
Chi-Square Matrix: An Approach
for Building-Block Identification

Chatchawit Aporntewan and Prabhas Chongstitvatana

Chulalongkorn University, Bangkok 10330, Thailand
Chatchawit.A@student.chula.ac.th, Prabhas.C@chula.ac.th

Abstract. This paper presents a line of research in genetic algorithms
(GAs), called building-block identification. The building blocks (BBs)
are common structures inferred from a set of solutions. In simple GA,
crossover operator plays an important role in mixing BBs. However, the
crossover probably disrupts the BBs because the cut point is chosen at
random. Therefore the BBs need to be identified explicitly so that the
solutions are efficiently mixed. Let S be a set of binary solutions and
the solution s = b1 . . . b�, bi ∈ {0, 1}. We construct a symmetric ma-
trix of which the element in row i and column j, denoted by mij , is the
chi-square of variables bi and bj . The larger the mij is, the higher the de-
pendency is between bit i and bit j. If mij is high, bit i and bit j should
be passed together to prevent BB disruption. Our approach is validated
for additively decomposable functions (ADFs) and hierarchically decom-
posable functions (HDFs). In terms of scalability, our approach shows
a polynomial relationship between the number of function evaluations
required to reach the optimum and the problem size. A comparison be-
tween the chi-square matrix and the hierarchical Bayesian optimization
algorithm (hBOA) shows that the matrix computation is 10 times faster
and uses 10 times less memory than constructing the Bayesian network.

1 Introduction

This paper presents a line of research in genetic algorithms (GAs), called building-
block identification. The GAs is a probabilistic search and optimization algo-
rithm [2]. The GAs begin with a random population – a set of solutions. A solu-
tion (or an individual) is represented by a fixed-length binary string. A solution
is assigned a fitness value that indicates the quality of solution. The high-quality
solutions are more likely to be selected to perform solution recombination. The
crossover operator takes two solutions. Each solution is splited into two pieces.
Then, the four pieces of solutions are exchanged to reproduce two solutions. The
population size is made constant by discarding some low-quality solutions. An
inductive bias of the GAs is that the solution quality can be improved by com-
posing common structures of the high-quality solutions. Simple GAs implement
the inductive bias by chopping solutions into pieces. Next, the pieces of solu-
tions are mixed. In GAs literature, the common structures of the high-quality
solutions are referred to as building blocks (BBs). The crossover operator mixes

M.J. Maher (Ed.): ASIAN 2004, LNCS 3321, pp. 63–77, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

mailto:Chatchawit.A@student.chula.ac.th, Prabhas.C@chula.ac.th

64 C. Aporntewan and P. Chongstitvatana

and also disrupts the BBs because the cut point is chosen at random (see Figure
1). It is clear that the solution recombination should be done, while maintaining
the BBs. As a result, the BBs need to be identified explicitly.

cut point cut point

(B) Mixing and losing BBs.

cut pointcut point

(A) Mixing and maintaining BBs.

Fig. 1. The solutions are mixed by the crossover operator. The BBs are shadowed.
The cut point, chosen at random, divides a solution into two pieces. Then, the pieces
of solutions are exchanged. In case (A), the solutions are mixed while maintaining the
BBs. In case (B), the BBs are disrupted

For some conditions [2, Chapter 7–11], the success of GAs can be explained by
the schema theorem and the building-block hypothesis [2]. The schema theorem
states that the number of solutions that match above average, short defining-
length, and low-order schemata grows exponentially. The optimal solution is
hypothesized to be composed of the above average schemata. However, in simple
GAs only short defining-length and low-order schemata are permitted to the
exponential growth. The other schemata are more disrupted due to the crossover.
The trap function is an adversary function for studying BBs and linkage problems
in GAs [3]. The general k-bit trap functions are defined as:

Fk(b1 . . . bk) =
{

fhigh ; if u = k

flow − u flow
k−1 ; otherwise, (1)

where bi ∈ {0, 1}, u =
∑k

i=1 bi, and fhigh > flow. Usually, fhigh is set at k and
flow is set at k− 1. The additively decomposable functions (ADFs), denoted by
Fm×k, are defined as:

Fm×k(K1 . . . Km) =
m∑

i=1

Fk(Ki), Ki ∈ {0, 1}k. (2)

The m and k are varied to produce a number of test functions. The ADFs fool
gradient-based optimizers to favor zeroes, but the optimal solution is composed
of all ones. The trap function is a fundamental unit for designing test functions
that resist hill-climbing algorithms. The test functions can be effectively solved
by composing BBs. Several discussions of the test functions can be found in
[5, 11].

To illustrate the difficulty, the 10×5-trap functions (F10×5) is picked as an
example. There are two different schemes to encode a solution to a binary string,
B = b1 . . . b50 where bi ∈ {0, 1} (see Figure 2). To compare the performance of a
simple GA on both encoding schemes, we count the number of subfunctions (F5)
that are solved in the elitist individual observed during a run. The number of
subfunctions that are solved is averaged from ten runs. The maximum number

Chi-Square Matrix: An Approach for Building-Block Identification 65

of generations is set at 10,000. In Table 1, it can be seen that the first encoding
scheme is better than the second encoding scheme. Both encoding schemes share
the same optimal solution, but the first encoding scheme gives shorter defining-
length BBs. Increasing the population size does not make the second encoding
scheme better.

