2006 IEEE Congress on Evolutionary Computation

Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada

July 16-21, 2006

A Cooperative Approach to Compact Genetic Algorithm for
Evolvable Hardware

Yutana Jewajinda

National Electronics and Computer Technology Center
National Science and Technology Development Agency

Bangkok, Thailand
yutana jewajinda@nectec.or.th

Abstract— This paper presenis a cooperative compaci ge-
netic algorithm (CoCGA), The CoCGA is developed from the
compact GA and proposed to be used for intrinsic evolvable
hardware. The concept and algorithm of the CoCGA are pre-
sented. The hardware implementation of the CoCGA and CGA
were carried oul. The standard test functions were selected
10 measure the effectiveness of the CoCGA. The experimental
results significantly shows that the CoCGA outperforms the
normal compact GA both in speed and quality with acceptable
usage of hardware resources for modern-day FPGAs.

1. INTRODUCTION

Evolvable Hardware (EH) is an emerging research area
in Evolutionary Computation (EC). There are a number of
methods and techniques that propose to apply the Genetic
Algorithm (GA), Evolutionary Strategy (ES), and Genetic
Programming (GP) to be implemented in hardware, espe-
cially implementation onto FPGAs or other reconfigurable
devices [1], [2], [4]. There are two approaches for the design
of EH: extrinsic and intrinsic [3], [5]. For extrinsic EH, the
evolutionary process is performed off-line. Then the results
is downloaded onto the hardware. On the contrary, for the
intrinsic IEH, the evolutionary process is performed wholly
or partly in hardware [6], [7], [8], [9). However, in order
to accomplish the intrinsically on-line evolving in hardware
and (o utilize hardware resource efficiently, a challenging
question is how to modify or invent efficient and improved
GA or EA algorithms that can be effectively implemented in
hardware,

The trend towards the increasing of density and price per
performance of current FPGAs due to advanced semiconduc-
tor process technology provides an opportunity for designers
and researchers Lo use larger and faster FPGAs for Evolvable
Hardware [11], [12]. With this trend of FPGA technology
development, the concept of implementing a group of parallel
processing units for EH in a single FPGA chip is feasible [8],
[10]. In this paper, the cooperative compact genetic algo-
rithms (CGA) is proposed and it’s hardware implementation
is explored as the compact GA is ong of the key algorithms
suitable for hardware implementation [16].

Contrary to the Simple GA (SGA), the compact GA is
more suitable for hardware implementation due to using
probability vectors [17], [16]. The CGA manipulates the

0-7803-9487-9/06/$20.00/©2006 IEEE

Prabhas Chongstitvatana
Department of Computer Engineering
Chulalongkorn University
Bangkok, Thailand
prabhas@chula.ac.th

probability vector instead of operating on the actual popula-
tion. This dramatically reduces a number of bits and memory
required to store the population. With this representation,
it is practical to use only registers implemented using D-
Flip-Flops in digital circuits. Thus, it eliminates the need for
Random Access Memory (RAM). The experiment shows that
the hardware Compact GA is at least 1000 times laster than
a software version [17].

Even though the compact GA has advantage for hardware
implementation, but unfortunately, the basic compact GA
lacks of sufficient search power for EH applications that
requires accuracy and faster processing time. Therefore,
the CGA has been improved by adding more techniques
like elitism, mutation, and champion resampling [15], [16],
[21]. This modified CGA is called *CGA or *CGA family.
Recently, MiniPop EA is proposed to be used for EH [24].
The MiniPop EA trades away search-power for the ability to
implement the algorithms in small size hardware, However,
the *CGA and MiniPop algorithms still perform well on
normal EH-control problems. In this paper, the new kind
of the compact GA algorithm for EH is proposed called
Cooperative Compact Genetic Algorithm (CoCGA).

The CoCGA is designed inspired by the concept of the
cooperative genetic algorithm [13]. The CoCGA consists of
a group of basic compact GAs that operate cooperatively.

This paper presents the cooperative compact genetic algo-
rithm (CoCGA) that offers higher search power in term of
faster searching time and better accuracy of search results
with an acceptable utilization of hardware resources, espe-
cially suitable for implementing onto today FPGAs that have
higher density of hardware resources on a single chip.

