following parameters
yielded a good performance: population size 50-
100, one-point crossover probability of 0.6 and bit
mutation probability of 0.001. These parameter
values have been widely used by many researchers
and accepted as a standard parameter setting.

Another study trying to understand interac-
tions among the parameters of GA was carried
out by Deb and Agrawal [8]. They investi-
gated the effect of three parameters: population
size, crossover rate, and mutation rate. The re-
sults showed that mutation-based approaches and
crossover-based approaches perform quite differ-
ently between simple problems and complex prob-
lems. In either approach, a correct population
size is needed to achieve good performance.

Grefenstette [9] investigated the use of meta-
level GA to select feasible parameter values. The
method was designed as two levels of GA. The
higher level GA maintained a population of pa-
rameter sets. The lower level GA used the pa-
rameter sets from the higher level GA to solve
the problems. The observed performance of the
lower level GA was assigned as the fitness of the
parameter set. The results showed that the ob-
tained parameter set did only slightly better than
the parameter set found by De Jong.

Pham [10] proposed a technique for parame-
ter selection by establishing a competition among
several subpopulations that use various param-
eter sets. Several populations independently
evolved by using their own parameter sets. These
populations were maintained by a single proces-
sor. The populations with good parameter sets
received additional processing time to evolve fur-
ther.

Lis [11] introduced a technique to adapt the
mutation rate in a model of parallel GA. Sev-

eral subpopulations evolved separately on differ-
ent processors by using various mutation rates.
After a predetermined interval, these populations
were compared. If the best result was acquired
from the processor with the highest mutation
rate, the mutation rates of other processors were
shifted by one level. The mutation rates were
also reduced by one level if the best result was
obtained from the processor with the lowest mu-
tation rate.
Schlierkamp-Voosen and Mühlenbein [12] used

competition between subpopulations with differ-
ent parameter sets for selecting the proper pa-
rameter set. The size of each group varied, while
the total population size was fixed. Each group
competed against other groups for gaining its size.
The size of the best group was increased, while all
other groups were decreased. A similar method
was used in [13] for choosing the best crossover
operator.

3. PROPOSED METHOD

The intention of the proposed method is to pro-
vide a technique for adjusting parameters while
the search is ongoing. By using the concept of
coarse-grained parallelization, the population is
divided into a few large subpopulations. These
subpopulations evolve independently and concur-
rently on different processors. After a predefined
period of time, some selected individuals are ex-
changed via a migration process. The subpopula-
tions operate by using different parameter values.
GA is applied to the evolution of the parame-

ter sets. Pseudo-code of the algorithm is shown
in Fig. 1. The subroutine Parameter adaptation
is an extension to a general coarse-grained model.
The chromosome representation of each parame-
ter set is a vector of integer numbers. Let us as-
sume that �C = (c1, . . . , cn) (ci ∈ [ai, bi] ⊂ I+, i =
1, . . . , n) is an integer chromosome. The value of
a particular gene (ci) denotes the value of the ith
parameter. Two parameter sets are employed in
each subpopulation. The average fitness of indi-
viduals that are processed by a particular param-
eter set is used for the assessment of the fitness
value of the parameter set. The best parame-
ter set selected from two parameter sets in each
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node is allowed to mate with another parame-
ter set from other nodes. Each processor decides
whether the local parameter set mates with the
neighboring parameter set. In particular, each
node sends its best parameter set and the fitness
value of this parameter set to other nodes. The
topology used in this study is a loosely connected
topology, the one-way ring topology, which the
communication is limited to occur between the
adjacent nodes. If the fitness of the parameter
set from the adjacent node is better than the best
local parameter set, two new parameter sets are
produced by applying a sequence of genetic op-
erators, uniform crossover and mutation, to both
parameter sets. Each parameter set is used to
produce a half of the new population. For mu-
tation, each field in both parameter sets may be
replaced by a random value according to the pre-
determined probability. The mutation rate is set
to 0.25.
The proposed method is motivated in part by

the method proposed by Pham [10]. Pham main-
tains several populations using different param-
eter sets in order to avoid the unsuccessful run
from a poor initial parameter set. That method
is penalized by the increase in the computational
cost since several populations evolve concurrently
in a single processor. Our proposed method over-
comes this disadvantage by using a parallel model
of GA. In particular, a coarse-grained model is
used in order to evaluate several parameter sets
simultaneously. Another difference is that Pham
uses static parameter sets, whereas our method
dynamically adjusts parameter sets according to
the observed performance. The proposed method
can be viewed as meta-level GA. However, this
method mainly differs from the work done by
Grefenstette [9] that the parameters are adjusted
during the run of the algorithm, whereas the
method of Grefenstette finds the parameters be-
fore the run of the algorithm.
Another important distinction between our

method and other subpopulation-level adaptive
methods [10,12,13] is that our method is more
suitable for parallelization. The techniques in
these studies reward the successful subpopulation
by increasing its size [12,13], or by giving ad-
ditional processing time [10]. These techniques

may not be effective when implemented in par-
allel forms since they are likely to cause uneven
work loads among processors.