Encoding scheme 1:
F10×5(B) =

∑10
i=1 F5(b5i−4b5i−3b5i−2b5i−1b5i)

Encoding scheme 1’s BB: (defining length = 4)
11111***
Encoding scheme 2:
F10×5(B) =

∑10
i=1 F5(bibi+10bi+20bi+30bi+40)

Encoding scheme 2’s BB: (defining length = 40)
1*********1*********1*********1*********1*********

Fig. 2. The performance of simple GA relies on the encoding scheme. An improper
encoding scheme reduces the performance dramatically

Table 1. The performance of simple GA on the 10×5-trap function. The second en-
coding scheme gives long defining length, and therefore resulting in poor performance

Population Average subfunctions that are solved
size Encoding scheme 1 Encoding scheme 2
100 4.0 0.8

1,000 8.4 0.7
10,000 10.0 0.1

Thierens raised the scalability issue of simple GAs [10]. He used the uniform
crossover so that solutions are randomly mixed. The fitness function is the sum
of 5-bit trap functions (Fm×5). The analysis shows that either the computational
time grows exponentially with the number of 5-bit trap functions or the popula-
tion size must be exponentially increased. It is clear that scaling up the problem
size requires BB information. In addition, the performance of simple GAs relies
on the ordering of solution bits. The ordering may not pack the dependent bits
close together. Such an ordering results in poor BB mixing. Therefore the BBs
need to be identified to improve the scalability issue.

Many strategies in the literature use bit-reordering approach to pack the
dependent bits close together, for example, inversion operator [2], messy GA [2],
and linkage learning GA (LLGA) [3].

The inversion operator is shown in Figure 3. First, a chunk of adjacent bits are
randomly selected. Next, the chunk is inversed by left-to-right flipping. The bits
are moved around, but the meaning (fitness) of the solution does not changed.
Only the ordering of solution bits is greatly affected. The bits at positions 4
and 7 are passed together with a higher probability. The inversion operator al-
ters the ordering at random. The tight ordering (dependent bits being close

66 C. Aporntewan and P. Chongstitvatana

1 2 3 4 5 6 7 98 10BIT POSITION

0 1 1 1 0 0 1 0 1 1BIT VALUE

A B

B A

BIT VALUE

BIT POSITION

0 1 1 1 01 0 0 1 1

1 2 3 4 6 98 107 5

(1, 1)
(1, 0)

(2, 1) (2, 0) (3, 1)
(3, 0)

(4, 0)
(4, 1) (5, 0) (5, 1)

(6, 0)
(6, 1)

(1, 0)

(1, 1)

A

B

Fig. 3. Inversion operator (left) and linkage learning genetic algorithm (right)

together) are more likely to appear in the final generation. The simple GA en-
hanced with inversion operator is able to find the optimal solution for additively
decomposable functions. In the worst case, the number of function evaluations
grows exponentially with the problem size.

The messy GA encodes a solution bit to (p, v) where p ∈ {1, . . . , �} is bit
position and v ∈ {0, 1} is bit value. For instance, “01101” is encoded as (1,
0) (2, 1) (3, 1) (4, 0) (5, 1). The bits are tagged with the position numbers
so that they can be moved around without losing the meaning. When the so-
lution is mixed, the mixed solution may be over-specified or under-specified.
The over-specification is having more than one copy for a bit position. The
under-specification is having no copy for a bit position. Several alternatives are
proposed for interpreting the over-specified and the under-specified solutions.
For example, the over-specification is resolved by majority voting or first-come,
first-serve basis. The under-specification is resolved by means of the competitive
templates [2]. The messy GA is later developed to fast messy genetic algorithms
(FMGA) and gene messy genetic algorithm (GEMGA) [2].

The LLGA encodes �-bit solutions to 2� distinct pieces of (p, v) placed on a
circular string where the bit position p ∈ {1, . . . , �} and the bit value v ∈ {0, 1}.
The 1-bit solution is encoded as it is shown in Figure 3 (left circle). Interpreting
the solution is probabilistic. First, a starting point on the circular string is chosen.
Second, walking clockwise and picking up (p, v) by first-come, first-serve basis.
For instance, if (1, 0) is encountered first, (1, 1) will not be picked up. The 1-bit
solution will be interpreted as (1, 0) with probability B

A+B , but the interpretation
will be (1, 1) with probability A

A+B where A and B are distances on the circular
string. In Figure 3 (right circle), the dependent bits come close together. The
solution will be interpreted as “111111” with a high probability.

The bit-reordering approach does not explicitly identify BBs, but it success-
fully delivers the optimal solution. Several papers explicitly analyze the fitness
function. The analysis is done on a set of random solutions. Munetomo proposed
that bit i and bit j should be in the same BBs if the monotonicity is violated
by at least a solution [7]. The monotonicity is defined as follows.

if �fi(s) > 0 and �fj(s) > 0 then �fij(s) > �fi(s) and �fij(s) > �fj(s)
if �fi(s) < 0 and �fj(s) < 0 then �fij(s) < �fi(s) and �fij(s) < �fj(s)

where
� fi(s) = f(...si...)− f(...si...) (3)

Chi-Square Matrix: An Approach for Building-Block Identification 67

� fij(s) = f(..si..sj ..)− f(..si..sj ..) (4)

f denotes fitness function. s denotes binary string. si is the ith bit of s. si denotes
1− si. In practice, there might be a relaxation of the monotonicity condition.