This paper begins with a description of basic compact
GA in section II. Then, section 111 introduces models of the
parallelized implementation of genetic algorithm in high per-
formance computing systems. In section 1V, the Cooperative
Compact GA (CoCGA) algorithm is proposed and explained
in detail and the pseudo codes is discussed. Section V
presents the hardware implementation for CGA and CoCGA.
Both hardware circuits are implemented onto an FPGA. for
performance evaluation and comparison. The benchmarks
and the methodology used for measuring the search power
of CoCGA are briefly discussed in section VI. Then, the
benchmarks results are presented in section VIL Finally, the

2779

—

. Initialize probability vector
for i := 1 to L do pl[i] := 0.5;

2. Generate two individuals from the vector
a := generate(p);

b := generate (p);

3 Let them compete

Winner, leoser := evaluatef{a, b);
4. Update the probability vector toward the better one
for 1 =1 to L do
if winner[i] != loser[i] then
if winner[i] = 1 then p[i] += 1/N
else p[i] -= 1/N
5. Check if the probability vector has converged

:= 1 to L do
> 0 and pli]

for i

if pli] < 1 then goto step 2

6. P represents the final solution

Fig. 1. Psedocode of Compact Genetic Algorithm

paper concludes with a summary of benchmarks results, the
potential and applications of the CoCGA, and discussion of
future opened research issues.

I1. COMPACT GENETIC ALGORITHM

The compact GA(CGA) represents the population as a
probability distribution over the set of solutions [14]. Thus,
the CGA maintains a probability vector which is constantly
updated while the CGA operates. At each generation, the
two individuals are randomly generated from the probability
vector. Then, tournament section is performed over the two
individuals. Fach bit of the probability vector is adjusted
according to the result of the tournament selection. Eventu-
ally, the CGA keeps running until the probability vector is
converged. The pseudocode of the compact GA is shown in
Figure 1.

From the pseudocode of CGA, it is quite straight forward
for hardware implementation because each bit of probability
vector, p[i], can be updated in parallel. A typical hardware
architecture is to design a single bit CGA module for each
plil [17], [16]. Then, the single bit CGA module is connected
together to form a chromosome of a particular length. In
addition, the elistism-based compact GA was proposed to
improve CGA and the hardware implementation of CGA
variants was explored [16], [15], [21].

[TI. PARALLEL GENETIC ALGORITHM

In order to increase the GA’s efficiency, the parallelization
of GA has been the active research topics particularly using
high performance computer systems [20]. The parallelized
GA (PGA) can be categorized into four approaches [20].
These are global, coarse-grained, fine-grained, and hybrid
approaches.

1) Global parallelization: In this class of model, there is
only one group of population. The evaluation of individual
and execution of genetic operators are performed in parallel.
The evaluation can be parallelized by assigning a group of
individuals to a processor node to evaluate and send the
results back to the common shared memory or a master
node. There is no communication between each processor
that evaluates each individual.

2) Coarse grained parallelization: This is the popular
model for the parallelized GAs. The whole population is
partitioned into sub-populations. Within each sub-population,
individuals can only mate with others in their own sub-
population. However, there is an introduction of migra-
tion operator the send some individuals from a local sub-
population to other sub-population. There are key parameters
for this model: topology, migration rate, and migration inter-
val. The topology defines how each sub-population connects
to other sub-populations. The migration rate and migration
interval specify how many individuals in each sub-population
are migrated and how often they are migrated. In this paper,
we initially develop our Cooperative Compact GA based on
this model.

3) Fine grained parallelization: The whole population is
divided further into even smaller sub-population than the
coarse grain model. The ideal case is each individual handled
by only one processor node. This ideal case rarely happens
in real world implementation in high performance computer
systems excepting the implementation into special hardware
bit-level. In summary, this model is similar to the massively
parallel processors

4) Hybrid parallelization: This approach is to combine
two approaches to solve more difficult problems, For the
coarse grained and fine grained approaches, in order to
exchange individuals between each sub-population, the ques-
tion of how to communicate and how costly in term of
resources need to be considered. These problems are related
to migration parameters: topology, migration interval and
migration rate

Since this paper proposes the CoCGA for EH which has
fundamental concept in the CGA and the implementation
partly resembles the coarse-grained parallel GA, key research
projects are explored [19], [18]. The architecture for mas-
sively parallelization of the compact GA is proposed by
Lobo [19]. The key of the proposed approach is to send the
probability vector from each slave processor to the master
processor instead of sending a group individual in the sub-
population. The experiment is carried on in software using a
serial implementation of the proposed parallel compact GA
architecture.

