

FPGA Implementation of a Cellular Compact Genetic Algorithm

Abstract

 This paper presents a cellular compact genetic

algorithm (CCGA) for evolvable and adaptive hardware.

The CCGA has cellular-like structure which is suitable

for hardware implementation. The CCGA is developed

from compact genetic algorithm (CGA) and parallel

estimation of distribution algorithm (EDA). The concept

and algorithm of the CCGA are presented. The standard

test functions are selected to measure the effectiveness of

the CCGA. The experimental results significantly shows

that the CCGA outperforms the normal compact GA and

deliver compatible results to the cooperative compact

genetic algorithm while employs only one type of cell. The

implemented hardware in FPGA demonstrates the

feasibility to use this new kind of genetic algorithm to

evolvable and adaptive hardware.

1. Introduction

 Evolvable hardware (EH) is a research area in the field

of evolutionary computation (EC). EH is the integration

of evolutionary computation and programmable hardware

devices. The objective of evolvable and adaptive

hardware is to create “autonomous” reconfiguration of

hardware structures in order to improve performance [1].

With the use of evolutionary computation and

reconfigurable device like FPGA, evolvable hardware has

the capability to autonomously change its hardware

architecture and function. Recent research trend directs

toward functional approaches for the design of extrinsic

and intrinsic EH [2-6].

 The key concept of our focused evolvable and adaptive

hardware is to regard the configuration bits of

programmable hardware architecture as the chromosomes

of Genetic algorithm (GA) [1]. By optimizing a fitness

function to achieve a desired hardware function, the GA

becomes a means of autonomous hardware configuration.

There are a number of methods and techniques that

propose to apply the Genetic Algorithm (GA) and

Evolutionary Algorithms (EA) to be implemented in

hardware for evolvable hardware (EH) and adaptive

hardware, especially implementation into FPGAs [7,9-10].

However, in order to accomplish the intrinsically on-line

evolving in hardware pose a challenging question of how

to modify or invent efficient and improved GA or EA

algorithms that can be effectively implemented into

hardware [9].

The compact genetic algorithm (CGA) is a kind of the

probabilistic model-building genetic algorithms

(PMBGAs) or the estimation of distribution algorithms

(EDA) [11]. The compact GA operates on probability

models or probability vectors by replacing the crossover

and mutation operators with the probability model

estimation. The CGA) can be efficiently implemented in

digital hardware [9, 10]. Even though CGA has advantage

for hardware implementation; however, the CGA lacks

sufficient search power for real world EH applications that

requires accuracy and faster processing time. Therefore,

the CGA is improved by adding more techniques like

elitism, mutation, and champion resampling. This

modified CGA is called *CGA or *CGA family [9].

The parallelization of GA has been the active research

topic using high performance computer systems [12]. The

parallelized GA can be efficiently implemented in

hardware with more available hardware resources in

current FPGA devices [10]. Parallel GA has been

modified and implemented in FPGA to offer more search

power in hardware.

 In this paper, we present the cellular compact genetic

algorithm (CCGA) and explore its hardware

implementation. CCGA is based on parallel genetic

algorithm [12]. It is similar to cooperative compact

genetic algorithms [10]. However, cellular CGA is more

suitable for hardware implementation since it has two

dimensional array structures like cellular automata with a

uniform cell type. CCGA is also derived from the parallel

EDA [13] with improvement on probability model

recombination.

 Yutana Jewajinda Prabhas Chongstitvatana

National Electronics and Computer Technology Center Department of Computer Engineering

National Science and Technology Development Agency Chulalongkorn University

 Bangkok, Thailand Bangkok, Thailand

 yutana.jewajinda@nectec.or.th prabhas@chula.ac.th

 The rest of this paper is organized as follows. Section 2

describes the cellular compact genetic algorithm. In

Section 3, the hardware design of CCGA is presented.

Section 4 presents FPGA implementation results. The

paper concludes with a summary in Section 5.

Figure 1. Pseudocode of compact GA

2. Cellular Compact Genetic Algorithm

 Cellular compact genetic algorithm is developed from

compact genetic algorithm [11] and parallel GAs [12].

The concept of cellular compact genetic algorithm is to

parallelize or divide a large problem into smaller tasks

and to solve the task simultaneously using multiple

genetic algorithms. CCGA is different from a traditional

parallel GA since it operates on probability vectors.

CCGA is a parallel univariate estimation of distribution

algorithms (EDAs) that migrates the probability model

instead of individuals [13]. CCGA improves model

combination through local search by searching the better

model from neighbors to be combined with the inner

model of the cell [14]. The CCGA consists of uniform

cellular compact genetic algorithm cells connected in a

cellular automata space by each CGA cell only exchange

probability vectors to its neighbors. In this section, we

describe the compact genetic algorithm which the

foundation of CCGA. The key characteristic of CCGA

which are the topology of CCGA and the algorithm of

CCGA are described.