Another work that explicitly identifies BBs is to reconstruct the fitness func-
tion [6]. Any function can be written in terms of Walsh’s functions. For example,
f(x1, x2, x3), can be written as f(x1, x2, x3) = w0 + w1Ψ1(x1) + w2Ψ2(x2) +
w3Ψ3(x3) + w4Ψ4(x1, x2) w5Ψ5(x1, x3) + w6Ψ6(x2, x3) + w7Ψ7(x1, x2, x3) where
wi is Walsh’s coefficient (wi ∈ R) and Ψi is Walsh’s function (Ψi : R× . . .×R→
{−1, 1}). The main algorithm is to compute the Walsh’s coefficients. The non-
zero Walsh’s coefficient indicates the dependency between its associated vari-
ables. However, the number of Walsh’s coefficients grows exponentially with
variables. An underlying assumption is that the function has bounded variable
interaction of order-k. Subsequently, the Walsh’s coefficients can be calculated
in a polynomial time.

Identifying BBs is somewhat related to building a distribution of solutions
[4, 8]. The basic concept of optimization by building a distribution is to start
with a uniform distribution of solutions. Next, a number of solutions is drawn
from the distribution. Some good solutions (winners) are selected. Then the
distribution is adjusted toward the winners (the winners-like solutions will be
drawn with a higher probability in the next iteration). These steps are repeated
until the optimal solution is found or reaching a termination condition. The work
in this category is referred to as probabilistic model-building genetic algorithms
(PMBGAs).

The Bayesian optimization algorithm (BOA) uses the Bayesian network to
represent a distribution [9]. It is shown that if the problem is composed of k-bit
trap functions, the network will be fully connected sets of k nodes (see Figure 4)
[9, pp. 54]. In addition, the Bayesian network is able to represent joint distribu-
tions in the case of overlapped BBs. The BOA can solve the sum of k-bit trap
functions (Fm×k) in a polynomial relationship between the number of function
evaluations and the problem size [9]. The hierarchical BOA (hBOA) is the BOA
enhanced with decision tree/graph and a niching method called restricted tour-
nament replacement [9]. The hBOA can solve the hierarchically decomposable
functions (HDFs) in a scalable manner. Successful applications for BB identifi-
cation are financial applications, distributed data mining, cluster optimization,
maximum satisfiability of logic formulas (MAXSAT) and Ising spin glass sys-
tems [2].

We have present many techniques for identifying BBs. Those techniques have
different strength and consume different computational time. The Bayesian net-
work is a powerful tool for identifying BBs, but building the network is time-
consuming. Eventually there will be a parallel construction of Bayesian networks.
This paper presents a distinctive approach for identifying BBs. Let S be a set
of binary solutions and the solution s = b1 . . . b�, bi ∈ {0, 1}. We construct a
symmetric matrix of which the element in row i and column j, denoted by mij ,
is the chi-square of variables bi and bj . The matrix is called chi-square matrix
(CSM). The CSM is further developed from our previous work, the simultaneity

68 C. Aporntewan and P. Chongstitvatana

Fig. 4. A final structure of the Bayesian network. An edge indicates dependency be-
tween two variables

matrix (SM) [1]. The larger the mij is, the higher the dependency is between bit
i and bit j. The matrix computation is simple and fast. Recently, there is similar
work called dependency structure matrix (DSM) [12]. An element of the DSM
is only zero (independent) or one (dependent) that is determined by the non-
monotonicity [7]. Computing the CSM differs from that of the DSM. However,
the papers that are independently developed share some ideas. The remainder of
the paper is organized as follows. Section 2 describes the chi-square matrix. Sec-
tion 3 validates the chi-square matrix with a number of test functions. Section 4
makes a comparison to the BOA and the hBOA. Section 5 concludes the paper.

2 The Chi-Square Matrix

Let M = (mij) be an �×� symmetric matrix of numbers. Let S be a set of �-bit
binary strings. Let si be the ith string, 1 ≤ i ≤ n. Let si[j] be the jth bit of si,
1 ≤ j ≤ �. The chi-square matrix (CSM) is defined as follows.

mij =
{

ChiSquare(i, j) ; if i �= j
0 ; otherwise. (5)

The ChiSquare(i, j) is defined as:

∑
xy

(Cxy
S (i, j)− n/4)2

n/4
, (x, y) ∈ {0, 1}2 (6)

where Cxy
S (i, j) counts the number of solutions in which the bit i and the bit j are

“00,” “01,” “10,” and “11.” The expected frequency of observing “00” or “01”
or “10” or “11” is n/4 where n is the number of solutions. If the solutions are
random, the observed frequency Cxy

S (i, j) is close to the expected frequency. The
common structures (or building-blocks) appear more often than the expected
frequency. Consequently, the chi-square of bit variables that are in the same BB
is high. The time complexity of computing the matrix is O(�2n).

