
Mutation in Compressed Encoding in Estimation of

Distribution Algorithm

Orawan Watchanupaporn, Worasait Suwannik

Department of Computer Science

Kasetsart University

Bangkok, Thailand

orawan.liu@gmail.com, worasait.suwannik@gmail.com

Prabhas Chongstitvatana

Department of Computer Engineering

Chulalongkorn University

Bangkok, Thailand

prabhas@chula.ac.th

Abstract—Estimation of Distribution Algorithm (EDA) is a new

kind of evolutionary algorithm. However, it does not use

evolutionary operators such as crossover and mutation. In this

paper, we investigate how mutation has an effect on the

performance of EDA, more specifically, compact genetic

algorithm (cGA) and LZWcGA. The result shows that cGA

performs poorly with mutation while LZWcGA’s performance is

improved by mutation. We also present an analysis of mutation

in both algorithms.

Mutation; LZW; Estimation of Distribution Algorithm

I. INTRODUCTION

Genetic Algorithm (GA) is an algorithm that solves
problems by imitating a process of natural evolution [1]. In
GA, a candidate solution is encoded in a binary string called an
individual or a chromosome. A collection of individuals in one
generation is called a population. The algorithm selects highly
fit individuals from the population. The new generation is
created by reproducing, recombining and mutating the selected
individuals. The process is repeated until the solution is found.

Estimation of Distribution Algorithm (EDA) is an
improvement over GA. Many steps in GA contain
unprincipled randomness such as mutation and crossover. For
example, the crossing site of crossover is selected randomly.
Therefore, EDA replaces those processes by probabilistic
modeling of highly fit individuals and generating the next
generation from the model [2]. Various types of EDA assume
different dependencies between different positions in the binary
string. The univariate EDA assumes all bits are independent.
Univariate EDA includes compact GA (cGA), PBIL, and
UMDA. Bivariate EDA assumes dependency among pairs of
bits. Bivariate EDA includes MIMIC and BMDA.
Multivariate EDA assumes multiple dependencies between
bits. Multivariate EDA includes BOA and ECGA.

Compressed chromosome encoding is proposed to enable
evolutionary algorithm to solve large scale problems [3][4].
For example, LZW encoding in Genetic Algorithm can solve
one-million-bit problem. The individual is in the compressed
form and has to be decompressed before the fitness evaluation.
The advantage of this approach is low memory requirement.

In GA, mutation helps maintaining diversity. However,
mutation has fewer, if not none, roles in EDA. Handa includes

mutation in EDA and show the effectiveness of his method [5].
Zhang et al. used guided mutation which generates offspring
using information from both probabilistic model and a group of
best individuals that have been found during the search [6].
This paper studies and analyzes mutation in compressed
encoding in estimation of distribution algorithm.

II. COMPACT GENETIC ALGORITHM

Harik et al. [7] introduced a compact genetic algorithm
(cGA). The advantage of cGA is low memory consumption.
cGA consumes less memory than traditional Genetic
Algorithm because the algorithm uses a single probability
vector to represent the whole GA population. The probability
vector requires only l×(log2n) bits to represent a population of
size n, where l is the length of each bit string. On the other
hand, a standard GA requires l×n bits to store a population.

Figure 1 shows the cGA algorithm. The first step is to
initialize each item in the probability vector to 0.5. The value
0.5 means that each bit in the chromosome has equal chance to
be 1 or 0. Then the algorithm randomly generates two
individuals from the probability vector. Next, both individuals
are evaluated for the fitness value. The individual with higher
fitness score is called the winner, whereas the one with the
lower score is called the loser. For each bit, the probability
vector is updated by the following rules.

• Increase the probability value by 1/n, if the winner bit = 1
and the loser bit = 0.

• Decrease the probability value by 1/n, if the winner bit = 0
and the loser bit = 1.

The probability update step imitates the uniform crossover
in the standard GA. The update rule of cGA assumes no
dependency between any bits. Thus, cGA is classified as
univariate EDA.

The last step of cGA is to check whether the probability
vector has been converged. If not, the evolutionary process is
repeated starting from step 2 through step 5. Notice that there
is no crossover and mutation in cGA.

cGA is applied to solve large-scale problems.
Watchanupaporn et al. used compressed encoding with cGA to
solve 128, 256 and 512-bit One-Max problem and against 60,
120 and 240-bit Royal Road problem [3]. Sastry et al. ran cGA

on a cluster of computers to solve a billion-bit noisy OneMax
problem [8]. The problem is more difficult than OneMax
problem because noise disrupts the evolutionary search.