2.1. Compact Genetic Algorithm

The fundamental of the CCGA is the compact GA [11].

The compact GA represents the population as a

probability distribution over the set of solutions. Thus, the

CGA maintains a probability vector which is constantly

updated while the CGA operates. At each generation, the

two individuals are randomly generated from the

probability vector. Then, tournament section is performed

over the two individuals. Each bit of the probability vector

is adjusted according to the result of the tournament

selection. Eventually, the CGA keeps running until the

probability vector is converged. The pseudocode of the

compact GA is shown in Fig. 1. The hardware

implementation of compact GA consists of each bit

represented by a probability vector which is connected to

form a chromosome. The hardware compact GA and its

variant can be found in [9].

Figure 2. Topology of cellular compact GA

2.2. CCGA Topology

Fig. 2 illustrates the topology of the cellular compact

GA. The topology of the proposed CCGA resembles the

cellular automata (CA) system that cells only interact with

their neighbors [16]. When each local CA cells operates

together, the global states of computation can emerged

[16]. With this proposed CA topology, the hardware

realization of the algorithm is straight forward and can be

practically and efficiently implemented into FPGA

because of the architecture of array of logic block [17].

 Each coarse grained CCGA cell has a probability

vector which represents a sub-population. Every CCGA

cell is identical. In Fig. 2, Each CCGA cell with four

neighbors exchanges probability vectors and key

information between its neighbors. Every CCGA cell

keeps adjusting its own probability vector to the better

probability. The confidence counter (CC) is introduced to

help each cell evaluates recombination method of the

probability vector coming from its neighbors. The key

parameters for CCGA topology is the number of the

neighbors of each cell.

 Figure 3. Pseudocode of cellular compact GA

2.3. CCGA Algorithm

Fig. 3 shows the pseudocode of the cellular compact

GA. Each cell of the CCGA has the identical algorithm as

shown in fig. 3. For each cell, one bit of the GA is

represented by a probability vector. There are eight steps

in the algorithm. The fourth, fifth, and sixth step are added

to the standard compact genetic algorithm. At the third

step, the confident counter is used to tract the frequency of

updating of the probability vector.

 At first, the probability vector of each CCGA cell in

the cellular automata space is initialized to the mid-point

range. In the first and second step, two individuals are

generated from the probability vector, then compete

similar to a normal compact GA. The probability vector

of each cell is updated as shown at step 3.1 in Fig. 3.

When the probability vector is updated, the confident

counter is incremented. If the confident counter of each

cell reaches a certain level, then the probability vector and

the confident counter of each cell are passed to its

neighbors.

In fifth and sixth step, once a cell receives the

probability vector and confident counter from its

neighbor, the cell performs local search by selecting the

best probability vector from the incoming vectors. Then,

the new inner probability vector is calculated from the

adaptive combination weighted by the value, which

derives from the best confident counter shown in step 6.2.

Using for vector recombination in step 6.3, the

CCGA can avoid local minima of the greedy search by

shifting search direction gradually toward the better one.

This feature of the CCGA contributes to the better

performance when compared to the cooperative compact

GAs.

Finally, the CCGA keeps running until the probability

vector is converged.

The proposed CCGA algorithm is different from the

normal compact GA and the cooperative compact GA

[14] in four ways:

 (1) With uniform cells, the probability vectors are

passed directly to neighbor cells.

 (2) The confidence toward the better probability

vector is calculated as confident counters and passed to

neighbor cells. In figure 3, the step 3.2, 4 and 5 are

inserted into the normal Compact GA.

 (3) Improved probability vector combination is

implemented by local search and adaptive combination in

step 6 in fig 3. This combination scheme proposed to

provide a solution to the greedy search characteristic of

the cooperative compact genetic algorithm [14,18]. The

local search is implemented through selecting the best

probability vectors among its neighbor and the use the

confident counter that keeps frequency of the updating to

the probability vector of each cellular compact GA cell.

The higher confident counter values contribute to higher

chance to reach the better solution. The probability vector

combination refers to the following equation:

 Where is adaptive weight calculated from the best

confident counter among neighbors. The better

confident counter will provide the lower which

increases the influence of the incoming model

from the neighbors.

 is a new inner probability vector of a

CCGA cell

 is the best incoming probability vector

from neighbors

 (4) Asynchronous migration rate of probability vector

for each CCGA cell using confident counter. Since the

updating rate of each CCGA cell to its confident counter

different. This contributes to the different rate to exchange

the probability vector.

3. Hardware Design

A CGA cell is designed by adding additional modules

to the hardware of the normal compact GA hardware [9].

