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Abstract— This work proposed a performance improvement of 
a stack-based virtual mchine by augmenting the instruction set 
with one-address instructions.  The extended instructions are 
binary operators with two addressing modes: access local 
variables and immediate mode.  An experiment is carried out to 
measure the effectiveness of the proposal based on modification 
of a stack-based virtual machine to include one-address 
instructions.  A suite of benchmarks is used to measure both the 
number of instruction executed and the actual running time.  The 
result shows that the proposed instructions reduce the number of 
instruction executed by 30% and the extended virtual machine is 
29% faster than the original virtual machine. 
 

Index Terms— Stack-based virtual machine, one-address 
instruction, performance 
 

I. INTRODUCTION 
Embedded systems for appliances are moving towards more 

complex systems.  To keep the development time short and to 
ensure quality of software, a higher-level language for 
application development is preferred. The trend towards 
moving to Java platform is the case. The main advantage of 
Java is that the major source code of the application software 
is quite independent of the underlying hardware.  
   This is possible because in a Java platform the application 
software is compiled into a processor neutral executable code, 
Java byte-code. The execution of Java byte-code is done with 
a Java Virtual Machine [1].  This decoupling of application 
software with its execution environment via virtual machines 
promote portability.  The slogan of Java is “write once run 
everywhere” reflects this concept.   

Java Virtual Machine is a stack-based machine.  Its 
instruction is based on zero-address instruction format. This 
makes the executable code very compact [2].  A stack-based 
machine is well-known to have a performance penalty. This is 
due to the bottleneck in accessing the central data structure, 
the evaluation stack.  Every instruction accesses the stack.  
This is in constrasted to a register machine where multiple 
access to register bank is possible. Another performance 
limiting factor of stack-based instructions is that the number 
of instruction executed (the dynamic instruction count) is 
larger when compared to conventional three-address 

instructions.  This also gives rise to a larger number of 
instruction to be fetched [3].   

To improve the performance of a stack-based virtual 
machine, this work proposes the addition of one-address 
instructions to the virtual machine.  Our experience with 
stack-based virtual machines shows that one of the most 
frequently used instruction is the access to a local variable, 
mostly pushing its value to the stack [4]. In zero-address 
instruction format, any operation takes its operand from the 
stack.  

Therefore the operands must have been on the stack by 
some other operation, very frequently, the “get a local 
variable” operation. One-address instruction format can 
“compress” this sequence of instructions into one instruction.   

To validate this idea, an experiment is performed based on 
an open source virtual machine S-code.  S-code is a stack-
based virtual machine publicly available [5].  A set of one-
address instructions has been implemented as an extension to 
this virtual machine.  The effect of this extension on the 
performance of the virtual machine is measured. 

The paper is organised as follows.  The next section 
introduces the S-code virtual machine.  Section 3 explains 
one-address instruction extension.  Section 4  presents the 
experiment and the results.  

II. THE S-CODE VIRTUAL MACHINE 
S-code virtual machine has a stack-based instruction set.  S-

code is designed for simplicity; the emphasis is on a small 
number of instructions.  It is also quite fast to be interpreted 
by a software virtual machine.  From S-code, it is easy to 
generate machine dependent code for a specific purpose, such 
as, small code size (byte-code, nibble-code) [4], high 
performance (extended code) [6], or to fit a particular 
hardware.  There are also a number of real processors that use 
this instruction set, for example [7]. 

S-code has a fixed-length 32-bit instruction format. It is not 
compact but it is reasonably fast when interpreting. This 
format simplifies the code address calculation and allows code 
and data segment to be the same size (integer) as opposed to 
other format such as the byte-coded instruction format (as in 
JVM [1]).  There are two types of instructions: zero-argument 
and one-argument.  The zero-argument instructions are mostly 
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related to the arithmetic and logic operations.  The one-
argument instructions are the access operations to variables 
and the control-flow operations. 

