

Reactive Planning with Evolutionary Computation

Chaiwat Jassadapakorn and Prabhas Chongstitvatana
Intelligent System Laboratory, Department of Computer Engineering

Chulalongkorn University, Bangkok 10330, Thailand
E-mail: chaiwat.ja@student.chula.ac.th, prabhas@chula.ac.th

Abstract

 This work proposes a method to generate robot plans
by evolutionary computation. The main focus of the work
is the representation of the plan. The reactive plan can
be represented with a fixed length string that is suitable to
be evolved by Genetic Algorithms. Two experiments are
performed comparing the reactive plan with the ordinary
plan: controlling a manipulator and the artificial ant
problems. The results show that evolving reactive plans
requires much less computational effort than ordinary
plans.

Key-Words: Reactive planning, robot planning,
evolutionary computation.

1. Introduction
 Reactive planning [1,2,3,4] is a form of robot planning
where the plan focuses on response to the environment.
The main aim of this type of planning is to create systems
that sense the environment and act in real-time. To
achieve this goal reactive systems have strong coupling
between sensing and action. The cycle sense-think-act is
very short in a reactive system. Instead of a monolithic
centralised control, a reactive system uses distributed and
concurrent control. Many small sense-act control loops
co-operate to achieve a global behavior. Brooks
advocates this type of architecture for robot control,
called “subsumption architecture” [5]. The layer of
control composed of many goal-achieving units that work
concurrently where the output from a unit can subsume
the output of other units or altering the activities of other
units. The composition of these units must be carefully
designed to achieve the required behavior. Reactive
systems have been used successfully in many robotic
systems [6,7,8,9,10] including multi-agent robots or the
robots that work in team such as [11].
 Koza used Genetic Programming [12] to evolve
programs to control robots to perform the desired task.
Robot programs can be regarded as a “plan”. The
structure of plan is in the form of a tree where the internal

nodes are the connectives such as {if-and, if-or,
if-not} and the leaf nodes are the primitive
commands, including sensing and action such as moving
a joint or sensing the environment. This representation
has variable length. Genetic programming has been used
successfully to evolve robot plans for many tasks. One
of the main concerns of using Genetic programming is
that for a variable length representation the size of
solutions (i.e. robot plans in our domain) grows
quadratically [13]. Therefore, it requires considerable
computational effort to evolve robot plans. Applying the
concept of reactive planning we design the plan to be a set
of if-then rules where the if-clause is the sensing
command and the then-clause is the action command.
The reactive plan then can be represented by a fixed
length string. Genetic algorithm [14] is applicable to
evolve such a plan. We compare two tasks of evolving
robot programs using a tree representation of the plan and
the fixed length string representing the reactive plan. In
terms of computational effort, our reactive plan is much
more efficient. The sections that follow describe the
representation of the reactive plan and the details of the
experiments and discuss the results.

2. Reactive plan
 An ordinary robot plan generated by Genetic
programming has all the actions in the leaf nodes.
Sensing commands are used to affect the flow of the plan
via the connectives, such as “if the arm hits obstacles then
move the shoulder joint else perform the branch X”. The
sensing command “hits” causes the flow of the plan to
execute the move shoulder joint or to execute the branch
X. The state (when some memory is required in the task)
is representing by the path of the plan. This type of
representation causes a plan to be variable length.
 A reactive plan is a set of if-then rules. The if-clause
contains all sensing commands therefore it captures all
possible sensing situations that can occur. The then-
clause contains the action commands. If a state is
required, it can be represented by an integer and is
included in the then-clause. This number also appears in
the if-clause and the if-clause becomes the combination of

the state number and possible sensing situations. The
interpretation of such state number is as follows “perform
the action in the action command and go to the state
specified by the state number”. This interpretation
regards a reactive plan as a finite state machine when the
state is required and as a combinational circuit when no
state is required. The if-clause does not have to be
explicitly represented, it becomes the index into the table
of then-clause.
 An example of a reactive plan is shown in Figure 1.
There are 3 states in this example. The input is one bit.
The action set is { move, right, left }. The
if-clause is consisted of state and input. The then-clause
is consisted of action and next state. We encode the
reactive plan as individual with two chromosomes as
shown.

