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Abstract—Estimation of Distribution Algorithm (EDA) is a new 

kind of evolutionary algorithm.  However, it does not use 

evolutionary operators such as crossover and mutation.  In this 

paper, we investigate how mutation has an effect on the 

performance of EDA, more specifically, compact genetic 

algorithm (cGA) and LZWcGA.  The result shows that cGA 

performs poorly with mutation while LZWcGA’s performance is 

improved by mutation.  We also present an analysis of mutation 

in both algorithms. 

Mutation; LZW; Estimation of Distribution Algorithm 

I.  INTRODUCTION 

Genetic Algorithm (GA) is an algorithm that solves 
problems by imitating a process of natural evolution [1].  In 
GA, a candidate solution is encoded in a binary string called an 
individual or a chromosome.  A collection of individuals in one 
generation is called a population.  The algorithm selects highly 
fit individuals from the population.  The new generation is 
created by reproducing, recombining and mutating the selected 
individuals.  The process is repeated until the solution is found.  

Estimation of Distribution Algorithm (EDA) is an 
improvement over GA.  Many steps in GA contain 
unprincipled randomness such as mutation and crossover.  For 
example, the crossing site of crossover is selected randomly.  
Therefore, EDA replaces those processes by probabilistic 
modeling of highly fit individuals and generating the next 
generation from the model [2].  Various types of EDA assume 
different dependencies between different positions in the binary 
string.  The univariate EDA assumes all bits are independent.  
Univariate EDA includes compact GA (cGA), PBIL, and 
UMDA.  Bivariate EDA assumes dependency among pairs of 
bits.  Bivariate EDA includes MIMIC and BMDA.  
Multivariate EDA assumes multiple dependencies between 
bits.  Multivariate EDA includes BOA and ECGA. 

Compressed chromosome encoding is proposed to enable 
evolutionary algorithm to solve large scale problems [3][4]. 
For example, LZW encoding in Genetic Algorithm can solve 
one-million-bit problem.  The individual is in the compressed 
form and has to be decompressed before the fitness evaluation.  
The advantage of this approach is low memory requirement.  

In GA, mutation helps maintaining diversity.  However, 
mutation has fewer, if not none, roles in EDA.  Handa includes 

mutation in EDA and show the effectiveness of his method [5]. 
Zhang et al. used guided mutation which generates offspring 
using information from both probabilistic model and a group of 
best individuals that have been found during the search [6].  
This paper studies and analyzes mutation in compressed 
encoding in estimation of distribution algorithm. 

II. COMPACT GENETIC ALGORITHM 

Harik et al. [7] introduced a compact genetic algorithm 
(cGA). The advantage of cGA is low memory consumption.  
cGA consumes less memory than traditional Genetic 
Algorithm because the algorithm uses a single probability 
vector to represent the whole GA population. The probability 
vector requires only l×(log2n) bits to represent a population of 
size n, where l is the length of each bit string. On the other 
hand, a standard GA requires l×n bits to store a population.  

Figure 1 shows the cGA algorithm. The first step is to 
initialize each item in the probability vector to 0.5. The value 
0.5 means that each bit in the chromosome has equal chance to 
be 1 or 0. Then the algorithm randomly generates two 
individuals from the probability vector. Next, both individuals 
are evaluated for the fitness value. The individual with higher 
fitness score is called the winner, whereas the one with the 
lower score is called the loser. For each bit, the probability 
vector is updated by the following rules. 

• Increase the probability value by 1/n, if the winner bit = 1 
and the loser bit = 0. 

• Decrease the probability value by 1/n, if the winner bit = 0 
and the loser bit = 1. 

The probability update step imitates the uniform crossover 
in the standard GA. The update rule of cGA assumes no 
dependency between any bits. Thus, cGA is classified as 
univariate EDA.  

