
Diffuse Large B-cell Lymphoma Classification
Using Genetic Programming Classifier

Supoj Hengpraprohm and Prabhas Chongstitvatana

Department of Computer Engineering Chulalongkorn University, Thailand
supojn@yahoo.com, prabhas@chula.ac.th

 Abstract – Diffuse large B-cell lymphoma (DLBCL) is the most
common subtype of non-Hodgkin’s lymphoma. It is possible to
classify normal and DLBCL patients using the data from cDNA
microarrays technique that monitoring gene expression.
Machine learning techniques are well-known methods for
classification tasks. In this paper, we propose a Genetic
Programming based method to generate classifiers with high
accuracy. The proposed method employs cluster of classifiers to
vote for the result. Furthermore, the classifier is presented in
form of a mathematical equation which is amendable to human
interpretation.

I. INTRODUCTION

 Diffuse large B-cell lymphoma (DLBCL) is the most
common subtype of non-Hodgkin’s lymphoma. Less than 50%
of DLBCL patients respond well to current therapy and have
prolonged survival [1]. Many researchers attempt to study
their special feature and try to identify normal and DLBCL
patients automatically.
 Alizadeh et al. [2] showed that there is diversity in gene
expression among the tumours of DLBCL patients using
complementary DNA (cDNA) microarrays technique. They
identified two molecularly distinct forms of DLBCL such as
germinal centre B-like (GC B-like) DLBCL and activated B-
like DLBCL.
 Azuaje [3], [4] proposed an automated approach to
prediction and discovery of classes of cancer based on the
processing of gene expression data generated by Alizadeh et
al. Using artificial neural learning known as Simplified Fuzzy
ARTMAP (SFAM), it can provide an effective and efficient
method for the prediction and discovery of cancer categories.
 Many researchers [5], [6], [7] tried to develop cancer
classification and clustering systems using machine learning
techniques based on gene expression data. The systems are
able to classify the data with high accuracy or cluster the data
significantly. However, the knowledge embedded in these
classifiers are difficult to understand by human.
 In this paper, we used Genetic Programming to generate
classifiers for identifying normal and DLBCL from data
generated by Alizadeh. The classifier is formed as a
mathematical formula which makes it more understandable for
human. In conjunction with Genetic Programming, we have
used cluster of classifiers with a voting strategy to improve the
accuracy of classification.

 The paper is organized as follows. Section II presents an
introduction to Genetic Programming. Section III describes
the data and method implemented in this research. Section IV
shows the result of the experiment and conclusions are
presented in Section V.

II. INTRODUCTION TO GENETIC PROGRAMMING

 Genetic Programming [8] is a search method that imitates
natural evolution and natural selection. It is developed from
Genetic Algorithms [9] and is differed by the way the solution
is represented in a tree structure instead of a fixed length
binary string. The solution comprises of nodes from a function
set and a terminal set. A function set is a set of operators
designed for the problems such as arithmetic operators, logical
operators, control functions, etc. A terminal set is a set of
operands of function such as constant, variable, etc. The
algorithm of Genetic Programming is shown in Fig. 1 and
details of each step are as follows:

A. Generate an initial population of solutions
The initial solutions are created to full the population. The

structure of a solution is a tree. There will be a large variation
of solution structures through the process of this random
generation (Fig. 2).

B. Evaluate each solution by a fitness function
Each solution is evaluated to determine its fitness. The

evaluation function, called "fitness function", is an important
element in Genetic Programming. The fitness function is
problem specific. For example, for a symbolic regression
task, the fitness function usually is the minimization of
prediction error in the training set. Each solution will have a
measure of goodness associated with it.

C. Create a new population by genetic operators
Genetic operations on the population have the goal of

generating a new population that has better quality solutions.
There are three genetic operators: reproduction, crossover,
and mutation.

Reproduction
A number of good solutions are selected to be reproduced to

the next generation. This process conserves good solutions.

