
Multi-objective Combinatorial Optimisation
with Coincidence Algorithm

Warin Wattanapornprom, Panuwat Olanviwitchai, Parames Chutima, and Prabhas Chongstitvatana.

Abstract — Most optimization algorithms that use
probabilistic models focus on extracting the information from
good solutions found in the population. A selection method
discards the below-average solutions. They do not contribute
any information to be used to update the models. This work
proposes a new algorithm, Combinatorial Optimization with
Coincidence (COIN) that makes use of both good and not-good
solutions. A Generator represents a probabilistic model of the
required solution, is used to sample candidate solutions.
Reward and punishment schemes are incorporated in updating
the generator. The updating values are defined by selecting the
good and not-good solutions. It has been observed that the not-
good solutions contribute to avoid producing the bad solutions.
The multi-objective version of COIN is also introduced. Several
benchmarks of multi-objective problems of real world
industrial applications are reported.

I. INTRODUCTION

OD does not play dice, coincidence is god’s way of
remaining anonymous.” – Albert Einstein has left

challenge to solve the mysteries of the coincidences in the
universe. EDA algorithms try to extract the knowledge
found in the solutions in order to reproduce the better
solution. According to Minsky [1], negative knowledge
hidden in seemingly positive knowledge plays a controlling
role in diverse areas including expert system, emotion, and
search. Combinatorial Optimization with Coincidence
(COIN) algorithm adopts the negative knowledge to enhance
the search by avoiding the reproduction of undesired
solutions. This paper, we introduce the COIN algorithm
which is invented to solve single-objective problems, and
then present the adaptation of COIN in multi-objective
problems.

The structure of the paper is as follows. The related works
are discussed in Section II. The proposed algorithm,
Combinatorial Optimization with Coincidence, is explained
in Section III. Section IV introduces the multi-objective
version of COIN. The experiments are reported and the
results are discussed in Section V. Finally, Section VI

concludes the work.

W. Wattanapornprom and P. Chongstitvatana are with the Department of
Computer Engineering, Faculty of Engineering Chulalongkorn University,
Thailand (e-mail: yongkrub@gmail.com and prabhas@chula.ac.th and).

P. Olanviwitchai and P. Chutima are with the Department of Industrial
Engineering, Faculty of Engineering Chulalongkorn University, Thailand
(e-mail: househomeme_1234@hotmail.com and parames.c@chula.ac.th).

II. RELATED WORKS

There are many algorithms that use the second order
statistic and considered to be the algorithms in Bivariate
Dependency class in Estimation of Distribution Algorithms.
These algorithms take dependencies between pairs of
variables into account. The algorithms in this class include
MIMIC [2], COMIT [3] and BMDA [4].

A. MIMIC
One of the most famous algorithms in the bivariate

dependency class is MIMIC (Mutual Information
Maximizing Input Clustering), proposed by De Bonet et al.
in 1997. A greedy algorithm that searches in each generation
for the best permutation between the variables in order to
find the probability distribution, that is closest to the
empirical distribution of the set of selected points when
using the Kullback-Leibler distance, where

(1)

and = (i1,i2,…,in) denotes a permutation of the indexes
1,2,….,n.

This algorithm avoids searching through all n!
permutations by selecting Xin as the variable with the
smallest estimated entropy then, at every following step, to
pick the variable from the set of variables not chosen so far
whose average conditional entropy with respect to the
variable selected in the previous step is the smallest.

B. COMIT
The dependency tree version of PBIL [5] is later called

COMIT(Combining Optimizers with Mutual Information
Tree). The algorithm was proposed by Baluja and
Davies[3][6]. The algorithm constructs dependency trees and
incrementally learns from the good seen solution so far using
the algorithm proposed by Chow and Liu [7].