State Input Action Next state
0 F move 0
1 F left 2
2 F move 2
0 T right 1
1 T right 0
2 T move 1

 move left move right right move

 0 2 2 1 0 1

Figure 1. Individual encoding of an example of

reactive plan

 To compare the computational effort to generate a
reactive plan with an ordinary plan generate by Genetic
programming, two problems are used. The first problem
is controlling a manipulator [15] and the second problem
is an artificial ant [16]. The metric we used for
comparison is the computational effort as defined in Koza
[12].

3. Controlling a manipulator
 The problem of controlling a manipulator to reach a
target is taken from [15,17,18]. GP is used to generate
robot programs to control a robot manipulator to reach a
target while avoiding obstacles. The robot system
composed of a 3 DOF manipulator and a vision system
mounted above and overlooking the whole workspace.
The vision system monitors the positions of various
objects: the manipulator, the obstacles and the target. The
manipulator is a 3 links planar arm moving on a plane.
Movement of each joint is limited. The environment for
the experiment is shown in the figure below: (solid
blocks are obstacles and a cross is the target)

a) environment 1

b) environment 2

c) environment 3

Figure 2. Three environments used in the problem

of controlling a manipulator

 Each robot plan composed of symbols from the
function set and the terminal set. The function set is {
IF-AND, IF-OR, IF-NOT } and the terminal set is
{ s+, s-, e+, e-, w+, w-, HIT?, SEE?,
INC?, DEC?, OUT? } The terminal s+ (shoulder)
moves the shoulder motor clockwise 1 step (5 degrees)
and s- moves the shoulder motor anticlockwise 1 step.
The similar meaning applies for e+, e- (elbow) and w+,
w- (wrist). All of these functions always return true. The
terminal HIT? checks whether each link of the robot arm
hits the obstacle. The terminal SEE? checks whether the
path from the fingertip to the goal has any obstacle. The
terminal INC? checks whether the distance between the
fingertip and the goal is increasing. The terminal DEC?
checks the opposite. The terminal OUT? checks if each
joint of the robot arm moves out of bound. The bound is
defined to prevent the arm from going out of the view of

Table 1. The reactive plan for controlling a manipulator

Hit? See? Inc? Dec? Out? Shoulder Elbow Wrist
T T T T T +/0/- +/0/- +/0/-
T T T T F +/0/- +/0/- +/0/-
T T T F T +/0/- +/0/- +/0/-

.

.
F F F F F +/0/- +/0/- +/0/-

the camera. The function IF-AND is a four-argument
comparative branching operator that executes its third
argument if its first argument and its second argument are
true, or otherwise, executes the fourth argument. The
function IF-OR is a four-argument operator that executes
its third argument if its first argument or its second
argument is true, or otherwise, executes the fourth
argument. The function IF-NOT is a three-argument
operator that executes its second argument if the negation
of its first argument is true, or otherwise, executes the
third argument
 Since the move command contained in any robot
program is altered when the situation change. The
environment is monitored by five binary sensing flags {
HIT?, SEE?, INC?, DEC?, OUT? }. Without
using any state the reactive plan has 25 = 32 entries and
the then-clause consisted of commands to move shoulder,
elbow and wrist joints. This combination circuit is shown
as Table 1.

Table 2. Parameters of the evolutionary process

Parameter Ordinary plan Reactive plan
population 400 plans 400 plans
size of an
individual

80 symbols
(initial)

96 symbols
(3 chromosomes
with 32 symbols)

maximum
generation

10 10

number of
repeated run

1000 runs 1000 runs

elitism 40 plans 40 plans
crossover 160 plans 360 plans
mutation 200 plans

(addition 100
plans and
extension 100
plans)

mutation rate =
0.0333 per gene

 Each joint command is either: move the joint motor
clockwise 1 step (+), move the joint motor anticlockwise
1 step (-) or no action (0). The genetic algorithms (GA) is
used to find the solution of this problem. The action
command in the reactive plan is encoded as three

chromosomes. Table 2 shows the parameters used for
evolving the ordinary plan by GP and the reactive plan by
GA. Table 3 shows the comparison of computational
effort for evolving both types of plan. The performance
of the reactive planning evolved by GA is much better for
every environment.

