AN ADAPTATION OF EVOLUTIONARY STRATEGIES FOR FORECASTING THE EXCHANGE RATE

Sunisa Rimcharoen Prabhas Chongstitvatana

Chulalongkorn University, Thailand

Problem

What is tomorrow's exchange rate?

19 July 200440.13 baht/us-dollar20 July 200441.27 baht/us-dollar21 July 200441.04 bath/us-dollar22 July 2004???

In general, experts use a statistical model which is complex and the background knowledge is required.

Our work

- Do not require any a priori function or background knowledge.
- \ll Using the technique of adaptive (1+1)-ES.
- Finding a function that can predict the exchange rate.

Technique

1. Random the function. f(x) = sin(x) + cos(x)

- 2. Random the coefficient. f(x) = 0.5 + 0.5sin(x) + 0.5cos(x)
- 3. Encoding its into chromosomes (strings).

Primitive Function
sin(x) = 4
cos(x) = 5
<i>tan</i> (<i>x</i>) = 6
<i>x</i> = 7
exp = 8

0.5	0.5	0.5	4	0	5
-----	-----	-----	---	---	---

Technique

4. Evolve function and coefficient using mutation operation. Generation 1:

$$f'(x) = 0.47 + 0.89sin(x) + 0.21tan(x) \ll RMS = 38.21$$

Select f'(x) to the next generation.

Generation 2:

$$f(x) = 0.47 + 0.89sin(x) + 0.21tan(x)$$

 $rac{MS}{=} 38.21$

$$f'(x) = 0.96 + 1.23 sin(x) - 0.14 tan(x) \ll RMS = 47.34$$

Select f(x) to the next generation.

Generation 3:

...

...

$$f(x) = 0.47 + 0.89sin(x) + 0.21tan(x)$$
 \swarrow RMS = 38.21

Experiment

- ✓ The exchange rate data from Bank of Thailand during the year 1998.
- Root Mean Square error (RMS) is used for evaluation.
- The result is validated using 10-fold cross validation.

Experimental Result – forecasting function

Choosing the function that give a minimum error on testing data. 23.5913 + 1.2262x² / 20.9066x + 11.9073exp(-(((x-86.889879)/-97.964033)²)) --6.5593exp(-(((x-7.979729)/-14.378492)²)) + 17.8724exp(-(((x-11.885456)/30.668756)²)) - 39.1577tan(2.405826x) * -3.8903tan²(0.840118x) * 4.1275x / 20.1120x⁵

Conclusion

- Presenting an adaptation of (1+1)-ES with evolution of functional form.
- Solution State State
- Suitable for variety of tasks that the functional form are not known a priori.

Thank you.