Each instruction is 32 bits.  The right-most 8-bit is the 
operational code.  The left-most 24-bit is an optional 
argument. For a virtual machine, this format allows simple 
opcode extraction by bitwise-and with a mask without 
shifting, but it needs 8-bit right-shift to extract an argument.  
Because zero-argument instructions are used more often, this 
format is fast for decoding an instruction. 

Let’s study some examples of programs in S-code (see 
Fig.1).  Let a, b, c be locals; d, e be globals; L, M  be labels. 
S-code is shown in Arial font. 

 
Fig. 1  An example of S-code 

 
Here is a brief description of the instructions: 
get x    --  get a local variable and push it to the stack 
ld/st a  --  load/store a value from/to a global variable 
lit c    --  push a literal (constant) to the stack 
ldx/stx  --  load/store vector (array) 
call f   --  call a function 
jmp/jf   --  jump to a label, conditional jump 
add/eq   --  binary operators 

III. ONE-ADDRESS EXTENDED INSTRUCTIONS 

Naturally, the one-argument format is used for the 
extended instructions.  There are two kinds of operands: local 
variables and literals.  The S-code instruction set has 16 
binary operators.  These operators are extended to have 
additional two modes.  The first mode has a local variable as 
the argument.  Therefore, one operand of the operation is 
directly specified in the instruction, another operand resides 
on the stack.  Similary, the second mode is the immediate 
mode which the argument is a literal. For example, the 
original zero-argument binary operators such as {add, sub, 
mul, div} have their companion instructions as {addv x, 
subv x, mulv x, divv x} for local variable mode and {addi c, 
subi c, muli c, divi c} for the immediate mode.  These 
extended instructions effectively compress two instructions of 
getting a local variable to the stack and then operate on it into 

one instruction.  Please observe this change from the previous 
examples (see Fig.2), now the executable code is shown with 
the extended instructions (in Italics). Let a, b, c be locals; d, e 
be globals; L, M  be labels. 

 

a = a + 1   
     get a, addi 1, put a 
 
a = b[i]  
     get i, ldxv b, put a  
 
d[i] = b  
      get i, get b, stxv d 

 
if (a == 1) then b = 2 else b = 3 
           get a, eqi 1, jf L,  
           lit 2, put b, jmp M,  
     L:    lit 3, put b,  
     M: 
  

a = a + 1   
     get a, lit 1, add, put a 
 
a = b[i]  
     get b, get i, ldx, put a  
 
d[i] = b  
     ld d, get i, get b, stx 
 
e = add2(a,b) 
     get a, get b, call add2, st e 
 
if (a == 1) then b = 2 else b = 3 
           get a, lit 1, eq, jf L,  
           lit 2, put b, jmp M,  
     L:    lit 3, put b,  
     M: 

Fig. 2  The extended instruction of S-code (in Italics) 
 

This extension adds 32 instructions to the original 
instruction set. The operation of these instruction is not 
complex.  The extended instruction is just larger (almost 
double in the number of instruction). 

IV. EXPERIMENT 
In this section the effect of the additional one-address 

instructions in the extended virtual machine is measured by 
running a suite of benchmarks. There are seven small 
programs and two medium size programs used in the 
measurement: Bubble, Hanoi, Matmul, Perm, Queen, Quick, 
Sieve, AES and Compiler.  The short description of the 
programs is as follows. 

 
Bubble Bubble sort 20 items of data. The initial data 

is ordered in descending order. 
Hanoi Solve the 6 disks Tower of Hanoi problem. 
Matmul Multiply 4 by 4 matrix using subroutine 

multiplication. 
Perm Generate permutation of 4 items 
Queen Find all solutions of 8-queen problem. 
Quick Quick sort 20 items of data (similar to 

Bubble and Merger). 
Sieve Find all prime numbers which are less than 

500. 
AES AES (Advance Encryption Standard) (128, 

128) bit key block cipher [8]. 
Compiler Compile the compiler itself (Som language 

version 3.0 [9]).  The compiler source is 
approximately 2500 lines of code. 

