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Abstract 
 
 This work proposes a method to generate robot plans 
by evolutionary computation.  The main focus of the work 
is the representation of the plan.  The reactive plan can 
be represented with a fixed length string that is suitable to 
be evolved by Genetic Algorithms.  Two experiments are 
performed comparing the reactive plan with the ordinary 
plan: controlling a manipulator and the artificial ant 
problems.  The results show that evolving reactive plans 
requires much less computational effort than ordinary 
plans. 
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1. Introduction 
 Reactive planning [1,2,3,4] is a form of robot planning 
where the plan focuses on response to the environment.  
The main aim of this type of planning is to create systems 
that sense the environment and act in real-time.  To 
achieve this goal reactive systems have strong coupling 
between sensing and action.  The cycle sense-think-act is 
very short in a reactive system.  Instead of a monolithic 
centralised control, a reactive system uses distributed and 
concurrent control.  Many small sense-act control loops 
co-operate to achieve a global behavior.  Brooks 
advocates this type of architecture for robot control, 
called “subsumption architecture” [5].  The layer of 
control composed of many goal-achieving units that work 
concurrently where the output from a unit can subsume 
the output of other units or altering the activities of other 
units.  The composition of these units must be carefully 
designed to achieve the required behavior.  Reactive 
systems have been used successfully in many robotic 
systems [6,7,8,9,10] including multi-agent robots or the 
robots that work in team such as [11].   
  Koza used Genetic Programming [12] to evolve 
programs to control robots to perform the desired task.  
Robot programs can be regarded as a “plan”.  The 
structure of plan is in the form of a tree where the internal 

nodes are the connectives such as {if-and, if-or, 
if-not} and the leaf nodes are the primitive 
commands, including sensing and action such as moving 
a joint or sensing the environment.  This representation 
has variable length.  Genetic programming has been used 
successfully to evolve robot plans for many tasks.   One 
of the main concerns of using Genetic programming is 
that for a variable length representation the size of 
solutions (i.e. robot plans in our domain) grows 
quadratically [13].  Therefore, it requires considerable 
computational effort to evolve robot plans.  Applying the 
concept of reactive planning we design the plan to be a set 
of if-then rules where the if-clause is the sensing 
command and the then-clause is the action command.  
The reactive plan then can be represented by a fixed 
length string.  Genetic algorithm [14] is applicable to 
evolve such a plan.  We compare two tasks of evolving 
robot programs using a tree representation of the plan and 
the fixed length string representing the reactive plan.  In 
terms of computational effort, our reactive plan is much 
more efficient.  The sections that follow describe the 
representation of the reactive plan and the details of the 
experiments and discuss the results. 
 
2. Reactive plan 
 An ordinary robot plan generated by Genetic 
programming has all the actions in the leaf nodes.  
Sensing commands are used to affect the flow of the plan 
via the connectives, such as “if the arm hits obstacles then 
move the shoulder joint else perform the branch X”.  The 
sensing command “hits” causes the flow of the plan to 
execute the move shoulder joint or to execute the branch 
X.  The state (when some memory is required in the task) 
is representing by the path of the plan.  This type of 
representation causes a plan to be variable length.   
 A reactive plan is a set of if-then rules.  The if-clause 
contains all sensing commands therefore it captures all 
possible sensing situations that can occur.  The then-
clause contains the action commands.  If a state is 
required, it can be represented by an integer and is 
included in the then-clause.  This number also appears in 
the if-clause and the if-clause becomes the combination of 



the state number and possible sensing situations.  The 
interpretation of such state number is as follows “perform 
the action in the action command and go to the state 
specified by the state number”.  This interpretation 
regards a reactive plan as a finite state machine when the 
state is required and as a combinational circuit when no 
state is required.  The if-clause does not have to be 
explicitly represented, it becomes the index into the table 
of then-clause. 
 An example of a reactive plan is shown in Figure 1.  
There are 3 states in this example.  The input is one bit.  
The action set is  { move, right, left }.    The 
if-clause is consisted of state and input.  The then-clause 
is consisted of action and next state.  We encode the 
reactive plan as individual with two chromosomes as 
shown. 
 

State Input Action Next state 
0 F move 0 
1 F left 2 
2 F move 2 
0 T right 1 
1 T right 0 
2 T move 1 

 
 
 move left move right right move 
       
 0 2 2 1 0 1 

 
Figure 1. Individual encoding of an example of 

reactive plan 
 
 To compare the computational effort to generate a 
reactive plan with an ordinary plan generate by Genetic 
programming, two problems are used.  The first problem 
is controlling a manipulator [15] and the second problem 
is an artificial ant [16].  The metric we used for 
comparison is the computational effort as defined in Koza 
[12]. 
 