The last step of cGA is to check whether the probability 
vector has been converged. If not, the evolutionary process is 
repeated starting from step 2 through step 5.  Notice that there 
is no crossover and mutation in cGA.   

cGA is applied to solve large-scale problems.  
Watchanupaporn et al. used compressed encoding with cGA to 
solve 128, 256 and 512-bit One-Max problem and against 60, 
120 and 240-bit Royal Road problem [3].  Sastry et al. ran cGA 



on a cluster of computers to solve a billion-bit noisy OneMax 
problem [8]. The problem is more difficult than OneMax 
problem because noise disrupts the evolutionary search. 

 

    Parameters 
              n : population size 
              l : chromosome length 
    1) Initialize probability vector p. 
              for i := 1 to l do 
                   p[i] := 0.5 
    2) Generate two individuals from the vector 
              a := generate(p) 
              b := generate(p) 
    3) Let them compete. 
              winner, loser := evaluate(a, b) 
    4) Update the probability vector towards the better     

individual. 
              for i := 1 to l do 
                   if winner[i] = loser[i] then 
                        if winner[i] = 1 then p[i] := p[i] + 1/n 
                        else p[i] := p[i] − 1/n 
    5) Check if the vector has converged. 
              for i := 1 to l do 
                   if p[i] > 0 and p[i] < 1 then 
                        return to step 2 
    6) p represents the final solution. 
 

Figure 1.  Compact Genetic Algorithm (cGA) pseudo code 

III. LZW COMPACT GENETIC ALGORITHM 

Lempel-Ziv-Welch Algorithm (LZW) is a lossless 
dictionary-based data compression/decompression algorithm 
[9]. The input of the compression algorithm is a character 
string. The output of the compression algorithm (also the input 
of the decompression algorithm) is an array of integer codes. 
The output of the decompression algorithm is the original 
character string. 

The compression/decompression algorithms start with a 
dictionary which the number of entries is equal to the number 
of characters. Each entry contains one character. For example, 
when using LZW to compress/decompress an English text, the 
dictionary is initialized with all English characters and 
symbols. However, when LZW is used to compress or 
decompress a binary chromosome in GA, the dictionary is 
initialized with the number 0 and 1. During the compression, 
the algorithm dynamically expands the dictionary and outputs 
codes that refer to strings in the dictionary. Normally, the 
number of bits of the code is less than that of the variable 
length string in the dictionary. Data is compressed when the 
algorithm replaces the whole string with its code. 

To use LZW compressed encoding with cGA, we add a 
decoding and decompressing step after step 2.  The binary 
chromosome is decoded to an array of integers.  After that, the 
array is decompressed to a binary string, which might be longer 
than the original binary chromosome.  Figure 2 shows where 
the new step D) is inserted. Please note that LZWcGA evolves 

a direct representation of an individual as a "compressed" 
string.  There is no compression step involved in LZWcGA. 
The pseudo code in step 2 (generate) of LZWcGA and cGA is 
different.  In cGA, an invidual is created as a binary string. In 
LZWcGA, an individual is a binary string in "compressed" 
form.  The mutation in LZWcGA is applied directly to this 
representation. 

 

... 
2)  Generate two individuals from the vector 
          a := generate(p) 
          b := generate(p) 
D) Decode and decompress both individuals 
  a := decompress(decode(a))   
  b := decompress(decode(b))   
3)  Let them compete. 
          winner, loser := evaluate(a, b); 
... 

 

Figure 2.  LZWcGA pseudo code 

 

LZW chromosome encoding can be applied to various 
EDAs such as cGA, MIMIC, and BOA. Adding LZW 
encoding to existing EDA is easy. EDA algorithm does not 
have to be modified. Rather, the fitness evaluation has to be 
modified by adding decoding and decompressing at the 
beginning. A binary string is decoded to an array of integers 
using Gray decoding. Then, the integer array is decompressed 
to a binary string using LZW decompression algorithm. 
Finally, the binary string from the previous step is evaluated 
and its fitness is returned to EDA. To EDA's point of view, it 
evolves a binary string. It does not know that it is evolving a 
compressed encoding chromosome. 