4. EXPERIMENT AND DISCUSSION

4.1. Experimental Design
The experiments are carried out on a dedicated

cluster of PC workstations. The number of pro-
cessing nodes used in the experiments is 8. The
program is based on a modified version of LibGA
software package [14]. MPICH, a portable imple-
mentation of MPI standard, is used for provid-
ing communication functions in parallel comput-
ing environment.
The following algorithms using the proposed

method and other methods are examined and
compared.

1. Adaptive algorithm: This is the proposed
method.

2. Uniform random algorithm: A parameter
set is randomly generated at the beginning
of the algorithm. All subpopulations use
this parameter set.

3. Diverse random algorithm: At the begin-
ning, each subpopulation randomly creates
its own parameter set. This algorithm is
comparable to the adaptive algorithm with-
out the parameter adaptation. The similar
techniques of using different parameter sets
on the multiple subpopulations were also
presented in [15,16]. However, their param-
eters in each subpopulation were not ran-
dom.

4. Static algorithm: This algorithm uses a
static parameter set from the study by De
Jong [7]

The following four parameters are involved in
the experiments.

1. Crossover operator : The five crossover
types used in this study are listed as fol-
lows: (i) one point crossover (ii) uniform
crossover with a probability of 0.5 (iii) two
point crossover (iv) uniform crossover with
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0: initialize the population, P

1: while generation < max_generation

2: evaluate P

3: apply genetic operators determined by the first parameter set to create

the first half of the new population,P
1
'

4: apply genetic operators determined by the second parameter set to create

the second half of the new population,P
2
'

5: merge P
1
' and P

2
' to P'

6: replace P with P'

7: if an interval of K generations is reached

8: Migration

9: Parameter_adaptation

10: end

11: generation = generation + 1

12: end

13:

14: subroutine Migration

15: send and receive migrants

16: add migrants to P

17: end

18:

19: subroutine Parameter_adaptation

20: send the best parameter set with its fitness

21: receive the parameter set with its fitness

22: if the received parameter set is better

23: produce two new parameter sets by uniform crossover and mutation

24: end

25: end

Figure 1. Pseudo-code of the algorithm in each node

a probability of 0.1 (v) uniform crossover
with a probability of 0.23

2. Crossover rate: In the experiments, five val-
ues for crossover rate are used ranging from
0.2 to 1 in increments of 0.2.

3. Mutation operator : The five mutation types
used in the experiments are as follows: (i)
invert a bit (ii) random bit value (iii) swap
two values (iv) random bit value with a bias
toward zero (probability of 0.9) (v) random
bit value with a bias toward one (probabil-
ity of 0.9)

3Uniform crossover typically swaps two corresponding val-
ues of two parents with a probability of 0.5. Uniform
crossover with probabilities other than 0.5 is inspired by
the studies [17,18].

4. Mutation rate: Six mutation rates are al-
lowed varying from 0 to 0.1 in increments
of 0.02.

The population size plays an important role in
determining the success and the computational
cost in finding a solution to a particular prob-
lem. Thus, all experiments are conducted over a
range of population sizes. In all algorithms, the
selection scheme is roulette-wheel selection. All
reported results are averaged over 20 runs with
different random seeds. The exchanges of mi-
grants and parameter sets are synchronized. The
exchange interval is 5 generations. In the migra-
tion of individuals, six solutions selected by using
roulette-wheel selection from each subpopulation
are exchanged. The received migrants are incor-
porated to the new pool. The maximum number
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of generations for all experiments is 500. The test
problems used in this study are as follows: (1)
300-bit onemax problem, (2) 300-bit contiguous
bits problem, (3) 50 copies of minimal deceptive
problem (MDP), (4) zero/one multiple knapsack
problem and (5) royal road problem.
We refer readers to [19] for the definitions of

the problems 1 and 2. The description of the
third problem can be found from [2]. For the
knapsack problem, we use the “sento1-60” prob-
lem which was introduced in [20]. The optimal
solution is 7772. The problem instance is avail-
able from OR-Library [21]. The fitness function
proposed in [22] is used. For the royal road prob-
lem, the description of the problem was presented
in [23]. By using Holland’s default settings, the
optimal solution is 12.8.