3 A Validation of the CSM

The building-block hypothesis states that the solution quality can be improved
by composing BBs. The artificial functions are designed so that the BB hypothe-

Chi-Square Matrix: An Approach for Building-Block Identification 69

0 0 0 0 1 1 0 1

0 0 1 −

−

−

0

h = 0

h = 1

h = 2

h = 3

1 1 1 1 1 1 1 1

2 2 2 0

4 0

0

1 x 31 1 x 31 1 x 31

h = 0

h = 2

h = 1

0 0 0 0 0 0 1 1 1

0 0 1

−
0.45 x 3 2

Fig. 5. The HIFF function interprets the solution as a binary tree (left). The 8-bit
solution, “00001101,” is placed at the lowest level (h = 0). The interpretation results are
“0,” “1,” and “-” according to a deterministic rule. Each node excepting the nodes that
are “-”contributes to the fitness by 2h. The fitness is a total of 18. The HTrap1 function
interprets the solution as a 3-branch tree (right). The 9-bit solution, “000000111,” is
placed at the lowest level (h = 0). The interpretation results are “0,” “1,” and “-”
according to a deterministic rule. Each node excepting the leaf nodes contributes to
the fitness by 3h × F3(b1b2b3) where bi is the interpretation of the child nodes. The
fitness of “000000111” is 13.05

sis is true, for example, the additively decomposable functions (ADFs) mentioned
in the first section and the hierarchically decomposable functions (HDFs). The
HDFs are far more difficult than the ADFs. First, BBs in the lowest level need to
be identified. The solution quality is improved by exploiting the identified BBs in
solution recombination. Next, the improved population reveals larger BBs. Again
the BBs in higher levels need to be identified. Identifying and exploiting BBs
are repeated many times until reaching the optimal solution. Commonly used
HDFs are hierarchically if-and-only-if (HIFF), hierarchical trap 1 (HTrap1), and
hierarchical trap 2 (HTrap2) functions. The original definitions of the HDFs can
be found in [11, 9].

To compute the HIFF functions, a solution is interpreted as a binary tree. An
example is shown in Figure 5 (left). The solution is an 8-bit string, “00001101.”
It is placed at the leaf nodes of the binary tree. The leaf nodes are interpreted as
the higher levels of the tree. A pair of zeroes and a pair of ones are interpreted as
zero and one respectively. Otherwise the interpretation result is “-.” The HIFF
functions return the sum of values contributed from each node. The contribution
of node i, ci, shown at the upper right of the node, is defined as:

ci =
{

2h ; if node i is “0” or “1”
0 ; if node i is “-,” (7)

where h is the height of node i. In the example, the fitness of “00001101” is∑
ci = 18. The HIFF functions do not bias an optimizer to favor zeroes rather

than ones and vice versa. There are two optimal solutions, the string composed
of all zeroes and the string composed of all ones.

The HTrap1 functions interpret a solution as a tree in which the number
of branches is greater than two. An example is shown in Figure 5 (right). The

70 C. Aporntewan and P. Chongstitvatana

solution is a 9-bit string placed at the leaf nodes. The leaf nodes do not contribute
to the function. The interpretation rule is similar to that of the HIFF functions.
Triple zeroes are interpreted as zero and triple ones are interpreted as one.
Otherwise the interpretation result is “-.” The contribution of node i, ci, is
defined as:

ci =
{

3h × F3(b1b2b3) ; if bj �= “-” for all 1 ≤ j ≤ 3
0 ; otherwise, (8)

where h is the height of node i. b1, b2, b3 are the interpretations in the left, middle,
right children of node i. At the root node, the trap function’s parameters are
f ′

high = 1 and f ′
low = 0.9. The other nodes use fhigh = 1 and flow = 1. In Figure

5 (right), the HTrap1 function returns
∑

ci = 13.05. The optimal solution is
composed of all ones.

The HTrap2 functions are similar to the HTrap1 functions. The only differ-
ence is the trap function’s parameters. In the root node, f ′

high = 1 and f ′
low = 0.9.

The other nodes use fhigh = 1 and flow = 1 + 0.1
h where h is tree height. The

optimal solution is composed of all ones if the following condition is true.

f ′
high − f ′

low > (h− 1)(flow − fhigh) (9)

The parameter setting (f ′
high = 1, f ′

low = 0.9, fhigh = 1, flow = 1 + 0.1
h) sat-

isfies the condition. The HTrap2 functions are more deceptive than the HTrap1
functions. Only root node guides an optimizer to favor ones while the other
nodes fool the optimizer to favor zeroes by setting flow > fhigh.