In addition, the hybrid parallelization of the CGA is
proposed to solve the problem of multi-FPGA partitioning
and placement [18]. Like most of research on parallel GAs,
the multi-FPGA experiments were performed on a Beowulf
cluster.

In the following section, we will explore key important
migration parameters namely topology, migration interval

2780

Other neighbor cells

Probability Vector
(PV)

Probability Vector

Other neighbor cells

Probability Vector
(PV)

l ’ Probability Vector

(PV) ¥

Probability Vector
Canfident

Counter (CC)

Probability Vector "

y
™ Probability Vector

| Probability Vector | i "
CGA i~ CGA
. S
A A

Probability Vector i \Pmbability Vector
(PV) PV}
Probability Vector

- [

- .

Probability Vector

RN

Other neighbor cells

Fig. 2.

and migration rate. In the hardware design section, the key
parameters are specified quantitatively.

IV. COOPERATIVE COMPACT GENETIC ALGORITHM

Coevolutionary genetic algorithm applies concept of co-
operative approach for function optimization to GA. For co-
operative coevolutionary, the search space can be partitioned
by splitting the solution vectors into smaller vectors [13],
[22], [23]. Each of these smaller search spaces is then
searched by separate GAs whose fitness is evaluated by
combining solutions found by each of the GAs represent-
ing the smaller sub-spaces. In this paper, we presents a
cooperative approach for the CGA. The thrust is to propose
the concept of confident counter that guides toward search
direction along with the traditional probability vectors. The
cooperation that we proposed comes from using confident
counter as a source of shared knowledge on where is the best
search direction because only exchanging the probabilities
vectors is not enough to guarantee which one of probability
vectors from each neighbor cells is the current best vector.
In the CoCGA, the individual CGA cell searches in its own
sub-population, unlike cooperative coevolutionary approach
which split solution vectors into smaller vectors. In our case,
the individual CGA cell sends its search result through its
probability vector together with its confident counter to the
leader cell. The leader cell consolidates this information
and decides the bias for the search direction which it then
sends back to all neighbor CGA cell as the new current best

CGA

- > -
| Probability Vector |

Other neighbor cells

Cellular Automata (CA)-like topology for Cooperative Compact GA

probability vector.

The implementation of the coevolutionary genetic algo-
rithm is similar to the concept of parallelized GAs described
in the previous section. This paper introduces the cooperative
compact GA (CoCGA) that uses “shared knowledge™ to
perform cooperative between many parallel CGAs. Targeting
hardware implementation, we propose CoCGA to be applied
to the evolvable hardware (EH).

A. CoCGA topology

Fig. 2 shows the topology of the cooperative compact GA
(CoCGA). The topology of the proposed CoCGA resembles
the cellular automata (CA) system that cells only interact
with their neighbors. However, the interactions between CA
cells occur by exchanging the probability vectors instead of
mating between individuals of sub-population directly. With
this proposed CA topology, the hardware realization of the
algorithm is straight forward and not too complicated to
be implemented regard to scalability and signal wiring that
greatly contribute to the performance of the hardware circuit.
In addition, CA architecture has capability of self-evolving
and self-replicating [25]. Moreover, CA-like architecture
can be practically and efficiently implemented into FPGAs
or other reconfigurable devices because of the architecture
consists of array of logic blocks [26]. Therefore, CA-like
architecture is proposed for the CoCGA.

Each coarse grained CoCGA cell has a probability vector
and a sub-population. There is a group leader for each group

2781

L is chromosome length

N is population size

cc is Confident Counter

CA is Cellular Automata space

for eachcelllinCA do in parallel
Initialize each p[l]
For i =1 toldo
[i]=0.5;
Initialize cc
cc:=0;
end parallel for
foreachcell i in CA doin parallel

while notdone do
1. Generate two individual from the vector
a := generate ();
b := generate ();
2. Letthem compete
Winner, loser := compete (a, b);
3. Update the probability vector toward
better one and Increment Confidence Counter
3.1. Update probability vector

for i := 1 to L do

if winner[i] != loser[i] then
if winner[i] = 1 then p[i] += 1/N
else p[i] -= 1/N

3.2 Increment Confidence Counter
cc: = ce + 1;
4. Check if cc is incremented then
Send p and cc to the group leader cell
5. Check if the vector has converged
for i =1 o L 'do

if p[i] > 0 and p[i] < 1 then
goto step |
6. p represents the final solution
end while
end parallel for