 
The metric is the number of instruction executed to 

complete the tasks.  As this is a measurement of a virtual 
machine, measuring its actual runtime does not yield much 
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useful result.  The actual running time will depend too much 
on the implementation details of the virtual machine.   The 
number of instruction executed is a fair measurement.  
However, although the number of instruction executed is 
reduced, other overhead (which is not related to the number of 
instruction executed) in  the virtual machine may offset the 
gain.  The actual running time is also measured using the same 
virtual machine (so that their implementations are as close as 
possible).  This is achieved by running both instruction sets on 
the same virtual machine.  The one-address instructions are in 
addition to the original instruction set therefore they are fully 
compatible.  Table 1 shows the number of instruction 
executed for the extended virtual machine (zero+one address) 
versus the original (zero address).  Table 2 shows their actual 
running time.  The figures are calculated from the average of 
three runs. 
 
Table 1.  Comparing the number of instruction executed of two 
virtual machines. 
 

Program zero+one (1) original (2) (1)/(2) 
Bubble 6594 10072 .65 
Hanoi 1647 2310 .71 
Matmul 10106 13626 .74 
Perm 2826 4860 .58 
Queen 244927 443324 .55 
Quick 2406 3170 .76 
Sieve 8446 13402 .63 
Aes 20559 30684 .67 
Compiler 5044736 6654829 .76 
average   .67 
 
 
Table 2  Comparing the actual running time (in ms) of two virtual 
machines. 

 
Program zero+one (1) original (2) (1)/(2) 

Queen 728 1352 .54 
Bubble 40 60 .67 
Matmul 67 93 .71 
Aes 140 187 .75 
Compiler 41300 46900 .88 
average   .71 
 

The results show that in terms of the number of instruction 
executed, with the extended instructions the benchmarks are 
completed in 33% less than the original instruction set alone.  
In terms of the actual running time, the extended virtual 
machine is 29% faster than the original.  This result is quite 
good in the sense that reduction of the number of instruction 
executed is translated into an improvement of the running 
time. 

V. DISCUSSION AND CONCLUSION 
The result clearly shows that extending the instruction set to 

include one-address format did improve the performance of a 
stack-based virtual machine by 30%.  This enhancement is 

achieved quite readily, the modification of the virtual machine 
is not difficult as the new instruction format is compatible 
with the original one.   

An intriquing idea is that if one-address format has such a 
good impact on performance what will happen if we consider 
two-address format?  For example, in sorting benchmarks the 
sequence of swapping two elements in an array is executed 
very often.  Suppose a few two-address format instructions are 
introduced for this purpose, such as load/store vector:  

 
ldxa index base  --  load  base[index] to the stack 
stxa index base  --  store a value from the top of stack to 

base[index] 
 
The two-address instruction format will need two 

arguments: the first argument, the local variable is 8 bits, the 
second argument the base address is 16 bits.  With this simple 
addition, the following code is almost as good as possible (see 
Fig. 3). 
 

 

Fig. 3  Compiling a swap function into two-address instructions 

swap(ar,i,j)    -- swap ar[i] and ar[j] 
   t = ar[i] 
   ar[i] = ar[j] 
   ar[j] = t 
 

ldxa i ar, put t,  
ldxa j ar, stxa j ar, 
get t, stxa j ar  

 
Measuring this modification on sorting benchmark, the 

result is that the number of instruction is further reduced by 
22%.  Of coure, in terms of actual running time the two-
address instructions are more complex hence will run slower 
per instruction than the zero-address instructions.  But the 
overall gain is probably positive.  However, not all situations 
are as good as this example.  The only fact against ldxa/stxa is 
that the second argument, which is the address, is restricted to 
16 bits.  This is some how make it a special case, in general 
the address is 24 bits. 

Two-address format creates a situation of explosion of 
number of instructions because two arguments have many 
combinations, such as ldxa above, the second argument can 
also be a local, a constant etc.  Because of this, the instruction 
set will be very much incomplete and full of special cases.  
The tradeoff has to be made somewhere.  Overall, we believe 
that including one-address instructions to a stack-based virtual 
machine has very clear benefit to the performance.. 
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