To validate the chi-square matrix, an experiment is set as follows. We random-
ize a population of which the fitness of any individual is greater than a threshold
T . Next, the matrix is computed according to the population. Every time step,
the threshold T is increased and the matrix is recomputed. The population size
is set at 50 for all test functions. The onemax function counts the number of
ones. The mixed-trap function is additively composed of 5-bit onemax, 3-bit,
4-bit, 5-bit, 6-bit, and 7-bit trap functions. A sequence of the chi-square matrix
is shown in Figure 6-7. A matrix element is represented by a square. The square
intensity is proportional to the value of matrix element In the early stage (A),
the population is almost random because the threshold T is small. Therefore
there are no irregularities in the matrix. The solution quality could be slightly
improved without the BB information. That is sufficient to reveal some irregu-
larities or BBs in the next population (B). Improving the solution quality further
requires information about BBs (C). Otherwise, randomly mixing disrupts the
BBs with a high probability. Finally, the population contains only high-quality
solutions. The BBs are clearly seen (D). The correctness of the BBs depends on
the quality of solutions observed. An optimization algorithm that exploits the
matrix have to extract the BB information from the matrix in order to perform
the solution recombination. Hence, moving the population from (A) to (B), (B)
to (C), and (C) to (D).

Chi-Square Matrix: An Approach for Building-Block Identification 71

Fig. 6. The chi-square matrix constructed from a set of 50 random solutions. The
fitness of any individual in the population is greater than the threshold T . The ADFs
have only single-level BBs

4 A Comparison to BOA and hBOA

An exploitation of the chi-square matrix is to compute a partition {1, . . . , �}
where � is the solution length [1]. The main idea is to put i and j in the same
partition subset if the matrix element mij is significantly high. There are several
definitions of the desired partition, for example, the definitions in the senses
of non-monotonicity [7], Walsh coefficients [6], and minimal description-length
principle [4]. We develop a definition in the sense of chi-square matrix. Algorithm
PAR searches for a partition P such that

1. P is a partition.
1.1 The members of P are disjoint set.
1.2 The union of all members of P is {1, . . . , �}.

2. P �= {{1, . . . , �}}.
3. For all B ∈ P such that |B| > 1,

3.1 for all i ∈ B, the largest |B| − 1 matrix elements in row i are founded in
columns of B \ {i}.

4. For all B ∈ P such that |B| > 1,
4.1 Hmax −Hmin < α(Hmax − Lmin) where

72 C. Aporntewan and P. Chongstitvatana

Fig. 7. The chi-square matrix constructed from a set of 50 random solutions. The
fitness of any individual in the population is greater than the threshold T . The HDFs
have multiple-level BBs

Hmax = max({mij | (i, j) ∈ B2, i �= j}),
Hmin = min({mij | (i, j) ∈ B2, i �= j}),
Lmin = min({mij | i ∈ B, j ∈ {1, . . . , �} \ B}), and α ∈ [0, 1].

5. There are no partition Px such that for some B ∈ P , for some Bx ∈ Px,
P and Px satisfy the first, the second, the third, and the fourth conditions,
B ⊂ Bx.

We assume that the matrix elements {mij | i < j} are distinct. In practice,
the elements can be made distinct by several techniques [1]. An example of
the chi-square matrix is shown in Figure 8. The first condition is obvious. The
second condition does not allow the coarsest partition because it is not useful
in solution recombination. The third condition makes i and j, in which mij is
significantly high, in the same partition subset. For instance, P1 = {{1, 2, 3},
{4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13, 14, 15}} satisfies the third condition because
the largest two elements in row 1 are found in columns of {2, 3}, the largest two
elements in row 2 are found in columns of {1, 3}, the largest two elements in row
3 are found in columns of {1, 2}, and so on. However, there are many partitions
that satisfy the third condition, for example, P2 = {{1, 2, 3}, {4, 5, 6, 7, 8, 9},
{10, 11, 12}, {13, 14, 15}}. There is a dilemma between choosing the fine partition
(P1) and the coarse partition (P2). Choosing the fine partition prevents the
emergence of large BBs, while the coarse partition results in poor mixing. To
overcome the dilemma, the coarse partition will be acceptable if it satisfies the
fourth condition. The fifth condition says choosing the coarsest partition that is
consistent with the first, the second, the third, and the fourth conditions.

Chi-Square Matrix: An Approach for Building-Block Identification 73

Col 1 Col 2 Col 3 Col 4 Col 6 Col 7 Col 8 Col 9 Col 10 Col 11 Col 12 Col 13 Col 14 Col 15

Row 1 0 7.0220 7.0451 6.1129 6.1841 6.2405 6.3493 6.1560 6.3968 6.0455 6.1065 6.0472 6.2699 6.0534 6.0272

Row 2 7.0220 0 7.0130 6.1115 6.2569 6.1972 6.3075 6.2080 6.1943 6.1290 6.0002 6.1259 6.3515 6.0205 6.1223

Row 3 7.0451 7.0130 0 6.2233 6.3643 6.2571 6.4586 6.4432 6.4146 6.1489 6.1774 6.1260 6.3214 6.1133 6.2010

Row 4 6.1129 6.1115 6.2233 0 7.0999 7.0172 6.8228 6.8722 6.8782 6.1817 6.2222 6.2241 6.3219 6.2016 6.1715

Row 5 6.1841 6.2569 6.3643 7.0999 0 7.1543 6.8738 6.8474 6.8064 6.3443 6.3244 6.2739 6.5128 6.2765 6.2995

Row 6 6.2405 6.1972 6.2571 7.0172 7.1543 0 6.8715 6.8567 6.8727 6.2289 6.2683 6.2613 6.3685 6.2914 6.2791

