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Abstract — Most optimization algorithms that use 
probabilistic models focus on extracting the information from 
good solutions found in the population. A selection method 
discards the below-average solutions.  They do not contribute 
any information to be used to update the models.  This work 
proposes a new algorithm, Combinatorial Optimization with 
Coincidence (COIN) that makes use of both good and not-good 
solutions.  A Generator represents a probabilistic model of the 
required solution, is used to sample candidate solutions. 
Reward and punishment schemes are incorporated in updating 
the generator. The updating values are defined by selecting the 
good and not-good solutions. It has been observed that the not-
good solutions contribute to avoid producing the bad solutions. 
The multi-objective version of COIN is also introduced. Several 
benchmarks of multi-objective problems of real world 
industrial applications are reported.

I. INTRODUCTION

OD does not play dice, coincidence is god’s way of 
remaining anonymous.” – Albert Einstein has left 

challenge to solve the mysteries of the coincidences in the 
universe. EDA algorithms try to extract the knowledge 
found in the solutions in order to reproduce the better 
solution. According to Minsky [1], negative knowledge 
hidden in seemingly positive knowledge plays a controlling 
role in diverse areas including expert system, emotion, and 
search. Combinatorial Optimization with Coincidence 
(COIN) algorithm adopts the negative knowledge to enhance 
the search by avoiding the reproduction of undesired 
solutions. This paper, we introduce the COIN algorithm 
which is invented to solve single-objective problems, and 
then present the adaptation of COIN in multi-objective 
problems.  

The structure of the paper is as follows. The related works 
are discussed in Section II.  The proposed algorithm, 
Combinatorial Optimization with Coincidence, is explained 
in Section III.  Section IV introduces the multi-objective 
version of COIN.  The experiments are reported and the 
results are discussed in Section V.  Finally, Section VI 

concludes the work. 
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II. RELATED WORKS

There are many algorithms that use the second order 
statistic and considered to be the algorithms in Bivariate 
Dependency class in Estimation of Distribution Algorithms. 
These algorithms take dependencies between pairs of 
variables into account. The algorithms in this class include 
MIMIC [2], COMIT [3] and BMDA [4]. 

A. MIMIC 
One of the most famous algorithms in the bivariate 

dependency class is MIMIC (Mutual Information 
Maximizing Input Clustering), proposed by De Bonet et al. 
in 1997. A greedy algorithm that searches in each generation 
for the best permutation between the variables in order to 
find the probability distribution,  that is closest to the 
empirical distribution of the set of selected points when 
using the Kullback-Leibler distance, where 

(1)

and  = (i1,i2,…,in) denotes a permutation of the indexes 
1,2,….,n.

This algorithm avoids searching through all n!
permutations by selecting Xin as the variable with the 
smallest estimated entropy then, at every following step, to 
pick the variable from the set of variables not chosen so far 
whose average conditional entropy with respect to the 
variable selected in the previous step is the smallest. 

B. COMIT
The dependency tree version of PBIL [5] is later called 

COMIT(Combining Optimizers with Mutual Information 
Tree). The algorithm was proposed by Baluja and 
Davies[3][6]. The algorithm constructs dependency trees and 
incrementally learns from the good seen solution so far using 
the algorithm proposed by Chow and Liu [7].   

C. BMDA 
Pelikan and Mühlenbein proposed an algorithm call 

BMDA (Bivariated Marginal Distribution Algorithm) using 
factorization of the joint probability distribution. It is based 
on the construction of a dependency graph, which is always 
acyclic but does not have to be a connected graph. BMDA 
adds the dependency to the graph using the greatest 
dependency between any of the previously incorporated 
variables and the set of not yet added variables. 

“G
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These three algorithms are based on the model 
construction of the knowledge. None of them uses the below 
average solution in learning the model. Moreover there is no 
evidence of applying them in multi-objective problems.

D. EBCOAs 
In 2004, T.Miquelez et al. proposes the use of classifiers 

in the form of Bayesian networks for the optimisation. The 
new algorithm is called Evolutionary Bayesian Classifier-
based Optimization Algorithm[8] (EBCOA). This algorithm 
is the first EDA that bad instances are considered for the 
learning procedure so that the algorithm avoid producing 
less fitted individuals when the generation progresses. This 
method is also applied to continuous optimisation 
domains[9]. 

