
 
 

 

  

Abstract—This work proposes an evolutionary computation 
method to compute force-closure grasps from surface points. 
The object is presented as set of points. The proposed method 
searches for grasping configurations without prior knowledge 
of object’s geometry. The experiment is carried out to validate 
the proposed method. The result when compared with a 
random search method shows that the proposed method finds 
more and better grasping configurations.  

I. INTRODUCTION 
Robotic hand grasping is a challenging problem. Its 

objective is to find grasping configuration by computing the 
position on the object's surface that is suitable for fingers 
contact points. Force-closure is well understood and it is 
used to ensure that the object can be held securely by the 
fingers [1], [2]. With force-closure, a grasp can resist to the 
external wrench exerted on the grasped object. The well 
known qualitative tests for a force closure is to check that 
the origin of the wrench space lies exactly inside the convex 
hull of the primitive contact wrenches [3], [4], [5]. This is a 
necessary and sufficient condition. There are several 
approaches that represent various methods for testing that 
the origin is inside the convex hull [6] [7]. Majority of 
works in force-closure grasp computation need to know the 
object's shape to perform grasping with a certain class of 
geometric model. Most works of grasp planning focus on 
polyhedral models (whose all faces are planar) with the aim 
of analytical formulation for characterizing force-closure 
grasps on a given set of faces [8], [9], [10]. The problem of 
choosing appropriate grasped faces is rarely studied [11]. 
Usually, a straightforward search of all combination of faces 
is applied. This method will yield a time complexity 
problem. Thus, this method seldom applied to test objects 
that have more than 20 faces [12].  

In general, there are many objects in the real world that 
can not be represented by polyhedral model with a small 
number of faces. A standard technique widely used in 
geometric modeling to represent a general shape (include 
curve object) is to describe the surface enclosing its volume 
using a large number of small triangles. Thus, it will face to 
handle the time problem as mentioned earlier. In [13], the 
problem of fixture design from a set of preselected 
frictionless contact points was addressed. Using a local 
greedy search with D-optimality criterion, the method seeks 
a force-closure set of 7 fixturing locations from the given set 
of contact points. Operation on a set of points allows 

dealing with the complex objects. Recently, it was 
suggested in [12] that acceptable force-closure grasps could 
be efficiently generated using a randomized selection from a 
set of contact candidates. The paper also attempts to 
convince that the resulting grasps achieve the quality 
comparable with human generated grasps. 

 
 This work proposed to solve the problem of force-closure 
grasps with 4-fingers with friction using an evolutionary 
technique namely Genetic Algorithm. The object is 
represented as set of surface points. This work is different 
from [14]. Our objective is not to find the best 
configuration. It is also different from [15], which 
emphasized on fast computation time. The aim of this work 
is to find as many configurations as possible without relying 
on the knowledge of geometry of the object.  

II. BACKGROUND 

A. Basic Grasp Theory 
In this section, we give some necessary background on 

grasping. In particular, the condition given in Proposition 1 
provides the most important foundation to the derivation of 
our search method for finding force-closure grasps.  

A hard finger in contact with some object at a point x  
exerts a force f  with moment fx×  with respect to the 
origin (but it cannot exert a pure torque). Force and moment 
are combined into a six dimensional zero-pitch wrench 

),( fxfw ×= . Under Coulomb friction, the set of 
wrenches that can be applied by the finger is:  

 
 }:),{( FffxfW ∈×=        (1) 

 
where F denotes the friction cone at x . 

A d-finger grasp is defined geometrically by the position 

ix (i = 1,…,d) of the fingers on the boundary of the grasped 
object. We can associate with each grasp the set of 
wrenches 6ℜ⊂W  that can be exerted by the fingers. If we 

denote by iW  the wrench set associated with the thi   finger, 
we have 
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We say that a grasp achieves force closure when any 
external wrench can be balanced by wrenches at the 
fingertips, i.e. when the corresponding wrench set W is 
equal to 

6ℜ .Because zero wrench is contained in W  for a 
force-closure grasp, it is then clear that force closure implies 
equilibrium. Interestingly, it is shown in [10] that the 
converse of this statement is also true for non-marginal 
equilibrium, i.e. grasps such that the forces achieving 
equilibrium lie strictly inside the friction cones at the 
fingertips. In other word, grasps achieving equilibrium with 
non-zero forces for some friction coefficient achieve force 
closure for any strictly greater friction coefficient. 