Row 7 6.3493 6.3075 6.4586 6.8228 6.8738 6.8715 0 7.2764 7.3739 6.3571 6.3877 6.3976 6.5485 6.3230 6.2969

Row 8 6.1560 6.2080 6.4432 6.8722 6.8474 6.8567 7.2764 0 7.3045 6.3215 6.2996 6.3359 6.4957 6.2862 6.2538

Row 9 6.3968 6.1943 6.4146 6.8782 6.8064 6.8727 7.3739 7.3045 0 6.3289 6.3623 6.3590 6.6003 6.3272 6.3170

Row 10 6.0455 6.1290 6.1489 6.1817 6.3443 6.2289 6.3571 6.3215 6.3289 0 7.0259 7.0527 6.2390 6.2794 6.2619

Row 11 6.1065 6.0002 6.1774 6.2222 6.3244 6.2683 6.3877 6.2996 6.3623 7.0259 0 7.0457 6.1318 6.3258 6.1094

Row 12 6.0472 6.1259 6.1260 6.2241 6.2739 6.2613 6.3976 6.3359 6.3590 7.0527 7.0457 0 6.3025 6.1219 6.3465

Row 13 6.2699 6.3515 6.3214 6.3219 6.5128 6.3685 6.5485 6.4957 6.6003 6.2390 6.1318 6.3025 0 7.0316 7.1092

Row 14 6.0534 6.0205 6.1133 6.2016 6.2765 6.2914 6.3230 6.2862 6.3272 6.2794 6.3258 6.1219 7.0316 0 7.0832

Row 15 6.0272 6.1223 6.2010 6.1715 6.2995 6.2791 6.2969 6.2538 6.3170 6.2619 6.1094 6.3465 7.1092 7.0832 0

Col 5

elements governed by {4, 5, 6}

elements governed by {4, 5, 6, 7, 8, 9}

Fig. 8. An example of the chi-square matrix. The matrix elements in the diagonal are
always zero. The matrix is symmetric (mij = mji)

By condition 4.1, the partition subset {4, 5, 6} is acceptable because the values
of matrix elements governed by {4, 5, 6} are close together (see Figure 8). Being
close together is defined by Hmax−Hmin where Hmax and Hmin is the maximum
and the minimum of the nondiagonal matrix elements governed by the partition
subset. The Hmax−Hmin is a degree of irregularities of the matrix. The main idea
is to limit Hmax−Hmin to a threshold. The threshold, α(Hmax−Lmin), is defined
relatively to the matrix elements because the threshold cannot be fixed for a
problem instance. The partition subset {4, 5, 6} gives Hmax = 7.1543, Hmin =
7.0172, and Lmin = 6.1115. Lmin is the minimum of the nondiagonal matrix
elements in rows of {4, 5, 6}. The fourth condition limits Hmax−Hmin to 100×α
percent of the difference between Hmax and Lmin. An empirical study showed
that α should be set at 0.90 for both ADFs and HDFs. Choosing {4, 5, 6, 7, 8, 9}
yields (Hmax = 7.3739, Hmin = 6.8064, Lmin = 6.1115) which does not violate
condition 4.1. The fifth condition prefers a coarse partition {{4, 5, 6, 7, 8, 9}, . . .}
to a fine partition {{4, 5, 6}, . . .} so that the partition subsets can be grown to
compose larger BBs in higher levels.

Algorithm PAR is shown in Figure 9. A trace of the algorithm is shown in
Table 2. The outer loop processes row 1 to �. In the first step, the columns of
the sorted values in row i are stored in Ri,1 to Ri,�. For i = 1, R1,1 to Ri,�

are 3, 2, 9, 7, 13, 6, 5, 8, 4, 11, 14, 12, 10, 15, 1, respectively. Next, the inner
loop tries a number of partition subsets by enlarging A (A ← A ∪ {Ri,j}). If A
satisfies conditions 3.1 and 4.1, A will be saved to B. Finally, P is the partition
that satisfies the five conditions. Checking conditions 3.1 and 4.1 is the most
time-consuming section. It can be done in O(�2). The checking is done at most
�2 times. Therefore the time complexity of PAR is O(�4).

We customize simple GAs as follows. Every generation, the chi-square matrix
is constructed. The PAR algorithm is executed to find the partition. Two parents
are chosen by the roulette-wheel method. The solutions are reproduced by a
restricted uniform crossover – bits governed by the same partition subset must

74 C. Aporntewan and P. Chongstitvatana

M = (mij) denotes �×� chi-square matrix.
Ti and Ri,j denote arrays of numbers.
A and B are partition subsets.
P denotes a partition.

Algorithm PAR(M , α)
P ← ∅;
for i = 1 to � do // outer loop

if i �∈ B for all B ∈ P then
T ← {row i sorted in desc. order};
for j = 1 to � do

Ri,j ← x where mix = Tj ;
endfor
A← {i};
B ← {i};
for j = 1 to �− 2 do // inner loop

A← A ∪ {Ri,j};
if A satisfies cond. 3.1 and 4.1 then

B ← A;
endfor
P ← P ∪ {B};

endif
endfor
return P ;

Fig. 9. Algorithm PAR takes an �×� symmetric matrix, M = (mij). The output is the
partition of {1, . . . , �}

be passed together. The mutation is turned off. The diversity is maintained
by the rank-space method. The population size is determined empirically by the
bisection method [9, pp. 64]. The bisection method performs binary search for the
minimal population size. There might be 10% different between the population
size used in the experiments and the minimal population size that ensures the
optimal solution in all independent 10 runs.