L is chromosome length

M is number of neighbor cells
cc is Confident Counter

CA is Cellular Automata space

for each cell | in CA
Initialize each p[l]
For i :=1tolLdo
p [il1:=05;

end parallel for

for each group leader cell
while notdone do

1. Check if cc of each neighbor is updated

g previous [l])

do in parallel

i in CA doin parallel

if (ec [i]

goto “mebZ
2. Select the highest cc of all neighbors

ea = 0;
max

for i := 1 to M do

i [i]
if (ccli]l > cc ..)

CC max 7 CC[J_],

p, with p__with cc
:= 1 to L do

3. Update

for i

max
P l[i] = p-:-..-max [lj
4. Update new updated p to all normal Cell
for each neighbor cell of leader cells
do in parallel
for 1 := 1 to L do
pli] :=p ;[1];
end parallel for
5. Check if the vector has converged
for i 2= 1 to L db
if p[i] > 0 and p[i] < 1 then
goteo step 1
6. p ,represents the final solution
end while

end parallel for

Fig. 3. Pseudocode of the normal CoCGA cell

of these coarse grained CoCGA cells. In Fig. 1, the leader cell
is the middle cell that exchanges probability vectors to and
from the neighboring cells. The leader cell keeps adjusting
its own probability vector to the best probability of the group.
The confidence counter (CC) is introduced to help the group
leader evaluates which probability vectors from its neighbors
are likely to converge to a good solution.

B. CoCGA algorithm

Fig. 3 shows pseudocode of the normal CoCGA cell. After
probability vectors of each cell is initialized to the mid-point
range, two individuals are generated from the probability
vector, then compete “similar to” a normal compact GA.
The proposed algorithm is different from the normal compact
GA in two ways: (1) the probability vectors are passed to
the group leader cells. (2) the confidence toward the better
probability vector is calculated as confident counters passed
to the group leader cells. In figure 3, the step 3.2 and 4 are
inserted into the normal Compact GA.

Fig. 4. Pseudocode of the group leader

Fig. 4 gives the pseudocode of the group leader cells which
only keep the probability vector but does not implemented
the normal compact GA. The group leader updates the prob-
ability vectors of its neighbor cells asynchronously because
the updating process will occur after the confident counters
of the neighbor cells get the new value. For each neighbor
cells, the confident counter is incremented asynchronously
because its depends on when the current probability vector of
each sub-population gives the current best individual. During
the search process if the better current individual is found
the confident counter is incremented. The group leader will
use the probability vector from the neighbor that has the
better confident counter. Therefore, the group leader uses an
asynchronous updating policy.

The group leader keeps checking if confident counter (cc)
for each one of its neighbor are updated to higher value. Once
the confident counter for one of its neighbor updated, then
the group leader evaluates value of each confident counter
and identifies the current highest value in step two. Next,

2782

in step three, the group leader, update its own probability
vector with the vector from the neighbor that has the highest
conlfident counter. Then, the new hest probability vector is
passed (Tom the group leader 10its neighbors in swep four

VY. HARDWARL DLSIGN

For performance evaluation ot the proposed CoCGA in
comparison with the normal compact GA in hardware, we
desiened and implemented two hardware circuits. The first
¢ircuil is Tor the normal compact GA and the second circuil
is the proposed CoCGA, Both digitl circuits were designed
in synthesizable Vertlog HDILL codes and implemented into an
IPGA chip. The CoCGA was designed by adding additionul
modules 10 the hardware of the normal CGA hardware, By
designing our own hardware for both the CGA wnd CoCGA,
we ean perform performance comparison Tairly sinee both
hardware ¢ireuits designed by the sume designers and baged
on the same Verilog HDL godes.