Fig 4 shows the hardware design of the N-bit module of a

CCGA cell. CCGA bit-module is based on the design

proposed in [14] integrated with the communication unit

(COMM), the confident counter unit (CC) and the

probability vector combination unit (VCOMBIN).

In Fig 4, the hardware design consists of four main

blocks. The first block is the CCGA bit-module which can

be cascaded to form N-bit chromosome. The second block

is the CC&COMM unit that has the confident counter

(CC) and the communication unit COMM. The third

block is the probability vector combination unit

VCOMBIN. The fourth block is a simple finite state

machine acts as the main controller for the whole block.

The detail of these three additional modules is described

as follows.

 COMM is a finite state machine that controls sending

and receiving the probability vector as an 8-bit package

between each CCGA cell. For a chromosome of N-bit

length, the CCGA needs to have N number of probability

vector which each probability vector sizes 8-bit. Thus, for

N-bit length chromosome, N packages of 8-bit will be sent

and received between each CCGA cell by the COMM

unit.

CC is the confident counter designed as a 5-bit counter.

During fitness evaluation, the counter is incremented

every time when the fitness of the winner is better than the

current best fitness. The value of the counter is passed to

the neighbor CCGA cells with the current probability

vector.

Figure 4. Hardware design of a cellular compact
GA cell

VCOMBIN is the hardware block that implements the

step 6 of the pseudocode the fig. 3. A hardware part of the

block consists of comparators and multiplexers for

comparing incoming confident counter. The best

confident counter will be selected among the incoming

confident counters of the neighbors. The confident

counter (cc) is converted to β by using fractional number

(1/cc). The multiplication of β with the probability vector

is implemented using shift register instead of using

multipliers which occupy more hardware resource. With

shift register implementation, the cc value, = 1/cc, will

be scaled down to multiple of 2. From equation of vector

combination of CCGA algorithm, after multiplication, the

value of both probability vectors will be added using 8-bit

adder.

 FSM_CONTROL is a simple finite state machine

that controls the three datapath blocks. The CCGA-bit

module takes four clock cycles for generating the two

values A and B for tournament selection and updating

probability vectors. The COMM module takes sixteen

clock cycles for sending and receiving probability vectors;

however, the number of clock cycles depends on the size

of the chromosome for a specific problem. VCOMBIN

takes two clock cycles for latching probability vector to

the internal registers and perform shifting and addition.

4. FPGA Implementation results

We implemented the CCGA with two neighbors in Virtex-

5 LX50 device. The code was design and coded in

synthesizable Verilog HDL. ModelSim Version 6.2 was

used for simulation. Xilinx ISE 9.1 was used for FPGA

implementation. For our initial tests of the

implementation, “one max” problem with 32-bit was used

to verify the operation of the CCGA. The simulation result

of “one-max” is shown in Fig. 5. The hardware was also

tested with F1 and F2 functions as follows:

when -2.048 < .

In Fig. 5, Fig. 6 and Fig. 7, the simulation results show

the comparison between normal compact GA, the

cooperative GA and cellular compact GA for OneMax,

F1, and F2 functions. The CCGA and CoCGA contain

two nodes; each has 32-bit probability vectors while CGA

has only one node with one 32-bit probability vector. The

performance of CCGA outperforms the normal CGA in

term of speed and quality of the search results. CCGA

provides at least two times speed up over normal compact

GA in Onemax, F1 and F2 test cases as shown in Table 1.

In addition, the CCGA provides the compatible speed up

to the cooperative compact GA.

 Table 2 shows the FPGA implementation of one node

and when CCGA is scaled up to four nodes. From Table

2, the speed of the CCGA is not related to the number of

the nodes which demonstrates that CCGA can be scaled

up to a problem size in FPGA hardware. The comparison

of FPGA resources is shown in Table 2. CCGA occupies

the same amount of FPGA resources as others CGA.

However, it’s more practical to FPGA implementation

since it has uniform cell type.

The comparison in term of speed and hardware

resources to others compact GA implementation is shown

in Table 3. CCGA delivers the same speed and requires

the compatible hardware resources.