C. BMDA
Pelikan and Mühlenbein proposed an algorithm call

BMDA (Bivariated Marginal Distribution Algorithm) using
factorization of the joint probability distribution. It is based
on the construction of a dependency graph, which is always
acyclic but does not have to be a connected graph. BMDA
adds the dependency to the graph using the greatest
dependency between any of the previously incorporated
variables and the set of not yet added variables.

“G

1675978-1-4244-2959-2/09/$25.00 c© 2009 IEEE

Authorized licensed use limited to: Chulalongkorn University. Downloaded on August 25, 2009 at 03:07 from IEEE Xplore. Restrictions apply.

These three algorithms are based on the model
construction of the knowledge. None of them uses the below
average solution in learning the model. Moreover there is no
evidence of applying them in multi-objective problems.

D. EBCOAs
In 2004, T.Miquelez et al. proposes the use of classifiers

in the form of Bayesian networks for the optimisation. The
new algorithm is called Evolutionary Bayesian Classifier-
based Optimization Algorithm[8] (EBCOA). This algorithm
is the first EDA that bad instances are considered for the
learning procedure so that the algorithm avoid producing
less fitted individuals when the generation progresses. This
method is also applied to continuous optimisation
domains[9].

In the multi-objective version of COIN we adopt the non-
dominated sorting of NSGA-II [10] in order to select the
candidates to give the reward and punishment to the
algorithm.

E. NSGA-II
Non-dominated sorting genetic algorithm II (NSGA-II) is

one of the most popular genetic algorithms in recent years. It
has the ability to find multiple Pareto-optimal solutions in
one single run. In NSGA-II, the population is sorted
according to the level of non-domination. The diversity
among non-dominated solutions is maintained using a
measure of density of solution in the neighborhood. NSGA-
II is able to find much better widespread solutions and better
convergence near the true Pareto-optimal front in most
problems.

Non-dominated sorting of NSGA-II has been widely used
in many multi-objective EDAs. The algorithm which adopt
this technique are multi-objective hBOA[11] and RM-
MEDA[12]

F. mohBOA
The multi-objective version of the famous algorithm call

hBOA proposed by M.Peligan et al. combine hBOA, NSGA-
II and clustering in the objective space. The algorithm is
shown to scale up well on a number of problems on which
standard multiobjective evolutionary algorithms perform
poorly.

G. RM-MEDA
A regularity model-based multi-objective EDA proposed

by Q. Zhang et al. This algorithm models a promising area in
the decision space by a probability distribution whose
centroid is a (m-1)-D piecewise continuous manifold. The
localprincipal component analysis algorithm is used for
building such a model. A non-dominated sorting-based
selection is used for choosing solution for the next
generation.

III. COMBINATORIAL OPTIMIZATION WITH COINCIDENCE

The proposed algorithm is explained in this section. The
main idea is to allow learning from the below average
solutions as well as the traditional learning from the good
solutions. The coincidence found in a situation should be
able to statistically describe the chance of the situation to be
happening whether the situation is good or bad. Thus the
learning of the coincidence found in the bad solutions should
be used to avoid the bad situation as well.

The COIN algorithm uses a generator to generate the
population. The population is evaluated the same way as
traditional evolutionary algorithms. However, COIN uses
both good and not-good (to be defined precisely later)
solutions to update the generator. The generator is initialized
so that it can generate a random tree with equal probability
to be in any configuration.

Step 1. Initialize the generator.
Step 2. Generate the population using the generator.
Step 3. Evaluate the population.
Step 4. Select the candidates. There are two methods:

a. Uniform selection: select the top and bottom c percent.
b. Adaptive selection: select the above and below the

average ±2
Step 5. For each joint probability h(xi|xj), update the generator

according to the reward and punishment :-

where Xi,j denotes the joint probability h(xi|xj), k is the
learning coefficient, ri,j denotes the number of coincidence
Xi,Xj found in the good solutions, pi,j denotes the number of

he size
of the problem.

p 6. Repeat Step 2 n is met.

coincidence Xi,Xj found in the not-good solutions, n is t

Ste . Until the terminate conditio

Fig. 1. Pseudo code for COIN

The algorithm searches from a fully connected tree
initially and incrementally strengthening or weakening the
connections. As generation progressed the probabilities in
the generator are increased or decreased according to the
m

uation and updating steps
inate.

i j i

utual information found in the good or not-good solutions.