Table 3. The computational effort in evolving the
ordinary plan and the reactive plan in each

environment

Environment Ordinary plan
(from [18])

Reactive plan

1 14,400 800
2 18,000 2,000
3 220,800 18,400

4. Artificial ant
 The problem of artificial ant used in our experiment is
“Santa Fe trail” [19]. This problem is frequently referred
to and used as a standard problem for comparing various
learning techniques. The goal of Santa Fe trail problem is
to train the ant to eat all food contained in the square 32 x
32 grid with a limitation amount of time (400 actions in
our experiment). An ant has a sensor that can senses the
food in next grid ahead. The ant has three actions: turn
right, turn left, and move. The environment of the Santa
Fe trail is shown in Figure 3.
 From the work [12], GP is used to evolve the solution
for the Santa Fe trail problem. The function set is { IF-
FOOD-AHEAD, PROGN2, PROGN3 } and the
terminal set is { move, right, left }. The
terminal move is a command to move an ant to the next
grid ahead. The terminal right turns the ant 90 degrees
clockwise and the terminal left turns 90 degrees
anticlockwise. The function IF-FOOD-AHEAD is a
function with two arguments. It will process the first
argument if the next grid ahead has food, and will process
the second argument if not. The function PROGN2 is a
function with two arguments. It will process the first
argument and the second argument in order. The function
PROG3N is the same as the function PROGN2 except it
has three arguments.

Figure 3. The Santa Fe trail problem

 The reactive plan for this problem required state
variables. It is known that five states are necessary to
perform this task. The reactive plan is shown in Table 4.
The number of states used in the plan must be greater than
the minimum, we set it to eight. Therefore, the size of
table is 16 entries. GA can be used to evolve this plan by
encoding the action and next state into two chromosomes.
Two experiments are performed, one with bounded
perimeter where the ant stops at the perimeter and the
other one with wraparound perimeter where the ant can
“wrap around” from one side of the board to the other
side. Table 5 shows the parameters used for the
experiment and Table 6 shows the comparison of the
computational effort. Again, the performance of the
reactive planning evolved by GA is much better in both
experiments.

 Table 4. The reactive plan for the Santa Fe trail
problem

State Food

ahead?
Action Next state

0 F move/left/right 0-7
1 F move/left/right 0-7

.
7 F move/left/right 0-7
0 T move/left/right 0-7

.
6 T move/left/right 0-7
7 T move/left/right 0-7

Table 5. Parameters of the experiments

Parameter Ordinary plan Reactive plan
population 500 plans 500 plans
size of an
individual

20(initial) - 80(max)
symbols

32 symbols
(2 chromosomes
with 16 symbols)

maximum
generation

51 51

number of
repeated run

1000 runs 1000 runs

elitism 50 plans 50 plans
crossover 450 plans 450 plans

Table 6. The computational effort of both methods

Type of area Ordinary plan Reactive plan

wraparound 1,045,500 130,000
bound 867,000 270,000

5. Discussion and Conclusion
 In both problems, controlling a manipulator and the
artificial ant, we found that evolving the reactive plan is
much easier than evolving the ordinary plan. This fact
leads to the observation that the representation of reactive
plan may be the factor in reduction of computation effort.
Why the representation of an ordinary plan by a tree
structure required more computational effort than the
representation of a reactive plan by a fixed length string?
We hypothesise that:
 Firstly, for the tree representation, the effort in
evolution must be spent on evolving not only the suitable
terminal set, but also the suitable function set. Unlike the
fixed length string that only terminal set is evolved. The
searching for solutions in the ordinary plan has more
work than the reactive plan. Moreover, for the problem of
controlling a manipulator, the fixed length string
representation has an advantage over the tree
representation that the number of terminal is smaller
because all sensing terminals are not included. The if-
clause is represented implicitly.
 Secondly, the solution encoded with the tree
representation suffers from the inaccessible path. This
path originates by some conflict of condition in the tree.
Whereas for the reactive plan all clauses are in normal
form.
 Lastly, the crossover operator of the tree representation
is not as efficient as the crossover operator of the fixed
length string. When the crossover takes place at
inaccessible or unused paths, the behavior of solution
does not changed. In contrary, the crossover operator of
the fixed length string does alter the solution almost every
time.
 It does not mean that the fixed length string is always
more efficient than the tree representation. Since in the

experiment, the reactive plan is designed carefully. The
size of table is chosen to be near optimal so that the
search process works well. Table 7 shows the result of
the Santa Fe trail problem with different number of states,
which affect to the size of table. It can be seen that
choosing fitter or looser table will degrade the
performance.
 In general, the representation of solution is dependent
on the problem. Choosing a suitable representation leads
to good performance. This work shows some success of
the conversion of representation of an ordinary plan to the
reactive plan which improve the performance. We
believe that many problems in robot planning will have
similar behavior.