In the multi-objective version of COIN we adopt the non-
dominated sorting of NSGA-II [10] in order to select the 
candidates to give the reward and punishment to the 
algorithm. 

E. NSGA-II 
Non-dominated sorting genetic algorithm II (NSGA-II) is 

one of the most popular genetic algorithms in recent years. It 
has the ability to find multiple Pareto-optimal solutions in 
one single run. In NSGA-II, the population is sorted 
according to the level of non-domination. The diversity 
among non-dominated solutions is maintained using a 
measure of density of solution in the neighborhood. NSGA-
II is able to find much better widespread solutions and better 
convergence near the true Pareto-optimal front in most 
problems. 

Non-dominated sorting of NSGA-II has been widely used 
in many multi-objective EDAs. The algorithm which adopt 
this technique are multi-objective hBOA[11] and RM-
MEDA[12] 

F. mohBOA 
The multi-objective version of the famous algorithm call 

hBOA proposed by M.Peligan et al. combine hBOA, NSGA-
II and clustering in the objective space. The algorithm is 
shown to scale up well on a number of problems on which 
standard multiobjective evolutionary algorithms perform 
poorly. 

G. RM-MEDA 
A regularity model-based multi-objective EDA proposed 

by Q. Zhang et al. This algorithm models a promising area in 
the decision space by a probability distribution whose 
centroid is a (m-1)-D piecewise continuous manifold. The 
localprincipal component analysis algorithm is used for 
building such a model. A non-dominated sorting-based 
selection is used for choosing solution for the next 
generation. 

III. COMBINATORIAL OPTIMIZATION WITH COINCIDENCE

The proposed algorithm is explained in this section. The 
main idea is to allow learning from the below average 
solutions as well as the traditional learning from the good 
solutions. The coincidence found in a situation should be 
able to statistically describe the chance of the situation to be 
happening whether the situation is good or bad. Thus the 
learning of the coincidence found in the bad solutions should 
be used to avoid the bad situation as well.  

The COIN algorithm uses a generator to generate the 
population. The population is evaluated the same way as 
traditional evolutionary algorithms. However, COIN uses 
both good and not-good (to be defined precisely later) 
solutions to update the generator. The generator is initialized 
so that it can generate a random tree with equal probability 
to be in any configuration. 

Step 1. Initialize the generator. 
Step 2. Generate the population using the generator. 
Step 3. Evaluate the population. 
Step 4. Select the candidates.  There are two methods:  

a. Uniform selection:  select the top and bottom c percent.
b. Adaptive selection:  select the above and below the 

average ±2
Step 5. For each joint probability h(xi|xj), update the generator 

according to the reward and punishment :- 

where Xi,j denotes the joint probability h(xi|xj), k is the 
learning coefficient, ri,j denotes the number of coincidence 
Xi,Xj found in the good solutions, pi,j denotes the number of 

he size 
of the problem. 

p 6. Repeat Step 2 n is met. 

coincidence Xi,Xj found in the not-good solutions, n is t

Ste . Until the terminate conditio

Fig. 1. Pseudo code for COIN

The algorithm searches from a fully connected tree 
initially and incrementally strengthening or weakening the 
connections. As generation progressed the probabilities in 
the generator are increased or decreased according to the 
m

uation and updating steps 
inate. 

i j i

utual information found in the good or not-good solutions.  

The COIN algorithm is shown in Fig. 1. It begins by 
initializing the generator then the population is sampling 
from the generator. The generator is updated by each of the 
coincidence found in the selected good and not-good 
candidates. The generating, eval
are repeated until term

A. The Generator 
The generator of COIN is a matrix of size n× n containing 

multiple dependency trees. Each row denotes a dependency 
tree, where each of the members in the row is the joint 
probability h(X |X ). X indicates the row of the matrix, while 
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Xj indicates the column. A coincidence is denoted by Xi,Xj of 
the event Xi follows by the event Xj. The coordinate Xi,j

dicates the joint probability h(Xi|Xj).

In

in

itializing the generator 
The generator is initialized so that each of the joint 

probabilities h(Xi|Xj) except the Xi,j equal to  . This 
initialization represents the uniform distribution of each joint 

robability in the dependency tree.  