 Parameters
 n : population size
 l : chromosome length
 1) Initialize probability vector p.
 for i := 1 to l do
 p[i] := 0.5
 2) Generate two individuals from the vector
 a := generate(p)
 b := generate(p)
 3) Let them compete.
 winner, loser := evaluate(a, b)
 4) Update the probability vector towards the better

individual.
 for i := 1 to l do
 if winner[i] = loser[i] then
 if winner[i] = 1 then p[i] := p[i] + 1/n
 else p[i] := p[i] − 1/n
 5) Check if the vector has converged.
 for i := 1 to l do
 if p[i] > 0 and p[i] < 1 then
 return to step 2
 6) p represents the final solution.

Figure 1. Compact Genetic Algorithm (cGA) pseudo code

III. LZW COMPACT GENETIC ALGORITHM

Lempel-Ziv-Welch Algorithm (LZW) is a lossless
dictionary-based data compression/decompression algorithm
[9]. The input of the compression algorithm is a character
string. The output of the compression algorithm (also the input
of the decompression algorithm) is an array of integer codes.
The output of the decompression algorithm is the original
character string.

The compression/decompression algorithms start with a
dictionary which the number of entries is equal to the number
of characters. Each entry contains one character. For example,
when using LZW to compress/decompress an English text, the
dictionary is initialized with all English characters and
symbols. However, when LZW is used to compress or
decompress a binary chromosome in GA, the dictionary is
initialized with the number 0 and 1. During the compression,
the algorithm dynamically expands the dictionary and outputs
codes that refer to strings in the dictionary. Normally, the
number of bits of the code is less than that of the variable
length string in the dictionary. Data is compressed when the
algorithm replaces the whole string with its code.

To use LZW compressed encoding with cGA, we add a
decoding and decompressing step after step 2. The binary
chromosome is decoded to an array of integers. After that, the
array is decompressed to a binary string, which might be longer
than the original binary chromosome. Figure 2 shows where
the new step D) is inserted. Please note that LZWcGA evolves

a direct representation of an individual as a "compressed"
string. There is no compression step involved in LZWcGA.
The pseudo code in step 2 (generate) of LZWcGA and cGA is
different. In cGA, an invidual is created as a binary string. In
LZWcGA, an individual is a binary string in "compressed"
form. The mutation in LZWcGA is applied directly to this
representation.

...
2) Generate two individuals from the vector
 a := generate(p)
 b := generate(p)
D) Decode and decompress both individuals
 a := decompress(decode(a))
 b := decompress(decode(b))
3) Let them compete.
 winner, loser := evaluate(a, b);
...

Figure 2. LZWcGA pseudo code

LZW chromosome encoding can be applied to various
EDAs such as cGA, MIMIC, and BOA. Adding LZW
encoding to existing EDA is easy. EDA algorithm does not
have to be modified. Rather, the fitness evaluation has to be
modified by adding decoding and decompressing at the
beginning. A binary string is decoded to an array of integers
using Gray decoding. Then, the integer array is decompressed
to a binary string using LZW decompression algorithm.
Finally, the binary string from the previous step is evaluated
and its fitness is returned to EDA. To EDA's point of view, it
evolves a binary string. It does not know that it is evolving a
compressed encoding chromosome.

IV. MUTATION

In LZWcGA, mutation occurs after individuals are
generated. Each bit has a probability to be mutated equals to
the mutation rate. If the bit is mutated, then its value is flipped
from 0 to 1 or from 1 to 0. An LZW binary chromosome is
mutated before it is decoded and decompressed. Figure 3
shows where the new step M) is inserted.

...
2) Generate two individuals from the vector
 a := generate(p)
 b := generate(p)
M) Mutate both individuals
 a := mutate(a)
 b := mutate(b)
D) Decode and decompress both individuals
 a := decompress(decode(a))
 b := decompress(decode(b))

...

Figure 3. LZWcGA with mutation pseudo code

V. BENCHMARK PROBLEMS

We use the synthetic problems to assess the strengths and
weaknesses of LZW encoding. The advantage of using a
synthetic problem is that its structures (i.e., relationship
between variables) are known. Thus, we can assume that if an
algorithm can solve the problem, it can also solve a class of
problems that have the same structure. Moreover, an algorithm
that can solve problems with more complex structures is more
sophisticated and is likely to solve a problem with simpler

structure.