Crossover
This operator recombines parts from two good solutions,

called "parents", to create new solutions, called "offspring".
Two good solutions are selected, the probability of a solution
being selected is proportional to its fitness. The crossover
points, which determine the location to exchange parts, are
randomly selected. The subtrees from parents are exchanged.
This process creates two new offspring (Fig. 3).

Mutation
To maintain diversity in the population and to encourage

exploration of different solutions, the mutation operator
changes some part of a solution randomly. A solution is

selected randomly and a location to be changed is selected. A
part is mutated by replacing it with a small random tree (Fig.
4).

These steps are repeated until the termination criteria are

met. The termination criterion for the run may be defined by
the best fitness value or a maximum number of generations.
Throughout generations, the quality of solutions is improved.
The result from each run is different as the search for a
solution is probabilistic and the solution for this problem is not
unique.

Start

Generate an initial population of solutions randomly

Generation = 0

Evaluate each solution by a fitness function

Terminate?

Fig.1. Genetic Programming algorithm

Create a new population by genetic operators
- Reproduction
- Crossover
- Mutation

Generation = Generation + 1

The result is the best solution that
has the best fitness value

Stop

No Yes

Fig.2. Solution in Population of Genetic Programming

Fig.3. Crossover operator

Fig.4. Mutation operator

III. THE DATA AND METHODS IMPLEMENTED

In this research, we used the data generated by Alizadeh et
al. [2]. The data is the expression levels from a number of
genes using cDNA microarray technique. The data is
described in Section A. Section B presents the feature of
Genetic Programming classifier. Section C shows the details
of parameters. The evaluation of the result will be discussed
in Section D.

A. cDNA microarray data

The data consisted of 63 cases (45 DLBCL and 18 normal)

described by the expression level of the genes: CD10, BCL-6,
TTG-2, IRF-4 and BCL-2, which were used in the experiment
of Azuaje [4]. These 5 genes have 13 environments in
expression levels. Their values are defined as follows:

)3(
)5(logexp_ 2 CyInt

CyIntressiongene = . (1)

 where Int(Cy5) and Int(Cy3) are the intensities of red and
green colors which are scanned after the hybridization of the
samples with the arrayed DNA probes. The full data and
experimental methods are available on the web of Alizadeh et
al. (http://llmpp.nih.gov/lymphoma)

B. Genetic Programming classifier

 A classifier is represented by a classification tree. The tree
represented an arithmetic equation (Fig 5). It consists of
symbols from the function set F and the terminal set T. The
function set F comprises of arithmetic operators and the
terminal set T comprises of 10 constants and 13 variables
defined as follows: F = {+, -, *, / } and T = { 0.. 9, x1.. x13
}. The variables represent the value of the expression level of
genes in each environment. Each variable is defined in Table
I.

TABLE I
 DEFINITION OF VARIABLE USED IN GP CLASSIFIER

Variable Gene Clone_ID
x1
x2
x3
x4
x5
x6
x7
x8
x9

x10
x11
x12
x13

CD10
CD10
CD10
BCL-6
BCL-6
TTG-2
TTG-2
IRF-4
IRF-4
BCL-2
BCL-2
BCL-2
BCL-2

200814
1286850
701606
712395
1340526
712829
685456
270770
1272196
232714
342181
1336385
342181

C. Parameters and Methods

 The parameters of Genetic Programming runs used in the
experiment are shown in Table II. Initial population of
equations is generated randomly. Genetic operators are
applied to create a new generation of population as described
in Section 2. The details of the process are as follows:

 Fitness Function
 To evaluate the fitness of a candidate, its equation is
evaluated. Its variables are instantiated as follows. The
variables (x1-x13) are from the cDNA microarray data. If the
result of evaluating an equation is more than 0, it will be
classified as Class 1 (DLBCL group). Otherwise it will be
classified as Class 2 (normal group). An equation is evaluated
with data in the training set and the total number of the correct
classification is counted as the fitness value of the equation.
The term 1/size is included as a penalty for a large solution
and to encourage a compact solution. The higher fitness value
indicates the better solution. The fitness function defined as
follow:

)(
1)_(_
TreeSize

tionClassificaCorrectTotalvaluefitness += (2)

 Selection
 The Tournament Selection [8] is used in the experiment.
The tournament size is 20.