The COIN algorithm is shown in Fig. 1. It begins by
initializing the generator then the population is sampling
from the generator. The generator is updated by each of the
coincidence found in the selected good and not-good
candidates. The generating, eval
are repeated until term

A. The Generator
The generator of COIN is a matrix of size n× n containing

multiple dependency trees. Each row denotes a dependency
tree, where each of the members in the row is the joint
probability h(X |X). X indicates the row of the matrix, while

1676 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: Chulalongkorn University. Downloaded on August 25, 2009 at 03:07 from IEEE Xplore. Restrictions apply.

Xj indicates the column. A coincidence is denoted by Xi,Xj of
the event Xi follows by the event Xj. The coordinate Xi,j

dicates the joint probability h(Xi|Xj).

In

in

itializing the generator
The generator is initialized so that each of the joint

probabilities h(Xi|Xj) except the Xi,j equal to . This
initialization represents the uniform distribution of each joint

robability in the dependency tree.

G

iven a dependency tree, , we can

Pick its value according to its empirical

alue according to the
empirical probability h(Xi|Xj).

Up
ndidates

he co

p

enerating the population
The generator generates each candidate the same way

MIMIC and COMIT do. G
sample from it as follow:

1. Begin at any node, Xi in the tree. This is the root
node.
probability h(Xi).

2. Perform a depth-first traversal of the tree from the
root. For each Xi, choose its v

dating the generator
When each coincidence Xc,Xr is found in good ca

it is used to update the joint probability h(Xc|Xr) by
rewarding the coordinate Xc,r in the matrix. T ordinate
Xc,r is rewarded by gathering the probability from the
set Xc,j where j range from 1 to n and k is the coefficient
denoting the learning step, and rc,r is the total number of
coincidence Xc,r counted from the good solution. The reward
equation of Xc,r is

(2)

Contrary to the rewarding, when each coincidence Xc,Xp is
found in a not-good candidate it is used to update the joint
probability h(Xc|Xp) by punishing the Xc,p in the matrix. The
Xc,p is punished by scattering its own probability to
every member in the set Xc,j where j range from 1 to n and k
is the coefficient denoting the learning step, and pc,p is the
total number of coincidence Xc,p counted from the not-good
olution. The punishment equation of Xc,p is s

(3)

Combining reward and punishment when a coincidence
Xc1,c2 is found in both good and not-good solutions we will
get:

(4)

There is some constraint in updating the generator. Since
the joint probability is updated by increasing or decreasing
by a constant rate, a joint probability must not become
negative. Moreover when a joint probability is increased up
to point, it a

p
will dominate such that no other branch will be

ex lored. Therefore we need to maintain the probability
value by disallow the punishment if it would decrease the
probability down below 1/10 of the initial value and disallow
the reward when the joint probability exceeds 8/10 of overall
probability.

s in this case it has to donate 0.05
ach to X1|X2, X1|X3, X1|X4, including itself. The figure 2 (c)

presents the way to reward X1|X4 by gathering joint
probabilities of value 0.05 from each of the members. The
figure 3.2 (d) shows a result of reward X1|X4 and punishment
X1|X5 at the same time.

Fig. 2. the effect of the rewards and punishment to a dependency tree

The effect of reward and punishment is shown in Fig. 2.
The figure 2 (a) shows the dependency X1|Xj after it has just
been initialized. Each of the joint probabilities X1|X2, X1|X3,
X1|X4, and X1|X5 is initialized as 0.25 uniformly. The figure 2
(b) illustrates the punishment of X1|X5 when the coincidence
X1|X5 is found in a not-good solution. If the learning step k is
equal to 0.2, X1|X5 has to scatter its joint probabilities to
very node under X1. Ae

e

Fig.3. Updating the generator k=0.1

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1677

Authorized licensed use limited to: Chulalongkorn University. Downloaded on August 25, 2009 at 03:07 from IEEE Xplore. Restrictions apply.