Figure 5. 32-bit ”OneMax” simulation results

Figure 6. F1 simulation results

Figure 7. F2 simulation results

TABLE 1 Comparison of the speed up

 OneMax F1 F2

CGA 43362 126967 80027

CoCGA 11492 25542 27757

CGA 12321 28853 26591

Speedup

CoCGA/CGA

3.77 4.97 2.88

Speedup

CCGA/CGA

3.51 4.44 3.00

TABLE 2
FPGA HARDWARE RESOURCE XILINX VIRTEX-5 LX50

Network

size

FPGA resources for CCGA with 32-bit

chromosome on

Xilinx Vertex-5 LX50

 CCGA

1

Slice Registers

used Flip-Flops
621

Slice LUTs

used as Logic
1,932

Total equivalent

gate count
18,224

Maximum

Frequency
290Mh

2x2

Slice Registers

used Flip-Flops
1,642

Slice LUTs

used as Logic
5,506

Total equivalent

gate count
49,204

Maximum

Frequency
280Mh

TABLE 3 COMPARISON OF FPGA RESOURCES

mCGA

[9]

CGA

[10]

CoCGA

normal

cell [10]

CoCGA

leader

cell [10]

CCGA

No. of

flip-flop
712 541 598 168 621

4-input

LUT
1612 1065 1296 359 1932

Total

equivalet

gate count

18732 12602 17034 4651 18224

Max.

frequency
-

330

Mhz

330

Mhz

300

Mhz

300

Mhz

5. Conclusion

In this paper, the CCGA is presented. The results

provide initial evidence that CCGA can outperform the

normal compact GA and can provide compatible results to

the CoCGA with more applicable to FPGA

implementation due to unified cell type. The CCGA

delivers a more search performance with the adaptive

probability vector recombination. For intrinsic evolvable

or adaptive hardware, the CCGA can be used for a

hardware GA for real-time evolution and adaptation with

increased quality of search results. In addition, CCGA

can address a scalability issue of genetic algorithm with

problem size since CCGA can scale up with problem size

by increasing network size as shown in Table 1.

6. References

[1] T. Higuchi, Y. Liu and X. Yao, “Introduction to evolvable

hardware”, Evolvable Hardware, pp. 1-17, Springer 2006.

[2] J. F. Miller and P. Thomson, “Aspects of digital evolution:

evolvability and architecture,” Proc. Parallel Problem

Solving From Nature, Amsterdam Netherland, 1998, pp.

927–936.

[3] T. Higuchi et.al, “Real-world applications of analog and

digital evolvable hardware,” IEEE Transactions on

Evolutionary Computation, vol. 3, pp. 220-335, Sept. 1999.

[4] L. Sekanina, “Virtual reconfigurable circuits for real-world

applications of evolvable hardware,” Proc. Evolvable

systems: from biology to Hardware ICES2003, 2003, pp.

332–343.

[5] H. Liu, J.F. Miller, and A. M. Tyrrell, “Intrinsic Evolvable

Hardware Implementation of a robust biological

development model for digital systems,” Proc. NASA/DoD

Conference on Evolvable Hardware, July 2005, pp. 87–92.

[6] P. Haddow and G. Tufte, “An evolvable hardware FPGA

for adaptive hardware, ”Proc. IEEE Congress on

Evolutionary Computation, San Diego, CA, 2000, pp. 553–

560.

[7] S. Scott and A. Seth, “HGA: A hardware-based genetic

algorithm,” Proc. ACM/SIGGA 3rd Int. Symp. Field-

Programmable Gate Ar-ray,1995, pp. 1-12.

[8] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD

for Deep- Submicron FPGAs, Boston, Springer, 1999.

[9] J. C. Gallagher, S. Vigraham, and G. Kramer “A family of

compact genetic algorithms for intrinsic Evolvable

Hardware,” IEEE Transactions on Evolutionary

Computation, vol. 8, pp. 111-126, April 2004.

[10] Y. Jewajinda and P. Chongstitvatana, “A cooperative

approach to compact genetic algorithm for evolvable

hardware,” Proc. IEEE Congress on Evolutionary

Computation, 2006, pp. 624–629.

[11] G. Harik, F. Lobo and D. Goldberg, “The compact Genetic

Algorithm”, IEEE Transaction on Evolutionary

Computation, vol. 3, pp. 287-309, Nov. 1999.

[12] E. Cantu-Paz, Efficient and accurate parallel genetic

algorithms, Boston, MA:Kluwer Academic Publisher,

2000.

[13] C.W. Ahn, D.E. Goldberg, and R. Ramakhrishna,

“Multiple-deme parallel estimation of distribution

algorithms: basic framework and application. In

Proceedings of Parallel Processing and Applied

Mathematics, LNCS 2774, pp544-551, Springer, 2004

[14] L. DelaOssa et al., “Improving model combination through

local search in parallel univariate EDAs,” Proc. IEEE

Congress on Evolutionary Computation, 2006, vol 2, pp.

624–629.

[15] K. Sastry, D.E. Goldberg, and X. Liora “Towards billion-

bit optimization via a parallel estimation of distribution

algorithm,” Proc. GECCO 2004, 2004, pp. 412-413.

[16] M. Sipper, Evolution of parallel cellular machines: the

cellular pro-gramming approach, Berlin: Springer-Verlag,

1997.

[17] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD

for Deep- Submicron FPGAs, Boston, Springer, 1999.

