
 1

Augmenting a Stack-based Virtual Machine
with One-address Instructions for Performance

Enhancement

Peera Thontirawong and Prabhas Chongstitvatana
Department of Computer Engineering

Chulalongkorn University, Bangkok, Thailand
u45pth@cp.eng.chula.ac.th, prabhas@chula.ac.th

Abstract— This work proposed a performance improvement of
a stack-based virtual mchine by augmenting the instruction set
with one-address instructions. The extended instructions are
binary operators with two addressing modes: access local
variables and immediate mode. An experiment is carried out to
measure the effectiveness of the proposal based on modification
of a stack-based virtual machine to include one-address
instructions. A suite of benchmarks is used to measure both the
number of instruction executed and the actual running time. The
result shows that the proposed instructions reduce the number of
instruction executed by 30% and the extended virtual machine is
29% faster than the original virtual machine.

Index Terms— Stack-based virtual machine, one-address
instruction, performance

I. INTRODUCTION
Embedded systems for appliances are moving towards more

complex systems. To keep the development time short and to
ensure quality of software, a higher-level language for
application development is preferred. The trend towards
moving to Java platform is the case. The main advantage of
Java is that the major source code of the application software
is quite independent of the underlying hardware.
 This is possible because in a Java platform the application
software is compiled into a processor neutral executable code,
Java byte-code. The execution of Java byte-code is done with
a Java Virtual Machine [1]. This decoupling of application
software with its execution environment via virtual machines
promote portability. The slogan of Java is “write once run
everywhere” reflects this concept.

Java Virtual Machine is a stack-based machine. Its
instruction is based on zero-address instruction format. This
makes the executable code very compact [2]. A stack-based
machine is well-known to have a performance penalty. This is
due to the bottleneck in accessing the central data structure,
the evaluation stack. Every instruction accesses the stack.
This is in constrasted to a register machine where multiple
access to register bank is possible. Another performance
limiting factor of stack-based instructions is that the number
of instruction executed (the dynamic instruction count) is
larger when compared to conventional three-address

instructions. This also gives rise to a larger number of
instruction to be fetched [3].

To improve the performance of a stack-based virtual
machine, this work proposes the addition of one-address
instructions to the virtual machine. Our experience with
stack-based virtual machines shows that one of the most
frequently used instruction is the access to a local variable,
mostly pushing its value to the stack [4]. In zero-address
instruction format, any operation takes its operand from the
stack.

Therefore the operands must have been on the stack by
some other operation, very frequently, the “get a local
variable” operation. One-address instruction format can
“compress” this sequence of instructions into one instruction.

To validate this idea, an experiment is performed based on
an open source virtual machine S-code. S-code is a stack-
based virtual machine publicly available [5]. A set of one-
address instructions has been implemented as an extension to
this virtual machine. The effect of this extension on the
performance of the virtual machine is measured.

The paper is organised as follows. The next section
introduces the S-code virtual machine. Section 3 explains
one-address instruction extension. Section 4 presents the
experiment and the results.

II. THE S-CODE VIRTUAL MACHINE
S-code virtual machine has a stack-based instruction set. S-

code is designed for simplicity; the emphasis is on a small
number of instructions. It is also quite fast to be interpreted
by a software virtual machine. From S-code, it is easy to
generate machine dependent code for a specific purpose, such
as, small code size (byte-code, nibble-code) [4], high
performance (extended code) [6], or to fit a particular
hardware. There are also a number of real processors that use
this instruction set, for example [7].

S-code has a fixed-length 32-bit instruction format. It is not
compact but it is reasonably fast when interpreting. This
format simplifies the code address calculation and allows code
and data segment to be the same size (integer) as opposed to
other format such as the byte-coded instruction format (as in
JVM [1]). There are two types of instructions: zero-argument
and one-argument. The zero-argument instructions are mostly

mailto:u45pth@cp.eng.chula.ac.th
mailto:prabhas.c@chula.ac.th

 2

related to the arithmetic and logic operations. The one-
argument instructions are the access operations to variables
and the control-flow operations.

Each instruction is 32 bits. The right-most 8-bit is the
operational code. The left-most 24-bit is an optional
argument. For a virtual machine, this format allows simple
opcode extraction by bitwise-and with a mask without
shifting, but it needs 8-bit right-shift to extract an argument.
Because zero-argument instructions are used more often, this
format is fast for decoding an instruction.