4.2. Experimental Results
We adopt two measurements from the study

by Deb and Agrawal [8]: Performance and Un-
use Factor. The performance is the ratio of the
number of runs yielding the optimal solution to
the total number of runs, except that the number
of runs reaching 1% from the optimal is used in
the knapsack problem. The unuse factor (u) is
calculated as follows:

u = 1− g

gmax
(1)

where g is the number of generations required
to solve the problem, gmax is the maximum num-
ber of generations 4

Figure 2a and 2c show the performance on the
onemax problem and the contiguous bits problem
respectively. The results on the onemax problem
and the contiguous bits problem are nearly identi-
cal. The adaptive algorithm can find the optimal
solution in all runs over the range of population
sizes. The diverse random algorithm occasion-
ally finds the optimal solution in all runs. The
uniform random algorithm achieves the moder-
ate performance. The static algorithm attains the
lowest performance. Figure 2b and 2d illustrate
the unuse factor on the onemax problem and the
contiguous bits problem respectively. The unuse
4The unuse factor is originally calculated by using the
number of function evaluations.

factor graphs indicate that the proposed method
has the highest remaining generation number.
This means that the proposed method uses the
shortest period in finding the optimal solution.
The static algorithm has the lowest convergence
rate. When increasing the population size, the
unuse factor reduces to zero. This means that
the static algorithm is unable to find the optimal
solution in the given time.
The performance on the minimal deceptive

problem is depicted in figure 2e. The adaptive
algorithm finds the optimal solution in all runs
when the population size increases to 40. The
uniform random algorithm cannot find the opti-
mal solution in all runs. The diverse random al-
gorithm requires the population size at least 220
to find the optimal solution in all runs. The per-
formance of the static algorithm increases con-
siderably as the population size increases. More-
over, the static algorithm finds the optimal solu-
tion in all runs by using the population size at
least 160. The unuse factor on the minimal de-
ceptive problem is illustrated in figure 2f. The
proposed method uses the shortest duration in
finding the optimal solution.
In figure 3, the results on the problems which

are more difficult than the first three problems
are presented. For the knapsack problem, the
proposed method achieves significant better per-
formance in finding the optimal solution than the
other competing methods. The proposed method
has the highest remaining generation number as
well. For the royal road problem, the ratios of
runs reaching the optimal solution of the pro-
posed method and the diverse random algorithm
are nearly equivalent. The remaining genera-
tion numbers of both algorithms are also approx-
imately equivalent. The uniform random algo-
rithm cannot find the optimal solution in the
given period. The static algorithm is able to find
the optimal solution in some runs when the pop-
ulation size is sufficient.
In all problems, the population size notably ef-

fects the results for both performance measure-
ments. Although this study does not adapt the
population size, this does not mean that finding
the appropriate population size is unimportant.
Choosing the suitable population size is a com-
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(a) onemax problem
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(b) onemax problem
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(c) contiguous bits problem
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(d) contiguous bits problem
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(e) MDP
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(f) MDP
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Figure 2. Performance and Unuse factor for (a,b) the onemax problem, (c,d) the contiguous bits problem,
(e,f) the minimal deceptive problem
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(a) knapsack problem
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(b) knapsack problem

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250

U
nu

se
 f

ac
to

r

Pool size (per processor)

Adaptive algorithm
Uniform random algorithm
Diverse random algorithm

Static algorithm

(c) royal road problem
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(d) royal road problem
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Figure 3. Performance and Unuse factor for (a,b) the knapsack problem, (c,d) the royal road problem

mon problem encountered by the GA practition-
ers. Harik and Lobo [4] introduced a method for
choosing the population size. Multiple popula-
tions with different population sizes were main-
tained on a single processor. The smaller popula-
tions received more function evaluations than the
larger ones. When a larger population had an av-
erage fitness greater than that of a smaller pop-
ulation, the smaller population was eliminated.
The method of Harik and Lobo is based on com-
petitive populations similar to our method. It is
interesting to investigate how it can be applied to
adapt the population size in our case.

5. CONCLUSIONS

This paper presents a method for automatically
adjusting control parameters of GA. The results

show its effectiveness in the following points: (i)
Our adaptive method is shown to be more reliable
in finding the optimal solution than the others.
(ii) Our approach uses the lowest number of gen-
erations in finding the optimal solution. (iii) In
the third problem, our method finds the optimal
solution in all runs by using the smallest popu-
lation size. The smaller population size helps in
reducing the computational time.

REFERENCES

1. J. H. Holland. Adaptation in Natural and Ar-
tificial Systems. The University of Michigan
Press, Ann Arbor, Michigan, 1975.

2. D. E. Goldberg. Genetic Algorithm in search,
optimization and machine learning. Addison-
Wesley, 1989.



8

3. J. D. Schaffer, R. A. Caruana, L. J. Eshelman,
and R. Das. A study of control parameters
affecting online performance of genetic algo-
rithms for function optimization. In Proceed-
ings of the Third International Conference on
Genetic Algorithms, pages 51–60, 1989.

4. G. R. Harik and F. G. Lobo. A parameter-
less genetic algorithm. In Proceedings of the
Genetic and Evolutionary Computation Con-
ference, pages 258–265, 1999.
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