 Reproduction
 The top 10% of high fitness value individuals will be
selected to create a new generation.

 Crossover
 Two equations are selected with the selection method as
described above. The crossover points are selected randomly
to swap the structure of each equation at the crossover points.
After crossover, if the size of equation is within the limit of
the maximum size, it will be accepted to be in the new
generation. Otherwise, it will be discarded. Crossover is
repeated until the offspring are created equal to the target
number.

Fig.5. (left) The tree represented an arithmetic equation

(right) The equation derived from the tree

TABLE II

 THE PARAMETERS WHICH BE USED TO CREATE THE CLASSIFIERS
Population Size 1,000
Maximum Size of Tree Not more than 20 times of the number of

variables (20 x 13 = 260) nodes.
Maximum number of
Generation

500

Reproduction Rate 10%
Crossover Rate 80%
Mutation Rate 10%
Termination Criteria Correctly classify the training data 100%

or exceed the maximum number of
generations

 Mutation
 An equation is selected and mutation is applied. There are
two types of mutation, they are defined as follows:

1) Type1 Structure change mutation: a node in a tree is
selected and replaces with a terminal node (0-9 or x1-
x13) randomly chosen.

2) Type2 Value change mutation: a node is selected and
replaces with a random choice from the symbol set of its
own type. For example: if the value of node selected is
an operator, it will be replaced by a value in function set
randomly chosen.

D. Evaluation criteria

 To evaluate the performance of a classifier, we used a
method known as round robin or leave one out method [10].
There are 63 records of data, 62 records are used as training
set and one record is used as a test. We exchange a test data
through to 63 records and evaluate an equation in terms of its
accuracy, sensitivity and specificity which are defined as
follows:

N
TNTPAccuracy)(+

= (3)

)(FNTP
TPySensitivit
+

= (4)

)(FPTN
TNySpecificit
+

= (5)

 where N is a total number of tested cases, TP is a total
number of DLBCL subjects correctly classified, TN is a total
number of normal subjects correctly classified, FP is a total
number of normal subjects classified as DLBCL and FN is a
total number of DLBCL subjects classified as normal.
 Accuracy indicates the effectiveness of a classifier for
classifying all data correctly. Sensitivity indicates the
effectiveness of classifier to classify DLBCL data correctly.
Specificity indicates the effectiveness of a classifier for
classifying normal data correctly.

76
82

61

78
.72 83

.1

67
.77

84
.91 88

.88

74
.99

88
.09 92

.22

77
.77

0

10

20

30

40

50

60

70

80

90

100

Accuracy Sensitivity Specificity

Measurement

Co
rr

ec
tn

es
s

(

Azuaje
GP
GP v3
GP v5

IV. EXPERIMENTAL RESULT

 Each run of the experiment consists of 63 runs of different
training data. A genetic programming run consists of 63 runs,
each run generates a best classifier for its training set. Genetic
Programming is a randomized algorithm and the result of each
run is different. The experiment is repeated 10 times and
averaged value of accuracy, sensitivity and specificity. To
improve the accuracy further we used a majority voting
strategy from a number of different classifiers, all of which
were from different run. The number of classifiers is varied
from 1, 3 and 5. The result is shown in Table III. The machine
used in the experiment is a PC with 1.5GHz processor, 512
Mbytes memory. Each run takes on the average, 190 seconds.
The total amount of time of the whole experiment is
190×63×10 = 119700 seconds or 33.25 hours.