3. Controlling a manipulator 
 The problem of controlling a manipulator to reach a 
target is taken from [15,17,18].  GP is used to generate 
robot programs to control a robot manipulator to reach a 
target while avoiding obstacles.  The robot system 
composed of a 3 DOF manipulator and a vision system 
mounted above and overlooking the whole workspace.  
The vision system monitors the positions of various 
objects: the manipulator, the obstacles and the target.  The 
manipulator is a 3 links planar arm moving on a plane.  
Movement of each joint is limited.  The environment for 
the experiment is shown in the figure below:  (solid 
blocks are obstacles and a cross is the target) 

      
a) environment 1                  

 

      
b) environment 2                  

 

 
c) environment 3 

 
Figure 2.  Three environments used in the problem 

of controlling a manipulator 
 
 Each robot plan composed of symbols from the 
function set and the terminal set.  The function set is  { 
IF-AND, IF-OR, IF-NOT } and the terminal set is 
{ s+, s-, e+, e-, w+, w-, HIT?, SEE?, 
INC?, DEC?, OUT? }  The terminal s+ (shoulder) 
moves the shoulder motor clockwise 1 step (5 degrees) 
and s- moves the shoulder motor anticlockwise 1 step.  
The similar meaning applies for e+, e- (elbow) and w+, 
w- (wrist). All of these functions always return true.  The 
terminal HIT? checks whether each link of the robot arm 
hits the obstacle.  The terminal SEE? checks whether the 
path from the fingertip to the goal has any  obstacle.  The 
terminal INC? checks whether the distance between the 
fingertip and the goal is increasing.  The terminal DEC? 
checks the opposite.  The terminal OUT? checks if each 
joint of the robot arm moves out of bound.  The bound is 
defined to prevent the arm from going out of the view of



Table 1. The reactive plan for controlling a manipulator 
 

Hit? See? Inc? Dec? Out? Shoulder Elbow Wrist 
T T T T T +/0/- +/0/- +/0/- 
T T T T F +/0/- +/0/- +/0/- 
T T T F T +/0/- +/0/- +/0/- 

. . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . 
F F F F F +/0/- +/0/- +/0/- 

 
the camera.  The function IF-AND is a four-argument 
comparative branching operator that executes its third 
argument if its first argument and its second argument are 
true, or otherwise, executes the fourth argument.  The 
function IF-OR is a four-argument operator that executes 
its third argument if its first argument or its second 
argument is true, or otherwise, executes the fourth 
argument.  The function IF-NOT is a three-argument 
operator that executes its second argument if the negation 
of its first argument is true, or otherwise, executes the 
third argument 
 Since the move command contained in any robot 
program is altered when the situation change.  The 
environment is monitored by five binary sensing flags { 
HIT?, SEE?, INC?, DEC?, OUT? }.  Without 
using any state the reactive plan has 25 = 32 entries and 
the then-clause consisted of commands to move shoulder, 
elbow and wrist joints.  This combination circuit is shown 
as Table 1. 
  

Table 2. Parameters of the evolutionary process 
 

Parameter Ordinary plan Reactive plan 
population 400 plans 400 plans 
size of an 
individual 

80 symbols 
(initial) 

96 symbols 
(3 chromosomes 
with 32 symbols)  

maximum 
generation 

10 10 

number of 
repeated run  

1000 runs 1000 runs 

elitism 40 plans 40 plans 
crossover  160 plans 360 plans 
mutation  200 plans  

(addition 100 
plans and 
extension 100 
plans) 

mutation rate = 
0.0333 per gene 

 
 Each joint command is either: move the joint motor 
clockwise 1 step (+), move the joint motor anticlockwise 
1 step (-) or no action (0).  The genetic algorithms (GA) is 
used to find the solution of this problem.  The action 
command in the reactive plan is encoded as three 

chromosomes.  Table 2 shows the parameters used for 
evolving the ordinary plan by GP and the reactive plan by 
GA.  Table 3 shows the comparison of computational 
effort for evolving both types of plan.  The performance 
of the reactive planning evolved by GA is much better for 
every environment. 
 

Table 3. The computational effort in evolving the 
ordinary plan and the reactive plan in each 

environment 
 

Environment Ordinary plan 
(from [18]) 

Reactive plan 

1 14,400 800 
2 18,000 2,000 
3 220,800 18,400 

 
4. Artificial ant 
 The problem of artificial ant used in our experiment is 
“Santa Fe trail” [19].  This problem is frequently referred 
to and used as a standard problem for comparing various 
learning techniques.  The goal of Santa Fe trail problem is 
to train the ant to eat all food contained in the square 32 x 
32 grid with a limitation amount of time (400 actions in 
our experiment).  An ant has a sensor that can senses the 
food in next grid ahead.  The ant has three actions: turn 
right, turn left, and move.  The environment of the Santa 
Fe trail is shown in Figure 3. 
 From the work [12], GP is used to evolve the solution 
for the Santa Fe trail problem.  The function set is { IF-
FOOD-AHEAD, PROGN2, PROGN3 } and the 
terminal set is { move, right, left }.  The 
terminal move is a command to move an ant to the next 
grid ahead.  The terminal right turns the ant 90 degrees 
clockwise and the terminal left turns 90 degrees 
anticlockwise.  The function IF-FOOD-AHEAD is a 
function with two arguments.  It will process the first 
argument if the next grid ahead has food, and will process 
the second argument if not.  The function PROGN2 is a 
function with two arguments.  It will process the first 
argument and the second argument in order.  The function 
PROG3N is the same as the function PROGN2 except it 
has three arguments. 