The chi-square matrix (CSM) is compared to the Bayesian optimization al-
gorithm (BOA) [9, pp. 115–117]. We also show the results of our previous work,
the simultaneity matrix (SM) [1]. Figure 10 shows the number of function evalu-
ations required to reach the optimum. The linear regression in log scale indicates
a polynomial relationship between the number of function evaluations and the
problem size. The degree of polynomial can be approximated by the slope of
linear regression. The maximum number of incoming edges, a parameter of the
BOA, limits the number of incoming edges for every vertex in the Bayesian net-
work. The default setting is to set the number of incoming edges to k − 1 for
m×k-trap functions. It can be seen that the BOA and the CSM can solve the
ADFs in a polynomial relationship between the number of function evaluations
and the problem size. The BOA performs better than the CSM. However, the
performance gap narrows as the problem becomes harder (onemax, m×3-trap,

Chi-Square Matrix: An Approach for Building-Block Identification 75

Table 2. A trace of the PAR algorithm is shown in the table below. The PAR in-
put is the matrix in Figure 8. The partition subset A is enlarged by Ri,j . If A

satisfies conditions 3.1 and 4.1, A will be saved to B. After finishing the iteration
i = 1 and j = 13, B is added to the partition. Finally, PAR returns the partition
{{1, 2, 3}, {4, 5, 6, 7, 8, 9}, {10, 11, 12}, {13, 14, 15}}

i j A Cond. 3.1 Cond. 4.1 B

1 1 {1, 3} True True {1, 3}
1 2 {1, 3, 2} True True {1, 3, 2}
1 3 {1, 3, 2, 9} False False {1, 3, 2}
1 4 {1, 3, 2, 9, 7} False False {1, 3, 2}
1 5 {1, 3, 2, 9, 7, 13} False False {1, 3, 2}
1 6 {1, 3, 2, 9, 7, 13, 6} False False {1, 3, 2}
1 7 {1, 3, 2, 9, 7, 13, 6, 5} False False {1, 3, 2}
1 8 {1, 3, 2, 9, 7, 13, 6, 5, 8} False False {1, 3, 2}
1 9 {1, 3, 2, 9, 7, 13, 6, 5, 8, 4} False False {1, 3, 2}
1 10 {1, 3, 2, 9, 7, 13, 6, 5, 8, 4, 11} False False {1, 3, 2}
1 11 {1, 3, 2, 9, 7, 13, 6, 5, 8, 4, 11, 14} False False {1, 3, 2}
1 12 {1, 3, 2, 9, 7, 13, 6, 5, 8, 4, 11, 14, 12} False False {1, 3, 2}
1 13 {1, 3, 2, 9, 7, 13, 6, 5, 8, 4, 11, 14, 12, 10} False False {1, 3, 2}

and m×5-trap functions respectively). The difficulty of predetermining the max-
imum number of incoming edges is resolved in a later version of the BOA called
hierarchical BOA (hBOA). We made a comparison between the CSM and the
hBOA [9, pp. 164–165] (see Figure 10). The hBOA uses less number of function
evaluations than that of the CSM. But in terms of scalability, the hBOA and
the CSM are able to solve the HDFs in a polynomial relationship.

Another comparison to the hBOA is made in terms of elapsed time and
memory usage. The elapsed time is an execution time of a call on subroutine
constructTheNetwork. The memory usage is the number of bytes dynamically
allocated in the subroutine. The hardware platform is HP NetServer E800, 1GHz
Pentium-III, 2GB RAM, and Windows XP. The memory usage in the hBOA
is very large because of inefficient memory management in constructing the
Bayesian network. A fair implementation of the Bayesian network is the Mi-
crosoft WinMine Toolkit. The WinMine is a set of tools that allow you to build
statistical models from data. It constructs the Bayesian network with decision
tree that is similar to that of the hBOA. The WinMine’s elapsed time and mem-
ory usage are measured by an execution of dnet.exe – a part of the WinMine
that constructs the network. All experiments are done with the same biased
population that is composed of aligned chunks of zeroes and ones. The param-
eters of the hBOA and the WinMine Toolkit are set at default. The population
size is set at three times greater than the problem size. The elapsed time and
memory usage averaged from 10 independent runs are shown in Figure 11. It can
be seen that constructing the Bayesian network is time-consuming. In contrast,
the matrix computation is 10 times faster and uses 10 times less memory then
constructing the network.