A. Trap Problem

In Trap problem, an individual composes of several blocks.
Each of the blocks is evaluated by the trap functions. The Trap
function can fool the gradient-based optimizers to favor zeros,
but the optimal solution is composed of all ones. It is a
fundamental unit for designing test functions that resist hill-
climbing algorithms.

A k-bit trap function is defined as:













otherwiseku

kuif
xF

ff

f

lo wlo w

h ig h

;)1/()(

 ;
)(


(1)

where   



k

i
ixux

1

 ,1,0
 and fhigh > flow. Usually, fhigh is set at

k and flow is set at k-1.

The Trap problem can be decomposed to several Trap

functions. The problem, denoted by Fmk , is defined as:

 1,0
1

1
),()...(

k
m

i
iikmkm KKFKKf 






(2)

The m and k are varied to produce a number of test
functions.

B. Four-Peak problem

The Four-Peak problem [10] has two global maxima and
two suboptimal local optima. The problem is defined as
follows.

),()],0(max[),(TXRXtailTXf


 (3)

where

XinsbtrailingofnumberXbtail


 '),( (4)

XinsbleadingofnumberXbhead


 '),( (5)



 


 otherwise

T)Xhead(1, and T)X,0(

0
),(


 tailifN

TXR

(6)

For a 10-bit problem, the global optimums are 1100000000
and 111111100. Their fitness values are 18. The local
optimums are chromosomes with all 1's and all 0's. For a 800-
bit problem, the optimum fitness value is 1519.

C. Six-Peak problem

The Six-Peak problem [10] is harder than the Four-Peak
problem even it has two more global maxima than the Four-
Peak problem. The definition of the problem is similar to that
of the Four-Peak problem but the definition of R(X, T) is
changed as follows.



 


 otherwise

T x)head(0, and T x) tail(1,T)Xhead(1, and T)X,0(

0
),(


 tailifN

TXR

(7)

The optimal solutions of this problem are the same Four-
Peak problem and there are two additional global maxima. For
a 10-bit problem. The two additional global optimums are
chromosome 0000000011 and 0011111111. For the same
problem size, the optimum fitness value equal Four-Peak
problem.

VI. RESULTS

We compare the performance of cGA and LZWcGA at
different mutation rates. Table I shows the experimental
parameters. The length of binary LZW chromosome is equal
to the problem size. Before a fitness evaluation, the
compressed chromosome is decoded and decompressed with
LZW decompression algorithm. The length of the
decompressed chromosome is varied. If the length is more
than the size of the problem size, the excess bits are discarded.
If the length is less than the problem size, LZWCGA will
evaluate the fitness of available bits. All experimental results
are the average performance obtained from 30 runs. Table II
shows the average best fitness when using the algorithms to
solve Trap, 4-Peak, and 6-Peak problems respectively.

LZWcGA outperforms cGA for all problems that we tested.
Mutation deteriorates the performance of cGA while it can
improve the performance of LZWcGA. The higher the
mutation rate results in the poorer the performance of cGA.
However, for LZWcGA, mutation can improve its
performance. Among the mutation rates that we experiment,
the rate 0.05 gives the best performance.

TABLE I. EXPERIMENTAL PARAMETERS

Parameter Value

Population size 1000

Problem size 800

LZW chromosome length 800

Maximum evaluations 50,000

Mutation rate 0.00, 0.05, 0.10, 0.15

TABLE II. AVERAGE BEST FITNESS

Problem Algorithm
Mutation Rate

0.00 0.05 0.10 0.15

Trap
cGA 575 553 526 498

LZWcGA 768 795 791 787

4-Peak
cGA 50 31 26 23

LZWcGA 1387 1449 1420 1395

6-Peak
cGA 47 28 25 22

LZWcGA 1463 1498 1488 1488

VII. ANALYSIS

From the experimental result, mutation deteriorates the
performance of cGA but improves the performance of
LZWcGA. We hypothesize that the reason that cGA does not
work well is because the mutation destroys more building
block than creating a building block. We test our hypothesis
with Trap problem because its building blocks are known. The
building blocks in Trap problem have the same size and are
lined-up consecutively.

To prove our hypothesis, for every mutation occurs during
the evolution, we count the number of times that a new
building block is created and compare it to the number of times
that a build block is destroyed by mutation. If the mutation has
a detrimental effect then the first number should be lower than
the second number. However, the result shows that mutation
constructs more building blocks than destroys them.