A, Hardware Design of the normal CGA

The hardware design for a normal compact GA is similar
to the design in [17], |16]. In IFig. 5, the busic unit of the
normmal CGA is the block named CoCGA bit module/normal
CGA bit module without the additional units for CoCGA,
Lior the normal CGA. the hardware design of one bit-module
15 the same as the CoCOA hurdware without additional units,

B, Harchvare Design of the Normal CoCGA Celf

liig. 6 shows the hardware design of (he N-bit module
ol the wo nomal CoCOA cells. CoCGA bit-madule 1s
bitsed on the design proposed in [17], [16] integrated with
the commmunication unit(COMM) and the confident counter
umit(CC). Tn Fig. 6, the hardware design consists of three
miain blocks. The first block 1s the CoCGA bit-module which
can be cascaded o form N-bit chromosome. ‘The second
block is the additional units for CoCGA which has the
confident counter (CCY and the communication unit COMM,
The third block 15 a finite stute machine acts as the main
controller for the whole blogk, The detall of these three
additional module i» deseribed below,

f} COMM: COMM iy a limite state machine that conurols
the process ol sending and recerving the probability vector
as an 8-bit package to and {rom the normal cells w the lead
cell, Tor a chromosome of N-bit length, the compact GA
needs 0 have N-bit of probability vector which each bit
ol the probability veclor sizes 8-bit. Thus, for N-bit Tength
chromoseme, N packages off 8-bit will sent and received
betweon the lewd and nermal cells by the COMM. units of
cich cell.

2) CC: CC iy the confident counter designed as an 5-bit
counter, During fitness evaluation, the counter s incremented
every lime when the fitness ol the winner i» better than the
current best fitness. The value of the counter s passed o the
leawd well with the current probability vector,

33 PSM_CONTROL: I'SMXCONTROL v @ finie staie
machine that contrely and synchronizes COMM, CC, and
the Bit Mudule,

C. Hardware Desion of the group leader CoCGA Cell

As shown in g, 6, (he hardware design of the group
leader cell is the middle hlock. The group leader cells con-
sists of four key sub-blocks: two confident counter registers,
BestPV, two COMM modules. and Main Controller. The two
registers wre used w keep the contident counter vulues rom
the neighboring cells. Bach COMM units handles data to and
Irom each neighboring cells. BestPV 15 a register that keeps
the current best probability vector. Finally, Main Controller
is a finite state machine that contrels and synchrenizes all
blocks.

VI. BENCIHMARK PROBLEMS

We o used One-Max and the De Jong test fune-
tons(F1,12,13) 1o compare the perlformance ol the CGA
and the proposed CoCGAL Lor De Jong's test functions,
the solution quality is measured by the objective function
villue. “The function evaluativns are pertormed by modules
coded in Verlog-HDLL using behavioral modeling with the
saime precision as described in [27] For our experiment,
the CoCGA has two neighbor cells and one leader cell. The
reason Lo use De Jong’s test funetions because the De Jong's
test function were originally proposed as 4 means 0 measure
the abilities of search algorithms and used in [14], |16]
I'he functions are Tully deseribed in [27], We used 32-bit
chramosome length for One-Max problen. Por e Jong test
function FL and 12, we used 30-bit chromosonie length, For
I3 Tunction, the 50-bit chromosome length was used. The
accuracy ol the search results were compared (o the genesis
package |28]. The De Jong's functions 1)1-I'3 are shown
below,

D¢ Jong's Il

3
F1X) =Zy-f, B2 < 0 <512
[

De Jong's 1'2:

FAX)= 100 (+F a2~ (1
—248 <y < 2048

De Jong's I'3:

F3X) — Z integer(a;),
il
VI LExXperiMeENTAL RESULLS

S22 <, <512

In ourexperiment, the CoCGA consists of two neighboring
cells and one leader cell. The hardware implementation of
the CoCGA are used to validite the efficacy of the proposed
approach. We coded both CGA and CollGA in Verilog-
HILL. The simulation was run on Pentium 4 machine with
512MB memory. The ModelSim Verlog-HIE, an industrial
strength simulator, from Mentor Graphics was used w per-
form the simulation. We evaluated CoCGA by comparing
ity performance with the performance of a normal CGA
on functions: One-Max and De Jong est functions(Fl, 12
an IF3). “The graphs in figure 7 show the best individual,

2783

Control lines

o —— —

A FSM_MAIN_CTRL

o ———

Additional units for CoCGA ¢
To additionial Bit Modules Canfudent Counter
5
Prpbability Vector
§ : 5 __..._.E; COMM 4—_ﬁ> y
r v
Load UP_PV GA @B A A 7 SND_RCV 8
| 1 | |
[} [L L
| | 1 1
| | 6 |
| | |
8 »| FEV A
: RNG : cen all . —
: CMP [
v) v
»| FEV.B |—p»