Fig. 3 illustrates the process of initializing the generator,
generating the first population, selection of good and not-
good candidates and finally updating the generator using the
selected candidates. The generator is initialized so that each
no of the dependency is equally to 0.25. The population is
gen

ey are counted as a one-time reward and a one-time
punishment so the row X1j and row X4j remain unchanged.
While the coincidences X5,X2, X2,X3 and X3,X4 are considered
to be coincidences found in the good solutions, hence t
coincidences are used to update the row X5, X2 and X3
coincidences X5,X3; X3,X2 and X2,X4 are used to punish the
generator as they are found in the not-good solutions.

ents the search space of a 3 dimensional
roblem. In the generation 0, all joint

d

not-good
solutions rather than good solutions. Conversely the selector
would select more of the good solution when the overall
candidates in the population are not-good. This mechanism
maintains the diversity among the candidates. The
punishment can spread out the population when the
algorithm seems to converge as the punishment of a joint
probability forces to scatter its value to the others.

de
erated from the initiated generator. The candidates are

sorted and classified into three classes: high fitness, medium
fitness, and low fitness. The high fitness candidates are
considered to be the good solutions while the low fitness
candidates are considered to be the not-good solutions in the
population.

As seen in the fig. 3, the candidate [X2, X3, X4, X1, X5] is
classified as a good solution and later is used to update the
generator as rewards. The candidate [X3, X2, X4, X1, X5] is
classified as a not-good solution and is used to punish the
generator in the opposite way. Since the coincidences X4,X1
and X1,X5 are found in both good and not-good solutions,
th

hese
. The C. Computational Cost and Space Issues

Fig. 4. The probability dependency tree of a 3 dimensions combinatorial
problem

 Fig. 4 repres
combinatorial p
probabilities are equal. As the generation progresses, the
joint probabilities are increased or decreased. It can be seen
that some of the connections are weaken. Whereas some of
the connections are strengthen as the coincidences are foun
in the good solutions.

B. Selection
Two selection methods are considered: a uniform method

selects from the top and bottom c percent of the population,
an adaptive method selects from the population above and
below the average in the band of two standard deviations.

In the adaptive selection, if the population contains more
good candidates, the selector will select more

Fig. 5. The population distribution in a 10 cities TSP problem

A solid example can be seen in the figure 5. It illustrates
the distribution of the population in generation 1, t and t+1.
In the generation t the diversity is low due to the high
frequency of the candidates with the same quality. Thus
more of the candidates are used for punishment. The result
shows the distribution of the population after the
punishment. Some of the candidates even go beyond the first
generation. This indicates the migration away from the local
optima.

If the problem size is n, and m candidates in each
generation, the computational cost and space complexity are
as follow:

1. Generating the population requires time O(mn2) and
space O(mn)

2. Sorting the population requites time O(m log m)
3. The generator require space O(n2)
4. Updating the generator require time O(mn2)

IV. MULTI-OBJECTIVE COIN
The multi-objective version of coin is slightly different

from the single-objective COIN in the selection method. We
adopt the non-dominate sorting of NSGA as the way to
select the population used in updating the generator. Again
we use the not-good solutions to train the generator. The not-
good solutions are defined different from the single-
objective COIN. They are obtained from the non-dominated
frontier of the opposite side of the objectives we are
optimizing. The number of the selected candidates depends
on the rank of the frontiers. The first nth ranks of the not-
good non-dominated solutions are not the same as the last nth

ranks of the good non-dominated solutions. This paper does
not discuss many other alternative definitions of the not-
good solutions in multi-objective problems.