76 C. Aporntewan and P. Chongstitvatana

Onemax functions

 10e+04

10e+05

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

 in
 lo

g
sc

al
e

Problem size (number of bits) in log scale
 150 200 250

 10e+03

SM
BOA

CSM

100

HIFF functions

1e+03

1e+04

1e+05

1e+06

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

 in
 lo

g
sc

al
e

Problem size (number of bits) in log scale
32 64 128 256

CSM
SM
hBOA

mx3−trap functions

1e+04

1e+05

1e+06

Problem size (number of bits) in log scale
120 180 240

BOA
SM
CSM

60

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

 in
 lo

g
sc

al
e

HTrap1 functions

1e+03

1e+04

1e+05

1e+06

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

 in
 lo

g
sc

al
e

Problem size (number of bits) in log scale
8127 243

CSM
SM
hBOA

mx5−trap functions

10e+04

10e+05

1e+06

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

 in
 lo

g
sc

al
e

CSM
SM
BOA

100 150 200 250
Problem size (number of bits) in log scale

HTrap2 functions

1e+04

1e+05

1e+06

N
um

be
r

of
 fu

nc
tio

n
ev

al
ua

tio
ns

 in
 lo

g
sc

al
e

Problem size (number of bits) in log scale

1e+03

CSM
SM
hBOA

27 81 243

Fig. 10. Performance comparison between the BOA and the CSM on ADFs (left)
Performance comparison between the hBOA and the CSM on HDFs (right)

Problem size (number of bits) in log scale

1e+00

1e+01

1e+03

1e+02

E
la

ps
ed

 ti
m

e
(s

ec
.)

 in
 lo

g
sc

al
e

256 384 512 640 768 896

WinMine
hBOA
CSM

hBOA
CSM

WinMine
1e+05

1e+06

1e+07

1e+08

1e+09

M
em

or
y

us
ag

e
(b

yt
es

)
in

 lo
g

sc
al

e

Problem size (number of bits) in log scale

256 384 512 640 768 896

Fig. 11. Elapsed time (left) and memory usage (right) required to construct the
Bayesian network and the upper triangle of the matrix (a half of the matrix is needed
because the matrix is symmetric)

5 Conclusions

The current BB identification research relies on building a distribution of so-
lutions. The Bayesian network is a powerful representation for the distribution.
Nevertheless, building the network is time-and-memory consuming. We have pre-
sented a BB identification by the chi-square matrix. The matrix element mij is
the degree of dependency between bit i and bit j. The time complexity of com-

Chi-Square Matrix: An Approach for Building-Block Identification 77

puting the matrix is O(�2n) where � is the solution length and n is the number
of solutions. We put i and j of which mij is high in the same partition subset.
The time complexity of partitioning is O(�4) where � is the solution length. The
bits governed by the same partition subsets are passed together when perform-
ing solution recombination. The chi-square matrix is able to solve the ADFs and
HDFs in a scalable manner. In addition, the matrix computation is efficient in
terms of computational time and memory usage.

References

1. Aporntewan, C., and Chongstitvatana, P. (2004). Simultaneity matrix for solving
hierarchically decomposable functions. Proceedings of the Genetic and Evolution-
ary Computation, page 877–888, Springer-Verlag, Heidelberg, Berlin.

2. Goldberg, D. E. (2002). The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Kluwer Academic Publishers, Boston, MA.

3. Harik, G. R. (1997). Learning linkage. Foundation of Genetic Algorithms 4, page
247–262, Morgan Kaufmann, San Francisco, CA.

4. Harik, G. R. (1999). Linkage learning via probabilistic modeling in the ECGA.
Technical Report 99010, Illinois Genetic Algorithms Laboratory, University of Illi-
nois at Urbana-Champaign, Champaign, IL.

5. Holland, J. H. (2000). Building blocks, cohort genetic algorithms, and hyperplane-
defined functions. Evolutionary Computation, Vol. 8, No. 4, page 373–391, MIT
Press, Cambridge, MA.

6. Kargupta, H., and Park, B. (2001). Gene expression and fast construction of dis-
tributed evolutionary representation. Evolutionary Computation, Vol. 9, No. 1,
page 43–69, MIT Press, Cambridge, MA.

7. Munetomo, M., and Goldberg, D. E. (1999). Linkage identification by non-
monotonicity detection for overlapping functions. Evolutionary Computation, Vol.
7, No. 4, page 377–398, MIT Press, Cambridge, MA.

8. Pelikan, M., Goldberg, D. E., and Lobo, F. (1999). A survey of optimization by
building and using probabilistic models. Computational Optimization and Appli-
cations, Vol. 21, No. 1, page 5–20, Kluwer Academic Publishers.

9. Pelikan, M. (2002). Bayesian optimization algorithm: From single level to hierarchy.
Doctoral dissertation, University of Illinois at Urbana-Champaign, Champaign, IL.

10. Thierens, D. (1999). Scalability problems of simple genetic algorithms. Evolution-
ary Computation, Vol. 7, No. 4, page 331–352, MIT Press, Cambridge, MA.

11. Watson, R. A., and Pollack, J. B. (1999). Hierarchically consistent test problems for
genetic algorithms. Proceedings of Congress on Evolutionary Computation, page
1406–1413, IEEE Press, Piscataway, NJ.

12. Yu, T., and Goldberg, D. E. (2004). Dependency structure matrix analysis: off-line
utility of the dependency structure matrix genetic algorithm. Proceedings of the
Genetic and Evolutionary Computation, page 355–366, Springer-Verlag, Heidel-
berg, Berlin.

	Introduction
	The Chi-Square Matrix
	A Validation of the CSM
	A Comparison to BOA and hBOA
	Conclusions