PY Il"8 | cenB
B‘L UPDATE < UPDATE_PV

PV -

CoCGA bit module/ normal CGA bit module

Fig. 5. Hardware block diagram of CoCGA cell

e L
Control Ilnes: = =1 FSM_MAIN_CTRL

FSM_MAIN_CTRL

= =2 control lines
L

cc CC
5 5 5
N-Length Chromosome A - e A To additional Bit
AA A cC . T CcC AAA
To additional Bit 5 Modules
Modules - < Al COMM #1 I
| comm | 4 ey | I= =
: COMM #2 SOMM
.
[FEV_ FEV_ |
—CE | [T A Best PV < A [GEN_ Je—4{rna
A A
= v T W CMP| = o
pv [T %EN- LB AN B GEN_ T
> B - < B <
UPDATE UPDATE PV MAIN UPDATE_PV UPDTE PV A
PV N CONTROL ®
" CoCGA bit module CoCGA bit module -

Normal CoCGA
Left Cell

Group Leader Cell

Fig. 6. Hardware block diagram of CoCGA with two neighbors

2784

Normal CoCGA
Right Cell

One-Max

43524009
norma comﬁ.. g% ——

g cooperativé compact GA -

=

E 43e+009 [P — |
L

‘E 42524009 | f_..--—"' 4

2 7

o .

@ i

= ol

=1 azer009 || 4

= b

S vl

= |

= b

k] Al5e4009 [|| -

= | I

= !

wi i

g |

b | .

4.1e+009
1

R 10_00 R 0000
population size (machine cycles)

F2
coopera wceoc'lg C&S'&A e

0.1 H-T N : 3

0.01¢

0.001}

Best Individual (objective function value)

s

bl L L L L n L n L
0000 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

population size (machine cycles)

Fig. 7.

the maximum value for One-Max problem and minimum
value for F1-F3. Both algorithms were terminated when
each of them converged to minimum values. In all cases
CoCGA significantly outperformed the normal compact GA
both in the minimum values found and in the speed of
convergence. The graph in 7 show statistical significance
of the experimental results.

Table I shows the speedup comparison between CGA and
CoCGA. From the speedup results, CoCGA outperforms
CGA for One-Max, F1, F2, and I3 test functions. CoCGA
is at least three times faster than CGA with little higher
accuracy for F1 and F2.

We implemented the CGA and CoCGA in Verilog-HDL.
and synthesized he code into FPGA. For CoCGA, we used
one leader cell and two neighbor cells. The verilog design
was then synthesized and implemented in to Xilinx Vertex-
4 FPGA. Table II shows the FPGA implementation results
after the codes synthesized, placed and routed using Xilinx
software. From Table II, we can notice that the CoCGA cells
only require slightly higher hardware resources than normal
CGA cell. This is because we only added the communication
unit and confident counter unit to the original implementation
of CGA [17], [16].

F1
13— : . ; AT .
E A codperative com g%ﬁ
5l N—
c . — -
S |)
< i
2 08 " |]
2 i
.Eu-"., 0.6 4
e
K]
5 i
3 04] |
;é i—" ey ‘—r-
£ 02 i L 1
] +
o “\, ________ e S T e o S . —— =
% 30000 40000 60000 80000 100000 120000
population size (machine cycles)
F3
:g It cooSef‘QPv CORTS Séﬁ--:-
s
= ':
'Q 1
B 10 sex A_[_
o |
2 E
< i
E *-— A—t
2 '
) =
E |
) - *
= :
= |
£ A e e =
i
[=2]
5000 10000 15000 20000 25000 30000 35000

population size (machine cycles)

Comparisons of normal CGA and CoCGA performance

TABLE I
SPEEDUP COMPARISON BETWEEN CGA AND COCGA IN TERM OF
MACHINE CYCLES (ONE MACHINE CYCLE IS EQUIVALENT TO FOUR
CLOCK CYCLES)

One-Max | FI1 F2 F3
CGA 73363 | 126967 | 80027 | 32427
CoCGA 11492 35542 | 27757 | 9407
Speedup 377 97 788 | 344

VIII. CONCLUSIONS

The CoCGA is presented. The results provide initial evi-
dence of the potential of the proposed cooperative compact
genetic algorithm in hardware. To make any strong claims
concerning its value for Evolvable Hardware, more research
on application of the approach is required. For initial appli-
cation area, the problem of automatically design of digital
filters and robot control problems can be experimentally
solved using the approach [7], [8], [24]. In addition, several
aspects of this approach deserve some attention.

