$\mathcal{A N} \mathcal{A D A P I} \mathcal{A T}$ IO \mathcal{N} OF EVO LUII O $\mathcal{N A R V}$ $S \mathcal{T R A T E G I E S ~ F O R ~ F O R E C A S T I N G ~}$

Sunisa Rimcharoen Prabhas Chongstitvatana

Chulalongkorn Unive rsity, Thailand

Problem

What is tomorrow's exchange rate?

19 guly 2004	$40.136 \mathrm{Gft} / \mathrm{us}$-dollar
20 guly 2004	$41.276 \mathrm{aft} / \mathrm{us}$-dollar
21 guly 2004	$41.046 \mathrm{ath} / \mathrm{us}$-dollar
22 guly 2004	$? ? ?$

In general, experts use a statistical model which is comple x and the background Knowle dge is required.

Our work

* Do not require any a priorifunction or background knowledge.
* Using the technique of adaptive (1+1)-ES.
* Finding a function that can predict the exchange rate.

Tecfinique

1. Random the function.

$$
f(x)=\sin (x)+\cos (x)
$$

2. Random the coefficient.

$$
f(x)=0.5+0.5 \sin (x)+0.5 \cos (x)
$$

3. Encoding its into chromosomes (strings).

Arithmetic Operators Primitive Function

$$
\left.\begin{array}{ll}
+^{\prime}=0 & \sin (x)=4 \\
\because^{\prime}=1 & \cos (x)=5 \\
\prime^{\prime}=2 & \tan (x)=6 \\
y=3 & x
\end{array}\right)=70 \text { exp }=8
$$

0.5	0.5	0.5	4	0	5

Tecfnique

4. Evolve function and coefficient using mutation operation. Generation 1:

$$
\begin{aligned}
& f(x)=0.5+0.5 \sin (x)-0.5 \cos (x) \\
& f^{\prime}(x)=\text { mutate } f(x) \\
& f^{\prime}(x)=0.47+0.89 \sin (x)+0.21 \tan (x) \\
& \text { Select } f^{\prime}(x) \text { to the nextgeneration. }
\end{aligned} \quad \text { RMS }=44.82
$$

Generation 2:

$$
\begin{array}{lll}
f(x)=0.47+0.89 \sin (x)+0.21 \tan (x) & \text { RMS }=38.21 \\
f^{\prime}(x)=\text { mutate } f(x) \\
f^{\prime}(x)=0.96+1.23 \sin (x)^{\downarrow}-0.14 \tan (x) & \\
\text { Select } f(x) \text { to the nextgeneration. } & \text { RMS }=47.34 \\
\end{array}
$$

Generation 3:

$$
f(x)=0.47+0.89 \sin (x)+0.21 \tan (x) \quad \text { RNS }=38.21
$$

Evolution

Experiment

* The exchange rate data from Bank of Thailand during the year 1998.
\star Root $\mathcal{M e}$ an S quare error ($\mathcal{R M S}$) is used for evaluation.
- The result is validated using 10 -fold cross validation.

Experimental Result - forecasting function

Choosing the function that give a minimum error on testing data. $23.5913+1.2262 x^{2} / 20.9066 x+11.9073 e x p\left(-\left(((x-86.889879) /-97.964033)^{2}\right)\right)$. $-6.5593 \exp \left(-\left(((x-7.979729) /-14.378492)^{2}\right)\right)+17.8724 e x p\left(-\left(((x-11.885456) / 30.668756)^{2}\right)\right)$ - $39.1577 \tan (2.405826 x)^{*}-3.8903 \tan ^{2}(0.840118 x)^{*} 4.1275 x / 20.1120 x^{5}$

Conclusion

* Presenting an adaptation of (1+1)-ES with e volution of functional form.
* Ulsing the data of bath/us-dollar exchange rate for forecasting task.
\star Suitable for varie ty of tasks that the functional form are not known a priori.

Thank you.