IV. MUTATION 

In LZWcGA, mutation occurs after individuals are 
generated.  Each bit has a probability to be mutated equals to 
the mutation rate.  If the bit is mutated, then its value is flipped 
from 0 to 1 or from 1 to 0.  An LZW binary chromosome is 
mutated before it is decoded and decompressed.  Figure 3 
shows where the new step M) is inserted. 

 

... 
2)  Generate two individuals from the vector 
          a := generate(p) 
          b := generate(p) 
M) Mutate both individuals 
  a := mutate(a) 
  b := mutate(b) 
D) Decode and decompress both individuals 
  a := decompress(decode(a))   
  b := decompress(decode(b)) 

... 

Figure 3.  LZWcGA with mutation pseudo code 



V. BENCHMARK PROBLEMS 

We use the synthetic problems to assess the strengths and 
weaknesses of LZW encoding. The advantage of using a 
synthetic problem is that its structures (i.e., relationship 
between variables) are known.  Thus, we can assume that if an 
algorithm can solve the problem, it can also solve a class of 
problems that have the same structure.  Moreover, an algorithm 
that can solve problems with more complex structures is more 
sophisticated and is likely to solve a problem with simpler 

structure.  

A. Trap Problem 

In Trap problem, an individual composes of several blocks.  
Each of the blocks is evaluated by the trap functions.  The Trap 
function can fool the gradient-based optimizers to favor zeros, 
but the optimal solution is composed of all ones.  It is a 
fundamental unit for designing test functions that resist hill-
climbing algorithms.   

A k-bit trap function is defined as: 
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The m and k are varied to produce a number of test 
functions. 

B. Four-Peak problem  

The Four-Peak problem [10] has two global maxima and 
two suboptimal local optima. The problem is defined as 
follows.  
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For a 10-bit problem, the global optimums are 1100000000 
and 111111100. Their fitness values are 18. The local 
optimums are chromosomes with all 1's and all 0's. For a 800-
bit problem, the optimum fitness value is 1519. 

 

C. Six-Peak problem  

The Six-Peak problem [10] is harder than the Four-Peak 
problem even it has two more global maxima than the Four-
Peak problem. The definition of the problem is similar to that 
of the Four-Peak problem but the definition of R(X, T) is 
changed as follows. 
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The optimal solutions of this problem are the same Four-
Peak problem and there are two additional global maxima. For 
a 10-bit problem. The two additional global optimums are 
chromosome 0000000011 and 0011111111. For the same 
problem size, the optimum fitness value equal Four-Peak 
problem. 

VI. RESULTS 

We compare the performance of cGA and LZWcGA at 
different mutation rates.  Table I shows the experimental 
parameters.  The length of binary LZW chromosome is equal 
to the problem size.  Before a fitness evaluation, the 
compressed chromosome is decoded and decompressed with 
LZW decompression algorithm.  The length of the 
decompressed chromosome is varied.  If the length is more 
than the size of the problem size, the excess bits are discarded.  
If the length is less than the problem size, LZWCGA will 
evaluate the fitness of available bits.  All experimental results 
are the average performance obtained from 30 runs. Table II 
shows the average best fitness when using the algorithms to 
solve Trap, 4-Peak, and 6-Peak problems respectively.  

LZWcGA outperforms cGA for all problems that we tested.  
Mutation deteriorates the performance of cGA while it can 
improve the performance of LZWcGA.  The higher the 
mutation rate results in the poorer the performance of cGA.  
However, for LZWcGA, mutation can improve its 
performance.  Among the mutation rates that we experiment, 
the rate 0.05 gives the best performance. 