In [7], |8]. the intrinsic evolvable hardware which consists

2785

TABLL I
COA YERSUS COCTA I'PGA [MPLEMENTATION

CGA CoCGA CoCGA mlGA
normaleel] leader cell | flmnn |14
Faumily Virtex 4 Vurley 4 Verew 4 Vertex 2
vIx25 vix3IA vIx25 e
Divice $(303-10 | s(363-10 s[363-100 w1000
No. of
flip Mops 341 U8 168 712
.mput LUT 1065 1296 350 lold
Total equivalvnt
gale counl 12602 1703 51 1873
Maximum [3A.325 JICE IE b | 145425 ST I8Y
Freguency Mbhs Mhs Mhe Mhs

ol 4 novel recontigurable architeciure bused on Cartesiun Ge-

netic Programming and a hurdware GA s used to implement

high performance digital lihers, The CoCGA can be used lor
the hardware GA 1o provide speedup and o increase quality

ol the scarch results.

Gallugher [16]. [24] applied and proposed *CGA and
mintpap algorithins in EH for control applications, especiully
for robotie controllers. The CoCGA can also be applied
w this control upplications as well because CoCGA ollers
higher performance and buased ¢n the compact GA like
*COA,

L'or the aspects that deserved our attention, lirst, any kind
ol the compact genetic GA like *COA and other hardware-
hased LA can benelit frem this approach since they can
be used 0 evolve cooperatively o solve the problens of
inlerests, The approach oflers 1o improve the problem solving
capubilities o BH, considering from the nowadays FPGAs
and reconligurable Jevices echnology.

Second, the CoCGA algortnu is a natural mapping onw
coarsely grained parallel architectures. So there are opened
ssues that can be explored in hardware implementation
like synchronous and asyncelvonous update rome each sub-
population, and purtnering straegies for cach neighboring
<ells.

Finally, the real potential of the cooperative compact GA
in hardware will become appiarent when applied to specitic
applications like EH for control applications or autonuitically
design of digital systems [710 18], [24]. We lupe o provide
such evidence in the near future.

REFERENCES

[8. Scott and A, Seth, "HGAD A hardwure based pencte algorithm.”
Proc, ACMISIGOGA 3rd i Svip, Field-Prograsmedle (iate Ar-
ravy, NS ppo 1120

121 7). Kajitod e ol “A gare level EHW chip: implenentaing 2o operations
and reconligurable hardware on a single LSL” Proc, O Confl Evelvable
Svarern, 1998, ppo (=12,

[3] 4. E Miller and P Thowson, “Aspects of digital evolution: evolvabiliny
and wrehiteeture.” Proe, Parallel Proldeor Solving From Natwre, Ans-
terdamn. Nedherlond, 1998, pp, 927 230,

[4] T, Higueha, M, Imata, D, Keymeulen, 11, Sokanashis I Murakawa, L
Tgptani. 1 Takahash, K "Toda, M. Salame Mo Kaphar, and N, Oesa,
“Real world apphesoons of analog and digial evolvable hardware.”
HEEE Tramsactiony on Evoludonary Computation, vol, 3, pp. 220 335,

Sepn 1999,

[3] P Haddow and € Tofe. “An evalvable bardware FPGA Tor adaprive
hurdware” Proc, INEE Congress o ."'.'\'ufmfnum'l\' (.‘rm!..'ilm,nfuu. San
Diega, CAL 2080, pp. 553 560

[&] G. Hollingword, 8. Smich, and AM. Tyerell “Safe intrnsic evelution

af vittes deviees” Proc, NASADaD Conference on Evolvahle Hard

ware July 2000, pp. 195 202,

I.. Sekanine, "¥irtual recondigurable circuits for real-world applivaions

ol evolvable hadware” Proc. Evolvoble svsiemss [ram hiology o

JatvdwarefCES2003, 2003, pp. 332-343,

Y, Zhang, S0 T Smth, and AN Tyrrell, “Digial eircuil desipn

using intrinsic evolvable hardware” Proc, NASA/Dof? Conference on

Evoluoble Hordware July 2004, pp. 55 62,

[9] 11 Livo JU Mdler and A, M, Tyeeel], Vlntinsie Lvolvable Hadware
Implemenatation of a robust hiological development model for digital
syt Proe, NANA/Dal? Conjerence o fvefvabte Hardware July
205 pp. 87 92,

[16] A. Ilordsi. R. Rastegar, Ko Navio MS Zamanic and MR, Meybodi.
“Cellulae learning, automata based evolutionary eompoting (CLA-TC)
fur aninsie hardware evolution” Pree, MASADalr Confercice on
Frelvable ”o‘r'r’ll'a‘n‘,.luh-' 2005, Pre. 294 207 .