Fig. 6. The comparison of experimental result

If (((x13 - ((4 - (((x3 - 1) + (x2 * x7)
) - x9)) * x12)) + 9) + ((((x9 * 6)
+ 9) / (((x13 * 6) + (x10 / x6)) + 1)
) - x8)) > 0 We compare this result with the result of Azuaje’s

experiment in the best case (vigilance value (ρ) is equal to
0.95) and found that the Genetic Programming classifier is
more effective to classify the data. The best result comes from
using 5 classifiers to vote. The comparison of results is shown
in Fig 6. An example of a Genetic Programming classifier is
shown in Fig 7. Fig 8 shows the same classifier in a
mathematical equation form. The average size of a solution is
89.5 nodes.

Then
 Class 1: DLBCL
Else (include divide by 0)
 Class 2: normal
End If

Fig. 7. An example of a Genetic Programming classifier

 V. DISCUSSION AND CONCLUSION
TABLE III THE EXPERIMENTAL RESULT

 These results suggest that Genetic Programming classifiers
can be useful for classifying DLBCL out of normal data.
Furthermore, when a majority voting strategy is used in
conjunction with Genetic Programming classifiers, the
correctness of classification is improved. However, it takes
more computation time to create many classifiers.

Number of
Classifiers

Accuracy (%) Sensitivity (%) Specificity (%)

1
3
5

78.72
84.91
88.09

83.10
88.88
92.22

67.77
74.99
77.77

 When a classifier is presented in an equational form, its
meaning is more amendable to human interpretation. The
equation shows the relation of expression of each gene. These
relationships may help us to understand which gene is
important for the treatment of the disease.

x13 4 x3 1−() x2 x7⋅()+[] x9−[]−[] x12⋅[]−[] 9+[]
x9 6⋅() 9+[]

x13 6⋅()
x10
x6

⎛⎜
⎝

⎞⎟
⎠

+⎡⎢
⎣

⎤⎥
⎦

1+⎡⎢
⎣

⎤⎥
⎦

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

x8−⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

+⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

.
Fig. 8. A Genetic Programming classifier in a mathematical equation form

REFERENCES

[1] Margaret A. Shipp et al., “Diffuse large B-cell lymphoma outcome
prediction by gene expression profiling and supervised machine
learning”, Nature Medicine, vol. 8, no. 1, Jan. 2002, pp. 68 – 74.

[2] Ash A. Alizadeh et al., “Distinct type of diffuse large B-cell lymphoma
identified by gene expression profiling”, Nature, vol. 403, 3 Feb. 2000,
pp. 503 – 511.

[3] Francisco Azuaje, “Making Genome Expression Data Meaningful:
Prediction and Discovery of Classes of Cancer Through a Connectionist
Learning Approach”, Proceeding of the IEEE Symposium on Bio-
Informatics and Biomedical Engineering (BIBE), 2000, pp. 208 – 213.

[4] Francisco Azuaje, “A computational neural approach to support the
discovery of gene function and classes of cancer”, IEEE Transaction on
Biomedical Engineering, vol. 48, 2001, pp.332 – 339.

[5] Chanho Park and Sung-Bae Cho, “Evolutionary Ensemble Classifier for
Lymphoma and Colon Cancer Classification”, The 2003 Congress on
Evolutionary Computation, vol.4, 2003, pp.2378 – 2392.

[6] Sung-Bae Cho and Hong-Hee Won, “Machine Learning in DNA
Microarray Analysis for Cancer Classification”, the Proceedings of the
First Asia-Pacific bioinformatics conference on Bioinformatics 2003,
vol. 19, 2003, pp.189 – 198.

[7] Jin-Hyuk Hong and Sung-Bae Cho, “Lymphoma Cancer Classification
Using Genetic Programming with SNR Features”, Proceeding of Genetic
Programming: 7th European Conference, vol. 3003, 2004, pp.78 – 88.

[8] Koza, J. , “Genetic Programming”, MIT Press, 1992.
[9] Holland, J., “Adaptation in Natural and Artificial System”, Ann Arbor,

Michigan : University of Michigan Press, 1975.
[10] F. Tourassi and C. Floyd, “The effect of data sampling on the

performance evaluation of artificial neural networks in medical
diagnosis”, Medical Decision Making, 17, 186-192, 1997

	D. Evaluation criteria