Let’s study some examples of programs in S-code (see
Fig.1). Let a, b, c be locals; d, e be globals; L, M be labels.
S-code is shown in Arial font.

Fig. 1 An example of S-code

Here is a brief description of the instructions:
get x -- get a local variable and push it to the stack
ld/st a -- load/store a value from/to a global variable
lit c -- push a literal (constant) to the stack
ldx/stx -- load/store vector (array)
call f -- call a function
jmp/jf -- jump to a label, conditional jump
add/eq -- binary operators

III. ONE-ADDRESS EXTENDED INSTRUCTIONS

Naturally, the one-argument format is used for the
extended instructions. There are two kinds of operands: local
variables and literals. The S-code instruction set has 16
binary operators. These operators are extended to have
additional two modes. The first mode has a local variable as
the argument. Therefore, one operand of the operation is
directly specified in the instruction, another operand resides
on the stack. Similary, the second mode is the immediate
mode which the argument is a literal. For example, the
original zero-argument binary operators such as {add, sub,
mul, div} have their companion instructions as {addv x,
subv x, mulv x, divv x} for local variable mode and {addi c,
subi c, muli c, divi c} for the immediate mode. These
extended instructions effectively compress two instructions of
getting a local variable to the stack and then operate on it into

one instruction. Please observe this change from the previous
examples (see Fig.2), now the executable code is shown with
the extended instructions (in Italics). Let a, b, c be locals; d, e
be globals; L, M be labels.

a = a + 1
 get a, addi 1, put a

a = b[i]
 get i, ldxv b, put a

d[i] = b
 get i, get b, stxv d

if (a == 1) then b = 2 else b = 3
 get a, eqi 1, jf L,
 lit 2, put b, jmp M,
 L: lit 3, put b,
 M:

a = a + 1
 get a, lit 1, add, put a

a = b[i]
 get b, get i, ldx, put a

d[i] = b
 ld d, get i, get b, stx

e = add2(a,b)
 get a, get b, call add2, st e

if (a == 1) then b = 2 else b = 3
 get a, lit 1, eq, jf L,
 lit 2, put b, jmp M,
 L: lit 3, put b,
 M:

Fig. 2 The extended instruction of S-code (in Italics)

This extension adds 32 instructions to the original
instruction set. The operation of these instruction is not
complex. The extended instruction is just larger (almost
double in the number of instruction).

IV. EXPERIMENT
In this section the effect of the additional one-address

instructions in the extended virtual machine is measured by
running a suite of benchmarks. There are seven small
programs and two medium size programs used in the
measurement: Bubble, Hanoi, Matmul, Perm, Queen, Quick,
Sieve, AES and Compiler. The short description of the
programs is as follows.

Bubble Bubble sort 20 items of data. The initial data

is ordered in descending order.
Hanoi Solve the 6 disks Tower of Hanoi problem.
Matmul Multiply 4 by 4 matrix using subroutine

multiplication.
Perm Generate permutation of 4 items
Queen Find all solutions of 8-queen problem.
Quick Quick sort 20 items of data (similar to

Bubble and Merger).
Sieve Find all prime numbers which are less than

500.
AES AES (Advance Encryption Standard) (128,

128) bit key block cipher [8].
Compiler Compile the compiler itself (Som language

version 3.0 [9]). The compiler source is
approximately 2500 lines of code.

The metric is the number of instruction executed to

complete the tasks. As this is a measurement of a virtual
machine, measuring its actual runtime does not yield much

 3

useful result. The actual running time will depend too much
on the implementation details of the virtual machine. The
number of instruction executed is a fair measurement.
However, although the number of instruction executed is
reduced, other overhead (which is not related to the number of
instruction executed) in the virtual machine may offset the
gain. The actual running time is also measured using the same
virtual machine (so that their implementations are as close as
possible). This is achieved by running both instruction sets on
the same virtual machine. The one-address instructions are in
addition to the original instruction set therefore they are fully
compatible. Table 1 shows the number of instruction
executed for the extended virtual machine (zero+one address)
versus the original (zero address). Table 2 shows their actual
running time. The figures are calculated from the average of
three runs.

Table 1. Comparing the number of instruction executed of two
virtual machines.

Program zero+one (1) original (2) (1)/(2)
Bubble 6594 10072 .65
Hanoi 1647 2310 .71
Matmul 10106 13626 .74
Perm 2826 4860 .58
Queen 244927 443324 .55
Quick 2406 3170 .76
Sieve 8446 13402 .63
Aes 20559 30684 .67
Compiler 5044736 6654829 .76
average .67

Table 2 Comparing the actual running time (in ms) of two virtual
machines.