(L] Ko Bondalapati and V0 K. Prasanna. "Recontigurable computing, sys
tems.” Prnceeding of TEEE vol. 90, pp. 1201 1217, July 2002,

[L2] 5 Hauck, “The roles of FPOAS in reprogrammable sysicms,” Pro-
ceodiit: (EI’H'.'EE. val. 86, JLILE 615 A3K A |J'I‘i| 1998,

[13] M. AL Poter and K. AL De Jong, "A cooperative eoevolulionaey
appeoneh o function optimieation,” Proc. The Thivd Parallel Problem
Sofvitye Proa Nggre, Ternsalem, Tseael, 1994, pp, 249 257,

[14] oG Fharik, 1 Fashes, ynd 13 Goldberg “The compagt genetic glgerighin
TERE Framaciions e Evolutionary Compriadion, vol, 3, pp. 287 309,
Niw, 1999,

[LA] € Wook and RS, Ramakrishna “Elitisim-hased compact genstic al-
gonithn JERE Tranvections en Evedutlonare Computatienr vol. 7. pp.
367 MRS, Aup. 2003,

[l6] T €. Gallagher, 5. Vigrahany, and G Krarmer “A family of compact ge
nctic ulgnrilhms for instrinsic Lvolvable Hardware ! FIEF Transacriens
o Evolindonory Comprenion. vol, 8, pp. [1260 Apal 2004,

[E7] € Aporewan and P Chongstitvnana, “A hardwies implementation of
The compact penetic algorithm ™ Peve TERE Congrevs on Evlitionary
Compirtation, Seoul, Karea, 2001, pp, 624 629,

[18] JI Hidalgo, M, Pricta, J. Lanchares, R, Baaglis L) Tirado, and .
CGarnica “Hybrd parallehzanon of a compact penctic algonthm ! Proc,
The Eleventh Fore. Confo on Parallel, Dixeributed and Nepwork-Hased
Processig, 2003,

[1o] LG L, O 1 D, and 11 Masmires, “An arehiiedture For missive
parallelizguon of the ¢compaet genetic algorthm™ Froe, GECC 2004,
2004, pp. 412-413.

[Z0] F. Cantu Pae, Afficient and geoyrefe paraliel geneiic afgortihag,
Bostorn. MA:Kluwer Academic PPublisher, 2000,

(211 8. A. Vigrahaw and], ¢ Gallagher, “On the relanve officacies of
spaee saving #FCCTAS for Fvolvable TTardware Applications”” Prace, HEFE
Cangress on Fvoligionare Computgrion, 2004, pp, 2187 2193,

[23] 1. Bull “On covvolutdonary penetie algorithins Seft Contipreting: 5.
vol. & N, 3, pp, 200 207, June 2001,

[23] M. Chang. K. Obkura, K. Teda, and M, Sugryama “Modeling coevolu-
tionary genetic algoritmus on two-bit landscapes: purtnering strategics.™
Proe, HERE Congress on Rvelitionary Computation, 20040 pp. 2344
2256,

[24] & R, Kramer and 1. C Gallagher “An analysis of the search per-
lormanee of 2 mini-pupulation evolutionary algorithm tor 2 robor-
locomenon conteel problem,” Mroe, JEER Cungrees pq fvofitionory
Comprrettionr, 2005, pp. 2768 2775,

[25) M. Sipper. Eveludon of paraltel celfiar machines: the ceftufor pro
gramuning agppioack, Beeling Springer Verlag, 1997,

1261 V. Betz,) Rose and Ao Marquardt - Architectiore and CAD for Deep-
Submicron FPGAs. Bostoi Springer, 1999,

1271 K. A. De Jong, An analfvsis of the behavior of o class of genetic
adapiive svspemmy. PR Dissertation, University. of Michigan, Ann
Arbor, MT. 1975,

[2R] I, Grefenstetre. Genesdy, Genetie algorithny soltware in (7, 1990,

[7

I8

2786