V. EXPERIMENTS

To measure the performance of COIN, we perform several
benchmarks on TSP problems and compare them to the
experiment of Robles and Larrañaga [13]. We aim to
measure the performance of the algorithm in two main
aspects: quality of the results and the number of function
evaluations. This paper we show only the result of the well
known Gröstel24, which can be obtained from the TSPLIB
[22].

1678 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: Chulalongkorn University. Downloaded on August 25, 2009 at 03:07 from IEEE Xplore. Restrictions apply.

The experiment of Robles and Larrañaga use both of the
discrete and continuous EDAs in the following learning
methods: UMDA [13], MIMIC, TREE [7], EBNA [15],
UMDAc, and MIMICc,, EGNA [16] and EMNA [17].
Moreover we compare the results with GA in the literature
of Larrañaga [18] in 1999 which uses GENITOR [19]
algorithm. For each of the combinations shown in the
experiment, we perform 10 runs and average the results.

However the TSP coding for continuous EDAs in the
original literature uses real numbers which later sorted into
the ordering path based on these numbers, is known to be a
poor alternative coding compared with path representations
based on permutations. Thus the results from continuous
EDAs are not compare in this paper due to the use of
different representations.

TABLE I
TOUR LENGTH FOR THE GRÖSTEL24 PROBLEM

Population & Local Optimization
Algorithm 500-without 500-with 1000-without 1000-with

Best Aver Best Aver Best Aver Best Aver
GA-ER* 1272 1272
GA-OX2* 1300 1367
UMDA 1339 1495 1272 1272 1329 1496 1272 1272
MIMIC 1391 1486 1272 1272 1328 1451 1272 1272
TREE 1413 1486 1272 1272 1429 1442 1272 1272
EBNA 1431 1528 1272 1272 1329 1439 1272 1272
COIN unif 1272 1280 1272 1278
COIN adpt 1272 1272 1272 1272
* Size of population 200, mutation used SM
unif denotes uniform selection with learning step k = 0.1
adpt denotes adaptive selection with learning step k = 0.1
Optimum 1272

Table 1 shows the best results and average results
obtained for each of population size, with and without local
optimization and learning type of EDAs. The table also
shows results obtained for the GA using the crossover
operators ER and OX2. The results show that COIN with
adaptive selection can find the optimum of Gröstel24
without the need of local optimizer and it is competitive with
all the EDAs in the experiment.

TABLE II
NUMBER OF GENERATIONS FOR THE GRÖSTEL24 PROBLEM

Population & Local Optimization

Algorithm
500-

without
500-
with

1000-
without

1000-
with

Gen Gen Gen Gen
UMDA 75 19 78 12
MIMIC 47 4 58 4
TREE 37 4 46 2
EBNA 72 16 79 7
COIN 67 48

Table 2 illustrates the number of the generation used to
find the solutions. Again the result shows that COIN is
competitive in the larger population size.

Fig. 6. the best population generated from the generator.

Fig. 6 shows the convergence of the Gröstel24 problem
using only good solutions, only not-good solutions and using
both types. It shows that the use of both good and not-good
solutions outperform the use of only good or bad solutions.
Learning from not-good solutions creates more variety
amongst the best results but retaining the average results.

In this problem, the adaptive selection outperforms the
uniform selection. Surprisingly the punishments counted
from the experiments are 2/3 of the overall selection.

To study the effect of reward and punishment of good and
bad instances in multi-objective problems, the multi-
objective COIN is tested in a multi-objective TSP problem.
We setup an experiment using kroa100 and krob100 as a bi-
objective 100 tours TSP problem obtained from the TSPLIB.
The population size we used in the experiment is 500 and the
learning step k is equal to 0.1. Then we took some snapshots
at the number of generations equal to 100 and 500
respectively. The behavior of the algorithm can be seen in
Fig. 7 and Fig 8.