G

iven a dependency tree, , we can 

Pick its value according to its empirical 

alue according to the 
empirical probability h(Xi|Xj).

Up
ndidates 

he co

p

enerating the population 
The generator generates each candidate the same way 

MIMIC and COMIT do. G
sample from it as follow: 

1. Begin at any node, Xi in the tree. This is the root 
node. 
probability h(Xi).

2. Perform a depth-first traversal of the tree from the 
root. For each Xi, choose its v

dating the generator
When each coincidence Xc,Xr is found in good ca

it is used to update the joint probability h(Xc|Xr) by 
rewarding the coordinate Xc,r in the matrix. T ordinate 
Xc,r is rewarded by gathering the probability  from the 
set Xc,j where j range from 1 to n and k is the coefficient 
denoting the learning step, and rc,r is the total number of 
coincidence Xc,r counted from the good solution. The reward 
equation of Xc,r is  

(2)

Contrary to the rewarding, when each coincidence Xc,Xp is
found in a not-good candidate it is used to update the joint 
probability h(Xc|Xp) by punishing the Xc,p in the matrix. The 
Xc,p is punished by scattering its own probability  to 
every member in the set Xc,j where j range from 1 to n and k
is the coefficient denoting the learning step, and pc,p is the 
total number of coincidence Xc,p counted from the not-good 
olution. The punishment equation of Xc,p is s

(3)

Combining reward and punishment when a coincidence 
Xc1,c2 is found in both good and not-good solutions we will 
get: 

(4)

There is some constraint in updating the generator. Since 
the joint probability is updated by increasing or decreasing 
by a constant rate, a joint probability must not become 
negative. Moreover when a joint probability is increased up 
to  point, it a

p
will dominate such that no other branch will be 

ex lored. Therefore we need to maintain the probability 
value by disallow the punishment if it would decrease the 
probability down below 1/10 of the initial value and disallow 
the reward when the joint probability exceeds 8/10 of overall 
probability. 

s in this case it has to donate 0.05 
ach to X1|X2, X1|X3, X1|X4, including itself. The figure 2 (c) 

presents the way to reward X1|X4 by gathering joint 
probabilities of value 0.05 from each of the members. The 
figure 3.2 (d) shows a result of reward X1|X4 and punishment 
X1|X5 at the same time. 

Fig. 2. the effect of the rewards and punishment to a dependency tree 

The effect of reward and punishment is shown in Fig. 2. 
The figure 2 (a) shows the dependency X1|Xj after it has just 
been initialized. Each of the joint probabilities X1|X2, X1|X3,
X1|X4, and X1|X5 is initialized as 0.25 uniformly. The figure 2 
(b) illustrates the punishment of X1|X5 when the coincidence 
X1|X5 is found in a not-good solution. If the learning step k is 
equal to 0.2, X1|X5 has to scatter its joint probabilities to 
very node under X1. Ae

e

Fig.3.  Updating the generator k=0.1 
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Fig. 3 illustrates the process of initializing the generator, 
generating the first population, selection of good and not-
good candidates and finally updating the generator using the 
selected candidates. The generator is initialized so that each 
no of the dependency is equally to 0.25. The population is 
gen

ey are counted as a one-time reward and a one-time 
punishment so the row X1j and row X4j remain unchanged. 
While the coincidences X5,X2, X2,X3 and X3,X4 are considered 
to be coincidences found in the good solutions, hence t
coincidences are used to update the row X5, X2 and X3
coincidences X5,X3; X3,X2 and X2,X4 are used to punish the 
generator as they are found in the not-good solutions.   

ents the search space of a 3 dimensional 
roblem. In the generation 0, all joint 

d

not-good 
solutions rather than good solutions. Conversely the selector 
would select more of the good solution when the overall 
candidates in the population are not-good. This mechanism 
maintains the diversity among the candidates. The 
punishment can spread out the population when the 
algorithm seems to converge as the punishment of a joint 
probability forces to scatter its value to the others.  

de
erated from the initiated generator. The candidates are 

sorted and classified into three classes: high fitness, medium 
fitness, and low fitness. The high fitness candidates are 
considered to be the good solutions while the low fitness 
candidates are considered to be the not-good solutions in the 
population. 