 
 

 
     (a)            (b) 
 
Fig. 1. Coulomb friction: the friction cone for 3D grasps and its 
approximating pyramid cone.  
 

B. Quality Index 
We use a quality index measure as proposed in [14]. 

There the quality of a grasp is defined as the length of the 
smallest wrench that breaks the grasp, when in every contact 
a force with unit strength is applied.  This measure can be 
computed by calculating the largest inscribing ball in the 
grasp wrench space around the origin (see Fig. 2). It 
measures to what extent a grasp can resist external wrenches 
that are exerted on the object to be grasped without fingers 
starting to slide at their contact points.  

In more detail on the definition, the efficient calculation 
and discussion about friction issues of this measure we refer 
to the original papers [14], [16], [17].   

C. Force-closure Grasp Search 
The input to the search procedure consists of a set of 

points on the surface of the object and corresponding inward 
normals at these surface points. Our objective is to search a 
set of given surface points for many 4-fingered frictional 
force-closure grasps. This is a combination problem that 
size of search space depends on number of given surface 
points and grows exponentially. Thus, a straightforward 
brute-force test of all combinations for force-closure 
condition will definitely yield unacceptable performance. In 
[15] it uses an aggressive pruning technique and an 
informed search strategy that effectively incorporates the 
knowledge of the force-closure condition. In this work, we 

use Genetic Algorithm as a search mechanism that does not 
need to have an addition knowledge to find solutions. 
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Fig. 2.  Graphic evaluation of the quality criteria: cubic and pyramid are 
grasping objects, grasp (a) has better quality index than grasp (b), the 
maximum sphere is restricted by facets around it.  

III. GENETIC ALGORITHM  
 GAs are search algorithms based on the mechanics of 

natural selection and natural genetics. They are based on the 
principle first laid down by Charles Darwin of survival of 
the most fit. First pioneered by John Holland [18]. GAs, 
providing robust search in complex spaces, are not affected 
by the complexity of the region [19].  

GAs can briefly be explained in three steps. The first step 
is the creation of a random population where each element 
is coded using a specific representation that encodes a set of 
features defined by the problem. Second step a fitness 
function is used to evaluate each individual and the 
reproductive success varies with the fitness value. Third 
step two high-fitness elements are chosen for crossover and 
mutation. The procedure generates two new offsprings that 
will be the population of next generation. The process 
continues until population of next generation is filled up.  

A. Individual Encoding 
For this problem, the input is a set of points on the 

surface of the grasp object. Each individual represents the 
four grasp points and can be encoded into a four-unit 
chromosome which each unit represents an index of a 
member in the set as shown in Fig. 3. The individual’s size 
depends on the number of members in the set. For example, 
if a set has 400 members, we can use 9 bits (29=512) to hold 
the index.  

B. Fitness Function 
GAs use fitness value as a compass to find solutions. The 

fitness function is defined by the problem. It is used to 
evaluate individuals, and decide whether it will contribute to 
the next generation of solutions. This criteria depends on 
selection scheme. We use quality index that is described 
previously as a fitness value. 

C. Operators and Parameters 
We use a simple genetic algorithm (SGA). In SGA, the 

number of individuals in each generation is fixed. A genetic 
run starts with an initial population. The first generation 
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population is created with individuals which are generated 
randomly. The population is evaluated and the new 
population is evolved from the old population. The process 
is repeated until a maximum generation is reached. The 
parameters in SGA are: the selection type, the method of 
fitness scaling, the crossover type, the mutation type, the 
maximum generation and the population size. They are 
setting as follows:  

Selection type: Rank selection scheme. Any population 
may contain more than one individual with the same score. 
This method will return any one of those ‘best’ individuals 
(‘best’ individual: the first individual in each same score 
group), so we do a short search here to find out how many 
of those ‘best’ there are. It uses fitness score to do the 
ranking and the probability of each ‘best’ to be chosen is 
equal.  
 Scaling: Linear scaling scheme.  