Fig. 7. the population clouds in a bi-objective kroa/b100 TSP.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1679

Authorized licensed use limited to: Chulalongkorn University. Downloaded on August 25, 2009 at 03:07 from IEEE Xplore. Restrictions apply.

Fig. 7 shows the population in the generation 1, 100 and
500 respectively. The population migrates towards the
optimum fitness area as the generation progresses.

Fig. 8. the parato frontier obtained from different generation and
updating method in a bi-objective kroa/b100 TSP.

Fig. 8 shows the effect of COIN algorithm in using only
rewarding and only punishment compared with using both.
Two curves at the upper-right hand corner are the result
from using only reward or punishment for 500 generations.
Contrast this with the rest of the curves in the lower-left
corner which use both reward and punishment together for
100 and 500 generations. The use of both reward and
punishment for just 100 generations outperforms the result
from using only either one for 500 generations.

To measure the performance of multiple-objective COIN,
we perform several benchmarks on real world applications.
The applications we use in the experiments include multi-
objective balancing problems on mixed-model U-shaped
assembly lines in JIT production systems.

U-shaped assembly line balancing is considered to be NP-
Hard This kind of assembly line has advantage in reduction
of the waste walking time to switch from workstation to
workstation, thus enhance reduction of employee and cost.

6

1

5

7
4

3 5

622 5

1

2

3

4

5

7

6 8

9

10

11

Fig. 9. The precedence diagram with assembly network (Jackson 1956).

 Fig. 9 illustrates the Jackson’s problem[20] with 11 tasks.
Given each workstation ws = 1 to m , number of tasks i = 1
to n , each task uses time ti. The total time used in the fig. 9
is equal to 10 while it used up to 14 if the line is straight.

WS1
{1,2,6}
idle=0

WS2
{4,5}

idle=2

WS3
{3,7}

idle=2

WS4
{8}

idle=4

WS5
{9,10}
idle=0

WS6
{11}

idle=6

in out

Operation

Fig. 10. Completed line assignment for straight assembly line.

{1}

{11}

{3}

{10}

{4,2,5}

{8}

{6,7,9}

out
 in

Backward Work

Forward Work

Fig. 11. Completed line assignment for U-shaped assembly line.

After fitting the tasks and workstations in to the assembly
line, we can see that the U-shaped assembly line in the Fig.
11 use one less workstation than the straight line in the Fig.
10. As the employee who processes the task number 1 can
be shared with the task number 11.

We carry three experiments based on the work of Hwang
and Katayama [21] in three objectives:

Given m is number of workstation
SNk is number of relatedness of work in

the workstation k
Smax is total maximum time in the

workstation
Sk is total time in the workstation k

, the three objectives are:

1. To minimize the number of workstation.

(5)mMinXf)(1

2. To minimize the relatedness of the workstations.
m

k
kSNmmXf

1
2)((6)

3. To minimize the distribution of workload in each
station.

mSSMinXf
m

k
k

1

2
max3)(

 (7)

This experiment compares NSGA-II and COIN in four
aspects:

1. Convergence to the Pareto-optimal set.
2. Spread to the Pareto-optimal set.
3. Ratio of non-dominated solution.
4. Processing time.

1680 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: Chulalongkorn University. Downloaded on August 25, 2009 at 03:07 from IEEE Xplore. Restrictions apply.

TABLE III
PROBLEM SETS OF HWANG AND KATAYAMA

Problem set Product Task Time
)sec)

Density
Network

Thomopolous
(1970) 3 19 2 0.122807

Kim(2006) 4 61 10 0.036066

Arcus(1963) 5 111 10,000 0.028337

The density network shown in Table III indicates the
relationship of the task. If the density network has high value
(limited to 1), the possibility of assigning task to workstation
is low. In contrast, the possibility of assigning task to
workstation is high when the density network is low.