Table 7. The computational effort with different value

of parameter n for the Santa Fe trail problem

Methods Wraparound
area

Bound area

Ordinary plan 1,045,500 867,000
Reactive plan 5 states 172,500 340,000
Reactive plan 8 states 130,000 270,000
Reactive plan 16 states 700,000 1,872,000
Reactive plan 32 states 7,544,000 50,633,000

Acknowledgement
 The idea of converting an ordinary plan to a reactive
plan is originally suggested by Yodthong Rodkaew. The
first author would like to acknowledge the support of the
Royal Golden Jubilee Ph.D. Graduates program by
Thailand Research Fund organization.

References

[1] Chapman, D. 1987. Planning for conjunctive goals.
Artificial Intelligence 32:333-377.

[2] Agre, P. and Chapman, D. 1990, What are plan for?
Robotics and Autonomous Systems 6:17-34.

[3] Maes, P. 1990. Situated agents can have goals. Robotics
and Autonomous Systems 6:49-70.

[4] Nilsson, N. 1994. Teleo-reactive programs for agent
control. JAIR 1:139-158.

[5] Brooks, R. 1987. A robust layered control system for a
mobile robot. IEEE J. of Robotics and Automation 2:14-
27.

[6] Schoppers, M. 1987. Universal Plans for Reactive Robots
in Unpredictable Environments. Proc. of 10th IJCAI.

[7] Dorigo, M. and Colombetti, M. 1994. Robot shaping:
developing autonomous agents through learning. Artificial
Intelligence 71(2):321-370.

[8] Schaal, S. and Atkeson, C.G. Robot Juggling:
Implementation of Memory-Based Learning, IEEE Control
Systems, vol. 14, no. 1 (Feb. 1994) 57-71.

[9] Arkin, R. 1995. Reactive robotic systems, in Arbib, M. ed.
The handbook of brain theory and neural networks,
pp.793-796, MIT Press.

[10] Mataric, M. Williamson, M. Demiris, J. and Mohan, A.
1998. Behavior-Based Primitives for Articulated Control.
Proc of 5th Int. Conf. Soc. for Adaptive Behavior, MIT
Press, pp.165-170.

[11] Balch, T. Boone, G. Collins, T. Forbes, H. MacKenzie, D.
and Satamaria, C. 1995. Io, Ganymede and Callisto -- a
multiagent robot trash-collecting team, AI Magazine
16(2):39-51.

[12] Koza, J. 1994. Genetic Programming, MIT Press.
[13] Langdon, W. 1998. The Evolution of Size in Variable

Length Representation, IEEE International Conference on
Evolutionary Computation, pp. 633-638.

[14] Holland, J. 1975. Adaptation in Natural and Artificial
System, Ann Arbor, Michigan : University of Michigan
Press.

[15] Chongstitvatana, P. and Polvichai, J. 1996. Learning a
Visual Task by Genetic Programming, Proc. of IEEE/RSJ
Int. Conf. on Intelligent Robots and System, Osaka, Japan,
pp. 534-540.

[16] Jefferson et al. 1991. Evolution as a theme in artificial life,
in Langton, C. et al ed. Artificial Life II, Addison Wesley.

[17] Polvichai, J. 1996. Robot Learning by Genetic
Programming, Master Thesis, Department of Computer
Engineering, Chulalongkorn University (In Thai)

[18] Jassadapakorn, C. 1997. Reduction of Computational
Effort in Genetic Programming Learning Method, Master
Thesis, Department of Computer Engineering,
Chulalongkorn University. (In Thai)

[19] Langton, C. et al ed. 1991. Artificial Life II, Addison
Wesley.