 



 
 

Figure 3. The Santa Fe trail problem 
 
 The reactive plan for this problem required state 
variables.  It is known that five states are necessary to 
perform this task.   The reactive plan is shown in Table 4.  
The number of states used in the plan must be greater than 
the minimum, we set it to eight.  Therefore, the size of 
table is 16 entries.  GA can be used to evolve this plan by 
encoding the action and next state into two chromosomes.  
Two experiments are performed, one with bounded 
perimeter where the ant stops at the perimeter and the 
other one with wraparound perimeter where the ant can 
“wrap around” from one side of the board to the other 
side.  Table 5 shows the parameters used for the 
experiment and Table 6 shows the comparison of the 
computational effort.  Again, the performance of the 
reactive planning evolved by GA is much better in both 
experiments.   
 

 Table 4. The reactive plan for the Santa Fe trail 
problem 

 
State Food 

ahead? 
Action Next state 

0 F move/left/right 0-7 
1 F move/left/right 0-7 

. . . . . . . . . . . . 
7 F move/left/right 0-7 
0 T move/left/right 0-7 

. . . . . . . . . . . . 
6 T move/left/right 0-7 
7 T move/left/right 0-7 

 
 

Table 5. Parameters of the experiments 
 

Parameter Ordinary plan Reactive plan 
population 500 plans 500 plans 
size of an 
individual 

20(initial) - 80(max) 
symbols 

32 symbols 
(2 chromosomes 
with 16 symbols) 

maximum 
generation 

51 51 

number of 
repeated run  

1000 runs 1000 runs 

elitism 50 plans 50 plans 
crossover  450 plans 450 plans 

 
Table 6. The computational effort of both methods 

 
Type of area Ordinary plan Reactive plan 

wraparound 1,045,500 130,000 
bound 867,000 270,000 

  
5. Discussion and Conclusion 
 In both problems, controlling a manipulator and the 
artificial ant, we found that evolving the reactive plan is 
much easier than evolving the ordinary plan.   This fact 
leads to the observation that the representation of reactive 
plan may be the factor in reduction of computation effort.  
Why the representation of an ordinary plan by a tree 
structure required more computational effort than the 
representation of a reactive plan by a fixed length string?  
We hypothesise that: 
 Firstly, for the tree representation, the effort in 
evolution must be spent on evolving not only the suitable 
terminal set, but also the suitable function set.  Unlike the 
fixed length string that only terminal set is evolved.  The 
searching for solutions in the ordinary plan has more 
work than the reactive plan.  Moreover, for the problem of 
controlling a manipulator, the fixed length string 
representation has an advantage over the tree 
representation that the number of terminal is smaller 
because all sensing terminals are not included.  The if-
clause is represented implicitly. 
 Secondly, the solution encoded with the tree 
representation suffers from the inaccessible path.  This 
path originates by some conflict of condition in the tree.  
Whereas for the reactive plan all clauses are in normal 
form.   
 Lastly, the crossover operator of the tree representation 
is not as efficient as the crossover operator of the fixed 
length string.  When the crossover takes place at 
inaccessible or unused paths, the behavior of solution 
does not changed. In contrary, the crossover operator of 
the fixed length string does alter the solution almost every 
time. 
 It does not mean that the fixed length string is always 
more efficient than the tree representation.  Since in the 



experiment, the reactive plan is designed carefully.  The 
size of table is chosen to be near optimal so that the 
search process works well.  Table 7 shows the result of 
the Santa Fe trail problem with different number of states, 
which affect to the size of table.  It can be seen that 
choosing fitter or looser table will degrade the 
performance. 
 In general, the representation of solution is dependent 
on the problem.  Choosing a suitable representation leads 
to good performance.  This work shows some success of 
the conversion of representation of an ordinary plan to the 
reactive plan which improve the performance.  We 
believe that many problems in robot planning will have 
similar behavior. 

 
Table 7. The computational effort with different value 

of parameter n for the Santa Fe trail problem 
 

Methods Wraparound 
area 

Bound area 

Ordinary plan 1,045,500 867,000 
Reactive plan 5 states 172,500 340,000 
Reactive plan 8 states 130,000 270,000 
Reactive plan 16 states 700,000 1,872,000 
Reactive plan 32 states 7,544,000 50,633,000 
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