Program zero+one (1) original (2) (1)/(2)

Queen 728 1352 .54
Bubble 40 60 .67
Matmul 67 93 .71
Aes 140 187 .75
Compiler 41300 46900 .88
average .71

The results show that in terms of the number of instruction
executed, with the extended instructions the benchmarks are
completed in 33% less than the original instruction set alone.
In terms of the actual running time, the extended virtual
machine is 29% faster than the original. This result is quite
good in the sense that reduction of the number of instruction
executed is translated into an improvement of the running
time.

V. DISCUSSION AND CONCLUSION
The result clearly shows that extending the instruction set to

include one-address format did improve the performance of a
stack-based virtual machine by 30%. This enhancement is

achieved quite readily, the modification of the virtual machine
is not difficult as the new instruction format is compatible
with the original one.

An intriquing idea is that if one-address format has such a
good impact on performance what will happen if we consider
two-address format? For example, in sorting benchmarks the
sequence of swapping two elements in an array is executed
very often. Suppose a few two-address format instructions are
introduced for this purpose, such as load/store vector:

ldxa index base -- load base[index] to the stack
stxa index base -- store a value from the top of stack to

base[index]

The two-address instruction format will need two

arguments: the first argument, the local variable is 8 bits, the
second argument the base address is 16 bits. With this simple
addition, the following code is almost as good as possible (see
Fig. 3).

Fig. 3 Compiling a swap function into two-address instructions

swap(ar,i,j) -- swap ar[i] and ar[j]
 t = ar[i]
 ar[i] = ar[j]
 ar[j] = t

ldxa i ar, put t,
ldxa j ar, stxa j ar,
get t, stxa j ar

Measuring this modification on sorting benchmark, the

result is that the number of instruction is further reduced by
22%. Of coure, in terms of actual running time the two-
address instructions are more complex hence will run slower
per instruction than the zero-address instructions. But the
overall gain is probably positive. However, not all situations
are as good as this example. The only fact against ldxa/stxa is
that the second argument, which is the address, is restricted to
16 bits. This is some how make it a special case, in general
the address is 24 bits.

Two-address format creates a situation of explosion of
number of instructions because two arguments have many
combinations, such as ldxa above, the second argument can
also be a local, a constant etc. Because of this, the instruction
set will be very much incomplete and full of special cases.
The tradeoff has to be made somewhere. Overall, we believe
that including one-address instructions to a stack-based virtual
machine has very clear benefit to the performance..

 4

REFERENCES
[1] T. Lindholm and F. Yellin, The Java Virtual Machine Specification,

Addison Wesley, 1997.
[2] P. Nanthanavoot and P. Chongstitvatana, “Code-Size Reduction for

Embedded Systems using Bytecode Translation Unit,” Conf. of
Electrical/Electronics, Computer, Telecommunications, and Information
Technology (ECTI), Thailand, 13-14 May 2004.

[3] S. Hines, G. Tyson and D. Whalley, “Reducing instruction fetch cost
bypacking instructions into register windows,” Microarchitecture, 2005.
MICRO-38. Proceedings. 38th Annual IEEE/ACM International
Symposium on Microarchitecture MICRO 38, 12-16 Nov. 2005.

[4] N. Kotrajaras, and P. Chongstitvatana, “Nibbling Java byte code of
resource-critical devices,” Proc. of National Computer Science and
Engineering Conference, Thailand, 2003.

[5] http://www.cp.eng.chula.ac.th/~piak/project/som/s-code.htm
[6] P. Chongstitvatana, “Post processing optimization of byte-code

instructions by extension of its virtual machine,” Conf. of Electrical
Engineering, Bangkok, 1997.

[7] A. Burutarchanai, P. Nanthanavoot, C. Aporntewan, and P.
Chongstitvatana, “A stack-based processor for resource efficient
embedded systems,” Proc. of IEEE TENCON 2004, 21-24 November
2004, Thailand.

[8] J. Daemen and V. Rijmen, “The Rijndael Block Cipher: AES proposal,”
1999.

[9] http://www.cp.eng.chula.ac.th/~piak/project/som/index.htm

	I. INTRODUCTION
	II. The S-code virtual machine
	III. One-address extended instructions
	IV. Experiment
	V. Discussion and Conclusion