As seen in the fig. 3, the candidate [X2, X3, X4, X1, X5] is 
classified as a good solution and later is used to update the 
generator as rewards. The candidate [X3, X2, X4, X1, X5] is 
classified as a not-good solution and is used to punish the 
generator in the opposite way. Since the coincidences X4,X1
and X1,X5 are found in both good and not-good solutions, 
th

hese 
. The C. Computational Cost and Space Issues  

Fig. 4. The probability dependency tree of a 3 dimensions combinatorial 
problem 

    Fig. 4 repres
combinatorial p
probabilities are equal. As the generation progresses, the 
joint probabilities are increased or decreased. It can be seen 
that some of the connections are weaken. Whereas some of 
the connections are strengthen as the coincidences are foun
in the good solutions. 

B. Selection 
Two selection methods are considered: a uniform method 

selects from the top and bottom c percent of the population, 
an adaptive method selects from the population above and 
below the average in the band of two standard deviations.  

In the adaptive selection, if the population contains more 
good candidates, the selector will select more 

Fig. 5. The population distribution in a 10 cities TSP problem 

A solid example can be seen in the figure 5. It illustrates 
the distribution of the population in generation 1, t and t+1.
In the generation t the diversity is low due to the high 
frequency of the candidates with the same quality. Thus 
more of the candidates are used for punishment. The result 
shows the distribution of the population after the 
punishment. Some of the candidates even go beyond the first 
generation. This indicates the migration away from the local 
optima. 

If the problem size is n, and m candidates in each 
generation, the computational cost and space complexity are 
as follow: 

1. Generating the population requires time O(mn2) and 
space O(mn)

2. Sorting the population requites time O(m log m)
3. The generator require space O(n2)
4. Updating the generator require time O(mn2)

IV. MULTI-OBJECTIVE COIN
The multi-objective version of coin is slightly different 

from the single-objective COIN in the selection method. We 
adopt the non-dominate sorting of NSGA as the way to 
select the population used in updating the generator. Again 
we use the not-good solutions to train the generator. The not-
good solutions are defined different from the single-
objective COIN. They are obtained from the non-dominated 
frontier of the opposite side of the objectives we are 
optimizing. The number of the selected candidates depends 
on the rank of the frontiers. The first nth ranks of the not-
good non-dominated solutions are not the same as the last nth

ranks of the good non-dominated solutions. This paper does 
not discuss many other alternative definitions of the not-
good solutions in multi-objective problems. 

V. EXPERIMENTS

To measure the performance of COIN, we perform several 
benchmarks on TSP problems and compare them to the 
experiment of Robles and Larrañaga [13]. We aim to 
measure the performance of the algorithm in two main 
aspects: quality of the results and the number of function 
evaluations. This paper we show only the result of the well 
known Gröstel24, which can be obtained from the TSPLIB 
[22]. 

1678 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: Chulalongkorn University. Downloaded on August 25, 2009 at 03:07 from IEEE Xplore.  Restrictions apply. 



The experiment of Robles and Larrañaga use both of the 
discrete and continuous EDAs in the following learning 
methods: UMDA [13], MIMIC, TREE [7], EBNA [15], 
UMDAc, and MIMICc,, EGNA [16] and EMNA [17]. 
Moreover we compare the results with GA in the literature 
of Larrañaga [18] in 1999 which uses GENITOR [19] 
algorithm. For each of the combinations shown in the 
experiment, we perform 10 runs and average the results. 

However the TSP coding for continuous EDAs in the 
original literature uses real numbers which later sorted into 
the ordering path based on these numbers, is known to be a 
poor alternative coding compared with path representations 
based on permutations. Thus the results from continuous 
EDAs are not compare in this paper due to the use of 
different representations. 