Crossover type: One point crossover with probability of 
0.9 (Fig. 4). 
 Mutation type: Flip mutation scheme with probability of 
0.48. This method will pick a member in the set of surface 
points and then replace the mutated unit with another 
random point (Fig. 5). 
 Maximum Generation: 100 
 Population size: 100 chromosomes 
 

 
 
Fig. 3 Encoding scheme (GP = Grasping Point): Encoding of each 
individual. 
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Fig. 4  One point crossover scheme: (a) selected 2 genes and random one 
position for crossover. (b) new 2 genes after crossover. 
 

 
Fig. 5  Flip mutation scheme: Replace selected unit with integer index value 
of a random one member in the grasping point set. (ID = Index of each 
member in the set) 

IV. IMPLEMENTATION AND RESULT 
We developed a program for calculating 4-finger force 

closure grasps from surface points using Genetic Algorithm 
described above. Our program is coded in C++ language 
using Visual C++ program and measures program 
processing time on an Intel CPU 3.0 GHz. computer.  

In the experiment, we set the value of half angle of 
friction cones to 10 degrees. The experiment is carried out 
with three types of objects: 42-face ellipsoid, torus and duck 

doll (See Fig. 6). For each object, surface points are 
generated with random sampling with resolutions: 400, 800 
and 1,200. The GA search procedure is applied. The results 
are compared with the results from a random search 
procedure. The experiment is repeated 100 times to report 
the average values.  

 Our objective is to measure number of unique solutions 
that satisfy force-closure grasps, the quality of their 
solutions and the computational time. The number of fitness 
evaluation is defined by the following equation. 

 
No. of evaluation = Population size × No. of generation  (3) 
  

For each object, the results of search are shown with two 
measures: the number of solutions and the fitness values 
which represent the quality of the solutions. See Fig. 7-8,  
9-10, 11-12 respectively. In all results, GA outperforms 
random search in both measure. Table I shows the 
comparison of computation time of both methods. GA is 
faster for an ‘easy’ object (42-face ellipsoid). It is slower 
than random search for other two objects. However, one 
should consider that both the quantity and the quality of the 
results from GA search are much better than random search. 

V. CONCLUSION AND FUTURE WORKS 
It is possible to randomly generated many grasp 

candidates and try to find the force-closure grasps solutions. 
This method can handle the unmodeled objects and their 
complexity because it only deals with a set of points but it 
still be a combinatorial problem to choose force-closure 
gasp points. GA is suitable to solve problems that search 
space is large, complex and poorly understood. In this 
paper, we have presented GA to solve grasping problems 
versus random search method. The efficiency of the 
approach is confirmed by the result from the experiment. 
We hope that GA will be widely explored and can be 
adapted to these problems. Our future work will add some 
conditions to validate solution for real robot hands and 
compare GA with other efficient grasping methods. 
 
 

TABLE I 
 WORST CASE RUN TIME AT 101,000 EVALUATION TIMES OF 1,200 

SURFACE POINTS (MEASURING IN SECONDS) 
 

Operation 42-faces Torus Duck doll 
GA 52 112 78 

Random 58 73 47 
 
 
 
 
 

GP1 GP2 GP3 GP4

Random select one index in the set 

Point Set =   {ID1, ID2, ..., IDn} 
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Fig. 6.  Model test (a) an ellipsoid 42 faces, (b) random 1,200 surface 
points, (c) a torus, (d) random 1,200 surface points, (e) a duck doll, (f) 
random 1,200 surface points. 
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Fig. 7.  Number of solutions of the ellipsoid 42 faces in Fig. 6(b). 
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Fig. 8.  Average fitness values of  the ellipsoid 42 faces in Fig. 6(d). 
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Fig. 9.   Number of solutions of the torus in Fig. 6(d). 
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Fig. 10.  Average fitness values of  the torus in Fig. 6(d). 
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Fig. 11.   Number of solutions of the duck doll in Fig. 6(f). 
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Fig. 12.  Average fitness values of  the duck doll in Fig. 6(f). 
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