To observe the effect, the ratio of construction and
destruction is defined. An about-to-be building blocks (BB2B)
is defined as a part of string that is different from a true
building block by one bit. In Trap problem, BB2B is a block
with one 0’s. A construction ration is the number of block that
becomes the building block divided by the total number of
about-to-be building block (BB2B). A destruction ratio is the
number of building block that was destroyed divided by total
number of building block. From the experiment, there are a lot
of about-to-be building blocks (BB2B) than the building block.
It is likely that mutation creates more building blocks than
destroying it because there is a higher chance that a new
building block will be created.

Table III shows the analysis result. In cGA, the number of
building block per BB2B is very low. Even worse, it has very
low construction ratio compares to the destruction ratio.
However, in LZWcGA, the construction ratio is much higher
than the destruction ratio. Note that in the case of LZWcGA,
we obtained the ratio by counting the building blocks in a
decompressed chromosome. The analysis is performed on an
800-bit problem. The mutation rate is 0.05. The result is an
average over 30 runs.

At the mutation rate 0.05, the ratio of building block per
about-to-be building block for cGA and LZWcGA is 0.148 and
1.228. However, when no mutation is used the ratio for cGA
and LZWcGA is 0.148 and 0.921. Notice that mutation in
LZWcGA helps increase the BB to BB2B ratio.

In Table III, the construction ratio is 0.048 while the
mutation rate is 0.050. If we increased the maximum number
of evaluation to a very large number, the construction ratio of
cGA will be equal to the mutation rate. This is because in the
ratio is equal to the probability that the only 0 in the block will
be changed to 1, which is the mutation rate.

TABLE III. ANALYSIS RESULTS

Ratio cGA LZWcGA

Construction 0.048 0.787

Destruction 0.226 0.188

BB per BB2B 0.148 1.228

VIII. CONCLUSIONS

This paper investigates the impact of mutation to cGA and
LZWcGA. Both algorithms are univariate EDA. However,
mutation affects them differently. cGA’s performance is
worsened by mutation while mutation can improve the
performance of LZWcGA. The analysis shows that, in the case
of cGA with Trap problem, mutation has higher building block
destruction ratio than the construction ratio. However, in
LZWcGA, the same mutation method gives higher building
block construction ratio and the destruction ratio.

The future work might incorporate mutation to various
EDA such as MIMIC and BOA to see how mutation effect the
performance of compressed encoding.

 REFERENCES

[1] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison- Wesley, 1989.

[2] T.K. Paul and H. Iba, “Linear and Combinatorial Optimizations by
Estimation of Distribution Algorithms,” Proceedings of 9th MPS
Symposium on Evolutionary Computation, IPSJ, 2002.

[3] O. Watchanupaporn, N. Soonthornphisaj, and W. Suwannik, “A
Performance Analysis of Compressed Compact Genetic Algorithm,”
ECTI Transactions on Computer and Information Technology, vol. 2,
no. 1, 2006, pp. 16-24.

[4] N. Kunasol, W. Suwannik, and P. Chongstitvatana, “Solving One-
Million-Bit Problems Using LZWGA,” Proceedings of International
Symposium on Communications and Information Technologies (ISCIT),
2006, pp. 32-36.

[5] H. Handa, “Estimation of Distribution Algorithms with Mutation,”
Evolutinary Computation in Combinatorial Optimization, 2005.

[6] Q. Zhang, J. Sun, and E. Tsang, “Combinations of Estimation of
Distribution Algorithms and Other Techniques,” International Journal of
Automation and Computing, 2007, pp. 273-280.

[7] G.R. Harik, F.G. Lobo, and D.E. Goldberg, “The Compact Genetic
Algorithm,” IEEE Transaction on Evolutionary Computation, vol. 3, no.
4, 1999, pp. 287-297.

[8] K. Sastry, D.E. Goldberg, and X. Llorà, “Towards billion bit
optimization via parallel estimation of distribution algorithm,” Genetic
and Evolutionary Computation Conference, 2007, pp. 577-584.

[9] T.A. Welch, “A Technique for High-Performance Data Compression,”
IEEE Computer, vol. 17, no. 6, 1984, pp. 8-19.

[10] J.S. De Bonet, C.L. Isbell, and P. Viola, “MIMIC: Finding Optima by
Estimating Probability Densities,” Advances in Neural Information
Processing Systems, vol. 9, MIT Press, Cambridge, 1997, pp. 424-430