 We perform the experiment using Matlab 7.0. The test
environment is on Intel Core2 Duo 2.00 GHz with 1.49 GB
of RAM. According to the Table IV, COIN has higher
convergence rate than the NSGA-II. NSGA-II give more
spread solution in the Pareto-optimal set, but the spread of
the solution in this experiment has less significant due to the
ratio of non dominated solution of COIN. It is equal to 1 in
every test set as none of the NSGA-II’s solution can
dominate the COIN’s solution. Fig. 12 compares only the
Pareto-optimal solution for two objectives since the number
of workstation in every problems are equal. Moreover, in
terms of real CPU time, the multi-objective COIN is much
faster than NSGA-II. The total processing time of NSGA-II
in Thomopolous (19 tasks), Kim (61 tasks) and Arcus (111
tasks) are 124, 347 and 735minites , while COIN uses only
3, 15, and 40 minutes respectively.

TABLE IV
RESULT OF THE EXPERIMENT IN HWANG AND KATAYAMA’S PROBLEMS

Benchmarking

Problems and Algorithms

Thomopolous
(19 task)

Kim
(61 task)

Arcus
(111 task)

NSGA-II COIN NSGA-II COIN NSGA-II COIN

Convergence 0.295 0 0.847 0 0.189 0

Spread 0.566 0.523 0.742 0.774 0.485 0.710

Ratio of solution 0 1 0 1 0 1

Time (min) 124 3 347 15 735 40

Population size = 100, Generation = 200
NSGA-II: Crossover probability = 0.7, Mutation probability = 0.3
COIN: k = 0.1

VI. CONCLUSION

In this paper, we propose a new algorithm named COIN
and present an extension of COIN in multiple objective
problems. The proposed algorithm learns the joint
probability of the coincidence of candidates. This knowledge

is used in the generator that generates solutions. The
generator represents a dependency tree, where each of the
edge represents the joint probability of the coincidence Xi,Xj .
The algorithm has been benchmarked against several
algorithms. In a Gröstel24 TSP problem, the results show
that the proposed algorithm is competitive with other
discrete EDAs. We perform several benchmarks on real
world industrial applications. The result shows that the
multiple objective version of COIN outperforms NSGA-II in
every test set.

NSGA-II VS COIN (Thomoulos,1970 Problem)

Smooth Index
Re

la
te

dn
es

s

3.4

3.3

3.2

3.1

3.0

0.40.30.20.10.0

Variable
NSGA_RL * NSGA_SI
COIN_RL * COIN_SI

NSGA-II VS COIN (Kim,2006 Problem)
9.5

9.4

9.3

9.2

9.1

9.0

8.9

8.8

8.7

8.6

Re
la

te
dn

es
s

1.00.90.80.70.60.50.40.30.20.1

Smooth Index

NSGA-II VS COIN (Arcus,1963 Problem)

15.70

15.65

15.60

15.55

15.50

Re
la

te
dn

es
s

14001300120011001000900800700

Smooth Index
Fig. 12. Result of the experiment.

2009 IEEE Congress on Evolutionary Computation (CEC 2009) 1681

Authorized licensed use limited to: Chulalongkorn University. Downloaded on August 25, 2009 at 03:07 from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Minsky, M., Negative Expertise, International Journal of Expert
Systems 7(1), (1994)

[2] De Bonet, J.S., Isbell, C.L., and Viola, P.: MIMIC: Finding Optima by
Estimating Probability Densities. Advance in Neural Information
Processing Systems, volume 9. (1997)

[3] Baluja, S. and Davies, S.: Combining Multiple Optimization Runs
with Optimal Dependency Trees. Technical Report CMU-CS-97-157,
Carnegie Melon University (1997)

[4] Pelikan, M. and Mühlenbein, H.: The Bivariate Marginal Distribution
Algorithm. Advance in Soft Computing-Engineering Design and
Manufacturing, pages 521-535 (1999)