TABLE I
TOUR LENGTH FOR THE GRÖSTEL24 PROBLEM

Population & Local Optimization
Algorithm 500-without 500-with 1000-without 1000-with 

Best Aver Best Aver Best Aver Best Aver 
GA-ER* 1272 1272 
GA-OX2* 1300 1367 
UMDA 1339 1495 1272 1272 1329 1496 1272 1272 
MIMIC 1391 1486 1272 1272 1328 1451 1272 1272 
TREE 1413 1486 1272 1272 1429 1442 1272 1272 
EBNA 1431 1528 1272 1272 1329 1439 1272 1272 
COIN unif 1272 1280 1272 1278 
COIN adpt 1272 1272 1272 1272 
* Size of population 200, mutation used SM 
unif denotes uniform selection with learning step k = 0.1 
adpt denotes adaptive selection with learning step k = 0.1
Optimum 1272 

Table 1 shows the best results and average results 
obtained for each of population size, with and without local 
optimization and learning type of EDAs. The table also 
shows results obtained for the GA using the crossover 
operators ER and OX2. The results show that COIN with 
adaptive selection can find the optimum of Gröstel24 
without the need of local optimizer and it is competitive with 
all the EDAs in the experiment.

TABLE II 
NUMBER OF GENERATIONS FOR THE GRÖSTEL24 PROBLEM

Population & Local Optimization

Algorithm 
500-

without 
500-
with 

1000-
without 

1000-
with 

Gen Gen Gen Gen
UMDA 75 19 78 12 
MIMIC 47 4 58 4
TREE 37 4 46 2
EBNA 72 16 79 7 
COIN 67 48 

Table 2 illustrates the number of the generation used to 
find the solutions. Again the result shows that COIN is 
competitive in the larger population size. 

Fig. 6. the best population generated from the generator.

Fig. 6 shows the convergence of the Gröstel24 problem 
using only good solutions, only not-good solutions and using 
both types. It shows that the use of both good and not-good 
solutions outperform the use of only good or bad solutions. 
Learning from not-good solutions creates more variety 
amongst the best results but retaining the average results. 

In this problem, the adaptive selection outperforms the 
uniform selection. Surprisingly the punishments counted 
from the experiments are 2/3 of the overall selection.  

To study the effect of reward and punishment of good and 
bad instances in multi-objective problems, the multi-
objective COIN is tested in a multi-objective TSP problem. 
We setup an experiment using kroa100 and krob100 as a bi-
objective 100 tours TSP problem obtained from the TSPLIB. 
The population size we used in the experiment is 500 and the 
learning step k is equal to 0.1. Then we took some snapshots 
at the number of generations equal to 100 and 500 
respectively. The behavior of the algorithm can be seen in 
Fig. 7 and Fig 8.  

Fig. 7. the population clouds in a bi-objective kroa/b100 TSP.
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Fig. 7 shows the population in the generation 1, 100 and 
500 respectively. The population migrates towards the 
optimum fitness area as the generation progresses.  

Fig. 8. the parato frontier obtained from different generation and 
updating method in a bi-objective kroa/b100 TSP.

Fig. 8 shows the effect of COIN algorithm in using only 
rewarding and only punishment compared with using both. 
Two curves at the upper-right hand corner are the result 
from using only reward or punishment for 500 generations.  
Contrast this with the rest of the curves in the lower-left 
corner which use both reward and punishment together for 
100 and 500 generations.  The use of both reward and 
punishment for just 100 generations outperforms the result 
from using only either one for 500 generations. 

To measure the performance of multiple-objective COIN, 
we perform several benchmarks on real world applications. 
The applications we use in the experiments include multi-
objective balancing problems on mixed-model U-shaped 
assembly lines in JIT production systems. 

U-shaped assembly line balancing is considered to be NP-
Hard This kind of assembly line has advantage in reduction 
of the waste walking time to switch from workstation to 
workstation, thus enhance reduction of employee and cost. 

6

1

5

7
4

3 5

622 5

1

2

3

4

5

7

6 8

9

10

11

Fig. 9. The precedence diagram with assembly network (Jackson 1956). 

 Fig. 9 illustrates the Jackson’s problem[20] with 11 tasks. 
Given each workstation ws = 1 to m , number of tasks i = 1
to n , each task uses time ti. The total time used in the fig. 9 
is equal to 10 while it used up to 14 if the line is straight. 

WS1
{1,2,6}
idle=0

WS2
{4,5}

idle=2

WS3
{3,7}

idle=2

WS4
{8}

idle=4

WS5
{9,10}
idle=0

WS6
{11}

idle=6

in out

Operation

Fig. 10. Completed line assignment for straight assembly line. 