TABLE I.  EXPERIMENTAL PARAMETERS 

Parameter Value 

Population size 1000 

Problem size 800 

LZW chromosome length 800 

Maximum evaluations 50,000 

Mutation rate 0.00, 0.05, 0.10, 0.15 

 

 

 



TABLE II.  AVERAGE BEST FITNESS  

Problem Algorithm 
Mutation Rate 

0.00 0.05 0.10 0.15 

Trap 
cGA 575 553 526 498 

LZWcGA 768 795 791 787 

4-Peak 
cGA 50 31 26 23 

LZWcGA 1387 1449 1420 1395 

6-Peak 
cGA 47 28 25 22 

LZWcGA 1463 1498 1488 1488 
 

VII. ANALYSIS 

From the experimental result, mutation deteriorates the 
performance of cGA but improves the performance of 
LZWcGA.  We hypothesize that the reason that cGA does not 
work well is because the mutation destroys more building 
block than creating a building block.  We test our hypothesis 
with Trap problem because its building blocks are known.  The 
building blocks in Trap problem have the same size and are 
lined-up consecutively. 

To prove our hypothesis, for every mutation occurs during 
the evolution, we count the number of times that a new 
building block is created and compare it to the number of times 
that a build block is destroyed by mutation.  If the mutation has 
a detrimental effect then the first number should be lower than 
the second number.  However, the result shows that mutation 
constructs more building blocks than destroys them. 

To observe the effect, the ratio of construction and 
destruction is defined. An about-to-be building blocks (BB2B) 
is defined as a part of string that is different from a true 
building block by one bit. In Trap problem, BB2B is a block 
with one 0’s. A construction ration is the number of block that 
becomes the building block divided by the total number of 
about-to-be building block (BB2B). A destruction ratio is the 
number of building block that was destroyed divided by total 
number of building block. From the experiment, there are a lot 
of about-to-be building blocks (BB2B) than the building block. 
It is likely that mutation creates more building blocks than 
destroying it because there is a higher chance that a new 
building block will be created. 

Table III shows the analysis result.  In cGA, the number of 
building block per BB2B is very low.  Even worse, it has very 
low construction ratio compares to the destruction ratio.  
However, in LZWcGA, the construction ratio is much higher 
than the destruction ratio.  Note that in the case of LZWcGA, 
we obtained the ratio by counting the building blocks in a 
decompressed chromosome.  The analysis is performed on an 
800-bit problem.  The mutation rate is 0.05.  The result is an 
average over 30 runs. 

At the mutation rate 0.05, the ratio of building block per 
about-to-be building block for cGA and LZWcGA is 0.148 and 
1.228.  However, when no mutation is used the ratio for cGA 
and LZWcGA is 0.148 and 0.921.  Notice that mutation in 
LZWcGA helps increase the BB to BB2B ratio. 

In Table III, the construction ratio is 0.048 while the 
mutation rate is 0.050.  If we increased the maximum number 
of evaluation to a very large number, the construction ratio of 
cGA will be equal to the mutation rate.  This is because in the 
ratio is equal to the probability that the only 0 in the block will 
be changed to 1, which is the mutation rate. 

TABLE III.  ANALYSIS RESULTS 

Ratio cGA LZWcGA 

Construction 0.048 0.787 

Destruction 0.226 0.188 

BB per BB2B 0.148 1.228 
 

VIII. CONCLUSIONS 

This paper investigates the impact of mutation to cGA and 
LZWcGA.  Both algorithms are univariate EDA.  However, 
mutation affects them differently.  cGA’s performance is 
worsened by mutation while mutation can improve the 
performance of LZWcGA.  The analysis shows that, in the case 
of cGA with Trap problem, mutation has higher building block 
destruction ratio than the construction ratio.  However, in 
LZWcGA, the same mutation method gives higher building 
block construction ratio and the destruction ratio. 

The future work might incorporate mutation to various 
EDA such as MIMIC and BOA to see how mutation effect the 
performance of compressed encoding. 
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