[5] Baluja, S.: Population Based Incremental Learning: A Method for
Integrating Genetic Search-Based Function Optimization and
Competitive Learning. Technical Report CMU-CS-94-163, Carnegie
Mellon University (1994)

[6] Baluja, S. and Davies, S.: Fast Probabilistic Modeling for
Combinatorial Optimization. In AAAI-98 (1998)

[7] Chow, C. and Liu, C.: Approximating Discrete Probability
Distributions with Dependency trees. IEEE Transactions on
Information Theory, 14:462-467. (1967)

[8] T. Miquélez, E. Bengoetxea, P. Larrañaga Evolutionary computation
based on Bayesian classifiers. International. Journal of Applied
Mathematics and Computer Science, 14(3), 101-115. (2004)

[9] T. Miquelez, E. Bengoetxea, A. Mendiburu, P. Larrañaga Combining
Bayesian classifiers and estimation of distribution algorithms for
optimization in continuous domains. Connection Science, 19(4), 297-
319. (2007)

[10] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan.: A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6, 2(April 2002) 182-197. (2002)

[11] M. Pelikan, K. Sastry, Goldberg, D.E.: Multiobjective hBOA,
Clustering and Scalability, IlliGAL Report No. 2005005, (2005)

[12] Q. Zhang, A. Zhou, and Y. Jin, RM-MEDA: A Regularity Model-
Based Multiobjective Estimation of Distribution Algorithm, IEEE
Trans. Evoutionaryl.Computation., vol. 21, no. 1, pp. 41–63, (2008)

[13] Robles V. and Larrañaga P.:Solving the Traveling Salesman Problem
with EDAs. In Estimation of Distribution Algorithm: A New Tool for
Evolutionary Computation (2002)

[14] Mühlenbein, H.: The Equation for Response to Selection and Its Use
for Prediction. Evolutionary Computation, 5:303-346. (1998)

[15] Etxeberria, R. and Larranga, P.: Global Optimization with Bayesian
Networks. In II Symposium on Artificial Intelligence. CIMAF99.
Special Session on Distributions and Evolutionary Optimization,
pages 322-339. (1999)

[16] Larrañaga, P., Etxeberria, R., Lozano, J. A., and Pena, J.M.:
Optimization by Learning and Simulation of Bayesian and Gaussian
Networks. Technical Report. KZZA-IK-4-99, Department of
Computer Science and Artificial Intelligence, University of the
Basque Country. (1999)

[17] Larrañaga, P., Lozano, J. A., and Bengoetxea, E.: Estimation of
Distribution Algorithms Based on Multivariate Normal and Gaussian
Networks. Technical Report KZZA-IK-1-01, Department of Computer
Science and Artificial Intelligence, University of the Basque Country.
(2001)

[18] Larrañaga, P., Kujipers, C.M. H., Murga, R.H., Inza, I., and
Dizdarevic, S.: Genetic Algorithms for the Travelling Salesman
Problem: A Review of Representations and Operators. Artificial
Intelligence Review, 13:129-170. (1999)

[19] Whitley, D., Starkweather, D., and Fuquay, D.: Scheduling Problems
and Travelling Salesman: The Genetic Edge Recombination Operator.
Proceedings of the International Joint Conference on Artificial
Intelligence, pages 133-140. Morgan Kaufmann Publishers (1989)

[20] Jackson, J.R.: A Computing Procedure for a Line Balancing Problem.
Management Science. Vol. 2,No.3: pp.261-271. (1956)

[21] Hwang, R. and H. Katayama, A Multi-Decision Genetic Approach for
Workload Balancing of Mixed-Model U-shaped Assembly Line
Systems, International Journal of Production Research: 1-26 (2007)

[22] TSPLIB,http://www.iwr.uni-heidelberg.de/groups/comopt/software/
TSPLIB95/ (retrieving on August 18th, 2008)

1682 2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Authorized licensed use limited to: Chulalongkorn University. Downloaded on August 25, 2009 at 03:07 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