{1}

{11}

{3}

{10}

{4,2,5}

{8}

{6,7,9}

out 
       in

Backward Work

Forward Work

Fig. 11. Completed line assignment for U-shaped assembly line. 

After fitting the tasks and workstations in to the assembly 
line, we can see that the U-shaped assembly line in the Fig. 
11 use one less workstation than the straight line in the Fig. 
10. As the employee who processes the task number 1 can 
be shared with the task number 11. 

We carry three experiments based on the work of Hwang 
and Katayama [21] in three objectives: 

Given    m   is   number of workstation 
SNk  is  number of relatedness of work in 

the workstation k
Smax is  total maximum time in the 

workstation 
Sk   is  total time in the workstation k

, the three objectives are: 

1. To minimize the number of workstation.

(5)mMinXf )(1

2. To minimize the relatedness of the workstations. 
m

k
kSNmmXf

1
2 )(       (6)

3. To minimize the distribution of workload in each 
station. 

mSSMinXf
m

k
k

1

2
max3 )(

 (7)

This experiment compares NSGA-II and COIN in four 
aspects:

1. Convergence to the Pareto-optimal set.
2. Spread to the Pareto-optimal set.
3. Ratio of non-dominated solution.
4. Processing time.
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TABLE III 
PROBLEM SETS OF HWANG AND KATAYAMA

Problem set Product Task Time  
)sec) 

Density
Network 

Thomopolous 
(1970) 3 19 2 0.122807 

Kim(2006) 4 61 10 0.036066 

Arcus(1963) 5 111 10,000 0.028337 

The density network shown in Table III indicates the 
relationship of the task. If the density network has high value 
(limited to 1), the possibility of assigning task to workstation 
is low. In contrast, the possibility of assigning task to 
workstation is high when the density network is low. 

 We perform the experiment using Matlab 7.0. The test 
environment is on Intel Core2 Duo 2.00 GHz with 1.49 GB 
of RAM. According to the Table IV, COIN has higher 
convergence rate than the NSGA-II. NSGA-II give more 
spread solution in the Pareto-optimal set, but the spread of 
the solution in this experiment has less significant due to the 
ratio of non dominated solution of COIN. It is equal to 1 in 
every test set as none of the NSGA-II’s solution can 
dominate the COIN’s solution. Fig. 12 compares only the 
Pareto-optimal solution for two objectives since the number 
of workstation in every problems are equal. Moreover, in 
terms of real CPU time, the multi-objective COIN is much 
faster than NSGA-II. The total processing time of NSGA-II 
in Thomopolous (19 tasks), Kim (61 tasks) and Arcus (111 
tasks) are 124, 347 and 735minites , while COIN uses only 
3, 15, and 40 minutes respectively. 

TABLE IV 
RESULT OF THE EXPERIMENT IN HWANG AND KATAYAMA’S PROBLEMS

Benchmarking 

Problems and Algorithms

Thomopolous 
(19 task) 

Kim 
(61 task) 

Arcus
(111 task) 

NSGA-II COIN NSGA-II COIN NSGA-II COIN 

Convergence 0.295 0 0.847 0 0.189 0

Spread 0.566 0.523 0.742 0.774 0.485 0.710 

Ratio of solution 0 1 0 1 0 1

Time (min) 124 3 347 15 735 40 

Population size = 100, Generation = 200 
NSGA-II: Crossover probability = 0.7, Mutation probability = 0.3 
COIN: k = 0.1 

VI. CONCLUSION

In this paper, we propose a new algorithm named COIN 
and present an extension of COIN in multiple objective 
problems. The proposed algorithm learns the joint 
probability of the coincidence of candidates. This knowledge 

is used in the generator that generates solutions. The 
generator represents a dependency tree, where each of the 
edge represents the joint probability of the coincidence Xi,Xj .
The algorithm has been benchmarked against several 
algorithms. In a Gröstel24 TSP problem, the results show 
that the proposed algorithm is competitive with other 
discrete EDAs.  We perform several benchmarks on real 
world industrial applications. The result shows that the 
multiple objective version of COIN outperforms NSGA-II in 
every test set.
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Fig. 12. Result of the experiment. 
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